blob: 5b13e01b1330510faaccb23e13e62c130684a085 [file] [log] [blame]
use hir::{
Adt, AsAssocItem, HasSource, HirDisplay, Module, PathResolution, Semantics, Type, TypeInfo,
};
use ide_db::{
base_db::FileId,
defs::{Definition, NameRefClass},
famous_defs::FamousDefs,
helpers::is_editable_crate,
path_transform::PathTransform,
FxHashMap, FxHashSet, RootDatabase, SnippetCap,
};
use stdx::to_lower_snake_case;
use syntax::{
ast::{
self,
edit::{AstNodeEdit, IndentLevel},
make, AstNode, CallExpr, HasArgList, HasGenericParams, HasModuleItem, HasTypeBounds,
},
SyntaxKind, SyntaxNode, TextRange, TextSize,
};
use crate::{
utils::{convert_reference_type, find_struct_impl, render_snippet, Cursor},
AssistContext, AssistId, AssistKind, Assists,
};
// Assist: generate_function
//
// Adds a stub function with a signature matching the function under the cursor.
//
// ```
// struct Baz;
// fn baz() -> Baz { Baz }
// fn foo() {
// bar$0("", baz());
// }
//
// ```
// ->
// ```
// struct Baz;
// fn baz() -> Baz { Baz }
// fn foo() {
// bar("", baz());
// }
//
// fn bar(arg: &str, baz: Baz) ${0:-> _} {
// todo!()
// }
//
// ```
pub(crate) fn generate_function(acc: &mut Assists, ctx: &AssistContext<'_>) -> Option<()> {
gen_fn(acc, ctx).or_else(|| gen_method(acc, ctx))
}
fn gen_fn(acc: &mut Assists, ctx: &AssistContext<'_>) -> Option<()> {
let path_expr: ast::PathExpr = ctx.find_node_at_offset()?;
let call = path_expr.syntax().parent().and_then(ast::CallExpr::cast)?;
let path = path_expr.path()?;
let name_ref = path.segment()?.name_ref()?;
if ctx.sema.resolve_path(&path).is_some() {
// The function call already resolves, no need to add a function
return None;
}
let fn_name = &*name_ref.text();
let TargetInfo { target_module, adt_name, target, file, insert_offset } =
fn_target_info(ctx, path, &call, fn_name)?;
if let Some(m) = target_module {
if !is_editable_crate(m.krate(), ctx.db()) {
return None;
}
}
let function_builder = FunctionBuilder::from_call(ctx, &call, fn_name, target_module, target)?;
let text_range = call.syntax().text_range();
let label = format!("Generate {} function", function_builder.fn_name);
add_func_to_accumulator(
acc,
ctx,
text_range,
function_builder,
insert_offset,
file,
adt_name,
label,
)
}
struct TargetInfo {
target_module: Option<Module>,
adt_name: Option<hir::Name>,
target: GeneratedFunctionTarget,
file: FileId,
insert_offset: TextSize,
}
impl TargetInfo {
fn new(
target_module: Option<Module>,
adt_name: Option<hir::Name>,
target: GeneratedFunctionTarget,
file: FileId,
insert_offset: TextSize,
) -> Self {
Self { target_module, adt_name, target, file, insert_offset }
}
}
fn fn_target_info(
ctx: &AssistContext<'_>,
path: ast::Path,
call: &CallExpr,
fn_name: &str,
) -> Option<TargetInfo> {
match path.qualifier() {
Some(qualifier) => match ctx.sema.resolve_path(&qualifier) {
Some(hir::PathResolution::Def(hir::ModuleDef::Module(module))) => {
get_fn_target_info(ctx, Some(module), call.clone())
}
Some(hir::PathResolution::Def(hir::ModuleDef::Adt(adt))) => {
if let hir::Adt::Enum(_) = adt {
// Don't suggest generating function if the name starts with an uppercase letter
if fn_name.starts_with(char::is_uppercase) {
return None;
}
}
assoc_fn_target_info(ctx, call, adt, fn_name)
}
Some(hir::PathResolution::SelfType(impl_)) => {
let adt = impl_.self_ty(ctx.db()).as_adt()?;
assoc_fn_target_info(ctx, call, adt, fn_name)
}
_ => None,
},
_ => get_fn_target_info(ctx, None, call.clone()),
}
}
fn gen_method(acc: &mut Assists, ctx: &AssistContext<'_>) -> Option<()> {
let call: ast::MethodCallExpr = ctx.find_node_at_offset()?;
if ctx.sema.resolve_method_call(&call).is_some() {
return None;
}
let fn_name = call.name_ref()?;
let receiver_ty = ctx.sema.type_of_expr(&call.receiver()?)?.original().strip_references();
let adt = receiver_ty.as_adt()?;
let target_module = adt.module(ctx.sema.db);
if !is_editable_crate(target_module.krate(), ctx.db()) {
return None;
}
let (impl_, file) = get_adt_source(ctx, &adt, fn_name.text().as_str())?;
let (target, insert_offset) = get_method_target(ctx, &impl_, &adt)?;
let function_builder = FunctionBuilder::from_method_call(
ctx,
&call,
&fn_name,
receiver_ty,
target_module,
target,
)?;
let text_range = call.syntax().text_range();
let adt_name = if impl_.is_none() { Some(adt.name(ctx.sema.db)) } else { None };
let label = format!("Generate {} method", function_builder.fn_name);
add_func_to_accumulator(
acc,
ctx,
text_range,
function_builder,
insert_offset,
file,
adt_name,
label,
)
}
fn add_func_to_accumulator(
acc: &mut Assists,
ctx: &AssistContext<'_>,
text_range: TextRange,
function_builder: FunctionBuilder,
insert_offset: TextSize,
file: FileId,
adt_name: Option<hir::Name>,
label: String,
) -> Option<()> {
acc.add(AssistId("generate_function", AssistKind::Generate), label, text_range, |builder| {
let indent = IndentLevel::from_node(function_builder.target.syntax());
let function_template = function_builder.render(adt_name.is_some());
let mut func = function_template.to_string(ctx.config.snippet_cap);
if let Some(name) = adt_name {
// FIXME: adt may have generic params.
func = format!("\n{indent}impl {} {{\n{func}\n{indent}}}", name.display(ctx.db()));
}
builder.edit_file(file);
match ctx.config.snippet_cap {
Some(cap) => builder.insert_snippet(cap, insert_offset, func),
None => builder.insert(insert_offset, func),
}
})
}
fn get_adt_source(
ctx: &AssistContext<'_>,
adt: &hir::Adt,
fn_name: &str,
) -> Option<(Option<ast::Impl>, FileId)> {
let range = adt.source(ctx.sema.db)?.syntax().original_file_range(ctx.sema.db);
let file = ctx.sema.parse(range.file_id);
let adt_source =
ctx.sema.find_node_at_offset_with_macros(file.syntax(), range.range.start())?;
find_struct_impl(ctx, &adt_source, &[fn_name.to_string()]).map(|impl_| (impl_, range.file_id))
}
struct FunctionTemplate {
leading_ws: String,
fn_def: ast::Fn,
ret_type: Option<ast::RetType>,
should_focus_return_type: bool,
trailing_ws: String,
tail_expr: ast::Expr,
}
impl FunctionTemplate {
fn to_string(&self, cap: Option<SnippetCap>) -> String {
let Self { leading_ws, fn_def, ret_type, should_focus_return_type, trailing_ws, tail_expr } =
self;
let f = match cap {
Some(cap) => {
let cursor = if *should_focus_return_type {
// Focus the return type if there is one
match ret_type {
Some(ret_type) => ret_type.syntax(),
None => tail_expr.syntax(),
}
} else {
tail_expr.syntax()
};
render_snippet(cap, fn_def.syntax(), Cursor::Replace(cursor))
}
None => fn_def.to_string(),
};
format!("{leading_ws}{f}{trailing_ws}")
}
}
struct FunctionBuilder {
target: GeneratedFunctionTarget,
fn_name: ast::Name,
generic_param_list: Option<ast::GenericParamList>,
where_clause: Option<ast::WhereClause>,
params: ast::ParamList,
ret_type: Option<ast::RetType>,
should_focus_return_type: bool,
visibility: Visibility,
is_async: bool,
}
impl FunctionBuilder {
/// Prepares a generated function that matches `call`.
/// The function is generated in `target_module` or next to `call`
fn from_call(
ctx: &AssistContext<'_>,
call: &ast::CallExpr,
fn_name: &str,
target_module: Option<Module>,
target: GeneratedFunctionTarget,
) -> Option<Self> {
let target_module =
target_module.or_else(|| ctx.sema.scope(target.syntax()).map(|it| it.module()))?;
let current_module = ctx.sema.scope(call.syntax())?.module();
let visibility = calculate_necessary_visibility(current_module, target_module, ctx);
let fn_name = make::name(fn_name);
let mut necessary_generic_params = FxHashSet::default();
let params = fn_args(
ctx,
target_module,
ast::CallableExpr::Call(call.clone()),
&mut necessary_generic_params,
)?;
let await_expr = call.syntax().parent().and_then(ast::AwaitExpr::cast);
let is_async = await_expr.is_some();
let expr_for_ret_ty = await_expr.map_or_else(|| call.clone().into(), |it| it.into());
let (ret_type, should_focus_return_type) =
make_return_type(ctx, &expr_for_ret_ty, target_module, &mut necessary_generic_params);
let (generic_param_list, where_clause) =
fn_generic_params(ctx, necessary_generic_params, &target)?;
Some(Self {
target,
fn_name,
generic_param_list,
where_clause,
params,
ret_type,
should_focus_return_type,
visibility,
is_async,
})
}
fn from_method_call(
ctx: &AssistContext<'_>,
call: &ast::MethodCallExpr,
name: &ast::NameRef,
receiver_ty: Type,
target_module: Module,
target: GeneratedFunctionTarget,
) -> Option<Self> {
let current_module = ctx.sema.scope(call.syntax())?.module();
let visibility = calculate_necessary_visibility(current_module, target_module, ctx);
let fn_name = make::name(&name.text());
let mut necessary_generic_params = FxHashSet::default();
necessary_generic_params.extend(receiver_ty.generic_params(ctx.db()));
let params = fn_args(
ctx,
target_module,
ast::CallableExpr::MethodCall(call.clone()),
&mut necessary_generic_params,
)?;
let await_expr = call.syntax().parent().and_then(ast::AwaitExpr::cast);
let is_async = await_expr.is_some();
let expr_for_ret_ty = await_expr.map_or_else(|| call.clone().into(), |it| it.into());
let (ret_type, should_focus_return_type) =
make_return_type(ctx, &expr_for_ret_ty, target_module, &mut necessary_generic_params);
let (generic_param_list, where_clause) =
fn_generic_params(ctx, necessary_generic_params, &target)?;
Some(Self {
target,
fn_name,
generic_param_list,
where_clause,
params,
ret_type,
should_focus_return_type,
visibility,
is_async,
})
}
fn render(self, is_method: bool) -> FunctionTemplate {
let placeholder_expr = make::ext::expr_todo();
let fn_body = make::block_expr(vec![], Some(placeholder_expr));
let visibility = match self.visibility {
Visibility::None => None,
Visibility::Crate => Some(make::visibility_pub_crate()),
Visibility::Pub => Some(make::visibility_pub()),
};
let mut fn_def = make::fn_(
visibility,
self.fn_name,
self.generic_param_list,
self.where_clause,
self.params,
fn_body,
self.ret_type,
self.is_async,
false, // FIXME : const and unsafe are not handled yet.
false,
);
let leading_ws;
let trailing_ws;
match self.target {
GeneratedFunctionTarget::BehindItem(it) => {
let mut indent = IndentLevel::from_node(&it);
if is_method {
indent = indent + 1;
leading_ws = format!("{indent}");
} else {
leading_ws = format!("\n\n{indent}");
}
fn_def = fn_def.indent(indent);
trailing_ws = String::new();
}
GeneratedFunctionTarget::InEmptyItemList(it) => {
let indent = IndentLevel::from_node(&it);
let leading_indent = indent + 1;
leading_ws = format!("\n{leading_indent}");
fn_def = fn_def.indent(leading_indent);
trailing_ws = format!("\n{indent}");
}
};
FunctionTemplate {
leading_ws,
ret_type: fn_def.ret_type(),
// PANIC: we guarantee we always create a function body with a tail expr
tail_expr: fn_def.body().unwrap().tail_expr().unwrap(),
should_focus_return_type: self.should_focus_return_type,
fn_def,
trailing_ws,
}
}
}
/// Makes an optional return type along with whether the return type should be focused by the cursor.
/// If we cannot infer what the return type should be, we create a placeholder type.
///
/// The rule for whether we focus a return type or not (and thus focus the function body),
/// is rather simple:
/// * If we could *not* infer what the return type should be, focus it (so the user can fill-in
/// the correct return type).
/// * If we could infer the return type, don't focus it (and thus focus the function body) so the
/// user can change the `todo!` function body.
fn make_return_type(
ctx: &AssistContext<'_>,
expr: &ast::Expr,
target_module: Module,
necessary_generic_params: &mut FxHashSet<hir::GenericParam>,
) -> (Option<ast::RetType>, bool) {
let (ret_ty, should_focus_return_type) = {
match ctx.sema.type_of_expr(expr).map(TypeInfo::original) {
Some(ty) if ty.is_unknown() => (Some(make::ty_placeholder()), true),
None => (Some(make::ty_placeholder()), true),
Some(ty) if ty.is_unit() => (None, false),
Some(ty) => {
necessary_generic_params.extend(ty.generic_params(ctx.db()));
let rendered = ty.display_source_code(ctx.db(), target_module.into(), true);
match rendered {
Ok(rendered) => (Some(make::ty(&rendered)), false),
Err(_) => (Some(make::ty_placeholder()), true),
}
}
}
};
let ret_type = ret_ty.map(make::ret_type);
(ret_type, should_focus_return_type)
}
fn get_fn_target_info(
ctx: &AssistContext<'_>,
target_module: Option<Module>,
call: CallExpr,
) -> Option<TargetInfo> {
let (target, file, insert_offset) = get_fn_target(ctx, target_module, call)?;
Some(TargetInfo::new(target_module, None, target, file, insert_offset))
}
fn get_fn_target(
ctx: &AssistContext<'_>,
target_module: Option<Module>,
call: CallExpr,
) -> Option<(GeneratedFunctionTarget, FileId, TextSize)> {
let mut file = ctx.file_id();
let target = match target_module {
Some(target_module) => {
let module_source = target_module.definition_source(ctx.db());
let (in_file, target) = next_space_for_fn_in_module(ctx.sema.db, &module_source)?;
file = in_file;
target
}
None => next_space_for_fn_after_call_site(ast::CallableExpr::Call(call))?,
};
Some((target.clone(), file, get_insert_offset(&target)))
}
fn get_method_target(
ctx: &AssistContext<'_>,
impl_: &Option<ast::Impl>,
adt: &Adt,
) -> Option<(GeneratedFunctionTarget, TextSize)> {
let target = match impl_ {
Some(impl_) => next_space_for_fn_in_impl(impl_)?,
None => {
GeneratedFunctionTarget::BehindItem(adt.source(ctx.sema.db)?.syntax().value.clone())
}
};
Some((target.clone(), get_insert_offset(&target)))
}
fn assoc_fn_target_info(
ctx: &AssistContext<'_>,
call: &CallExpr,
adt: hir::Adt,
fn_name: &str,
) -> Option<TargetInfo> {
let current_module = ctx.sema.scope(call.syntax())?.module();
let module = adt.module(ctx.sema.db);
let target_module = if current_module == module { None } else { Some(module) };
if current_module.krate() != module.krate() {
return None;
}
let (impl_, file) = get_adt_source(ctx, &adt, fn_name)?;
let (target, insert_offset) = get_method_target(ctx, &impl_, &adt)?;
let adt_name = if impl_.is_none() { Some(adt.name(ctx.sema.db)) } else { None };
Some(TargetInfo::new(target_module, adt_name, target, file, insert_offset))
}
fn get_insert_offset(target: &GeneratedFunctionTarget) -> TextSize {
match &target {
GeneratedFunctionTarget::BehindItem(it) => it.text_range().end(),
GeneratedFunctionTarget::InEmptyItemList(it) => it.text_range().start() + TextSize::of('{'),
}
}
#[derive(Clone)]
enum GeneratedFunctionTarget {
BehindItem(SyntaxNode),
InEmptyItemList(SyntaxNode),
}
impl GeneratedFunctionTarget {
fn syntax(&self) -> &SyntaxNode {
match self {
GeneratedFunctionTarget::BehindItem(it) => it,
GeneratedFunctionTarget::InEmptyItemList(it) => it,
}
}
fn parent(&self) -> SyntaxNode {
match self {
GeneratedFunctionTarget::BehindItem(it) => it.parent().expect("item without parent"),
GeneratedFunctionTarget::InEmptyItemList(it) => it.clone(),
}
}
}
/// Computes parameter list for the generated function.
fn fn_args(
ctx: &AssistContext<'_>,
target_module: Module,
call: ast::CallableExpr,
necessary_generic_params: &mut FxHashSet<hir::GenericParam>,
) -> Option<ast::ParamList> {
let mut arg_names = Vec::new();
let mut arg_types = Vec::new();
for arg in call.arg_list()?.args() {
arg_names.push(fn_arg_name(&ctx.sema, &arg));
arg_types.push(fn_arg_type(ctx, target_module, &arg, necessary_generic_params));
}
deduplicate_arg_names(&mut arg_names);
let params = arg_names.into_iter().zip(arg_types).map(|(name, ty)| {
make::param(make::ext::simple_ident_pat(make::name(&name)).into(), make::ty(&ty))
});
Some(make::param_list(
match call {
ast::CallableExpr::Call(_) => None,
ast::CallableExpr::MethodCall(_) => Some(make::self_param()),
},
params,
))
}
/// Gets parameter bounds and where predicates in scope and filters out irrelevant ones. Returns
/// `None` when it fails to get scope information.
///
/// See comment on `filter_unnecessary_bounds()` for what bounds we consider relevant.
///
/// NOTE: Generic parameters returned from this function may cause name clash at `target`. We don't
/// currently do anything about it because it's actually easy to resolve it after the assist: just
/// use the Rename functionality.
fn fn_generic_params(
ctx: &AssistContext<'_>,
necessary_params: FxHashSet<hir::GenericParam>,
target: &GeneratedFunctionTarget,
) -> Option<(Option<ast::GenericParamList>, Option<ast::WhereClause>)> {
if necessary_params.is_empty() {
// Not really needed but fast path.
return Some((None, None));
}
// 1. Get generic parameters (with bounds) and where predicates in scope.
let (generic_params, where_preds) = params_and_where_preds_in_scope(ctx);
// 2. Extract type parameters included in each bound.
let mut generic_params = generic_params
.into_iter()
.filter_map(|it| compute_contained_params_in_generic_param(ctx, it))
.collect();
let mut where_preds = where_preds
.into_iter()
.filter_map(|it| compute_contained_params_in_where_pred(ctx, it))
.collect();
// 3. Filter out unnecessary bounds.
filter_unnecessary_bounds(&mut generic_params, &mut where_preds, necessary_params);
filter_bounds_in_scope(&mut generic_params, &mut where_preds, ctx, target);
let generic_params: Vec<_> =
generic_params.into_iter().map(|it| it.node.clone_for_update()).collect();
let where_preds: Vec<_> =
where_preds.into_iter().map(|it| it.node.clone_for_update()).collect();
// 4. Rewrite paths
if let Some(param) = generic_params.first() {
let source_scope = ctx.sema.scope(param.syntax())?;
let target_scope = ctx.sema.scope(&target.parent())?;
if source_scope.module() != target_scope.module() {
let transform = PathTransform::generic_transformation(&target_scope, &source_scope);
let generic_params = generic_params.iter().map(|it| it.syntax());
let where_preds = where_preds.iter().map(|it| it.syntax());
transform.apply_all(generic_params.chain(where_preds));
}
}
let generic_param_list = make::generic_param_list(generic_params);
let where_clause =
if where_preds.is_empty() { None } else { Some(make::where_clause(where_preds)) };
Some((Some(generic_param_list), where_clause))
}
fn params_and_where_preds_in_scope(
ctx: &AssistContext<'_>,
) -> (Vec<ast::GenericParam>, Vec<ast::WherePred>) {
let Some(body) = containing_body(ctx) else {
return Default::default();
};
let mut generic_params = Vec::new();
let mut where_clauses = Vec::new();
// There are two items where generic parameters currently in scope may be declared: the item
// the cursor is at, and its parent (if any).
//
// We handle parent first so that their generic parameters appear first in the generic
// parameter list of the function we're generating.
let db = ctx.db();
if let Some(parent) = body.as_assoc_item(db).map(|it| it.container(db)) {
match parent {
hir::AssocItemContainer::Impl(it) => {
let (params, clauses) = get_bounds_in_scope(ctx, it);
generic_params.extend(params);
where_clauses.extend(clauses);
}
hir::AssocItemContainer::Trait(it) => {
let (params, clauses) = get_bounds_in_scope(ctx, it);
generic_params.extend(params);
where_clauses.extend(clauses);
}
}
}
// Other defs with body may inherit generic parameters from its parent, but never have their
// own generic parameters.
if let hir::DefWithBody::Function(it) = body {
let (params, clauses) = get_bounds_in_scope(ctx, it);
generic_params.extend(params);
where_clauses.extend(clauses);
}
(generic_params, where_clauses)
}
fn containing_body(ctx: &AssistContext<'_>) -> Option<hir::DefWithBody> {
let item: ast::Item = ctx.find_node_at_offset()?;
let def = match item {
ast::Item::Fn(it) => ctx.sema.to_def(&it)?.into(),
ast::Item::Const(it) => ctx.sema.to_def(&it)?.into(),
ast::Item::Static(it) => ctx.sema.to_def(&it)?.into(),
_ => return None,
};
Some(def)
}
fn get_bounds_in_scope<D>(
ctx: &AssistContext<'_>,
def: D,
) -> (impl Iterator<Item = ast::GenericParam>, impl Iterator<Item = ast::WherePred>)
where
D: HasSource,
D::Ast: HasGenericParams,
{
// This function should be only called with `Impl`, `Trait`, or `Function`, for which it's
// infallible to get source ast.
let node = ctx.sema.source(def).unwrap().value;
let generic_params = node.generic_param_list().into_iter().flat_map(|it| it.generic_params());
let where_clauses = node.where_clause().into_iter().flat_map(|it| it.predicates());
(generic_params, where_clauses)
}
#[derive(Debug)]
struct ParamBoundWithParams {
node: ast::GenericParam,
/// Generic parameter `node` introduces.
///
/// ```text
/// impl<T> S<T> {
/// fn f<U: Trait<T>>() {}
/// ^ this
/// }
/// ```
///
/// `U` in this example.
self_ty_param: hir::GenericParam,
/// Generic parameters contained in the trait reference of this bound.
///
/// ```text
/// impl<T> S<T> {
/// fn f<U: Trait<T>>() {}
/// ^^^^^^^^ params in this part
/// }
/// ```
///
/// `T` in this example.
other_params: FxHashSet<hir::GenericParam>,
}
#[derive(Debug)]
struct WherePredWithParams {
node: ast::WherePred,
/// Generic parameters contained in the "self type" of this where predicate.
///
/// ```text
/// Struct<T, U>: Trait<T, Assoc = V>,
/// ^^^^^^^^^^^^ params in this part
/// ```
///
/// `T` and `U` in this example.
self_ty_params: FxHashSet<hir::GenericParam>,
/// Generic parameters contained in the trait reference of this where predicate.
///
/// ```text
/// Struct<T, U>: Trait<T, Assoc = V>,
/// ^^^^^^^^^^^^^^^^^^^ params in this part
/// ```
///
/// `T` and `V` in this example.
other_params: FxHashSet<hir::GenericParam>,
}
fn compute_contained_params_in_generic_param(
ctx: &AssistContext<'_>,
node: ast::GenericParam,
) -> Option<ParamBoundWithParams> {
match &node {
ast::GenericParam::TypeParam(ty) => {
let self_ty_param = ctx.sema.to_def(ty)?.into();
let other_params = ty
.type_bound_list()
.into_iter()
.flat_map(|it| it.bounds())
.flat_map(|bound| bound.syntax().descendants())
.filter_map(|node| filter_generic_params(ctx, node))
.collect();
Some(ParamBoundWithParams { node, self_ty_param, other_params })
}
ast::GenericParam::ConstParam(ct) => {
let self_ty_param = ctx.sema.to_def(ct)?.into();
Some(ParamBoundWithParams { node, self_ty_param, other_params: FxHashSet::default() })
}
ast::GenericParam::LifetimeParam(_) => {
// FIXME: It might be a good idea to handle lifetime parameters too.
None
}
}
}
fn compute_contained_params_in_where_pred(
ctx: &AssistContext<'_>,
node: ast::WherePred,
) -> Option<WherePredWithParams> {
let self_ty = node.ty()?;
let bound_list = node.type_bound_list()?;
let self_ty_params = self_ty
.syntax()
.descendants()
.filter_map(|node| filter_generic_params(ctx, node))
.collect();
let other_params = bound_list
.bounds()
.flat_map(|bound| bound.syntax().descendants())
.filter_map(|node| filter_generic_params(ctx, node))
.collect();
Some(WherePredWithParams { node, self_ty_params, other_params })
}
fn filter_generic_params(ctx: &AssistContext<'_>, node: SyntaxNode) -> Option<hir::GenericParam> {
let path = ast::Path::cast(node)?;
match ctx.sema.resolve_path(&path)? {
PathResolution::TypeParam(it) => Some(it.into()),
PathResolution::ConstParam(it) => Some(it.into()),
_ => None,
}
}
/// Filters out irrelevant bounds from `generic_params` and `where_preds`.
///
/// Say we have a trait bound `Struct<T>: Trait<U>`. Given `necessary_params`, when is it relevant
/// and when not? Some observations:
/// - When `necessary_params` contains `T`, it's likely that we want this bound, but now we have
/// an extra param to consider: `U`.
/// - On the other hand, when `necessary_params` contains `U` (but not `T`), then it's unlikely
/// that we want this bound because it doesn't really constrain `U`.
///
/// (FIXME?: The latter clause might be overstating. We may want to include the bound if the self
/// type does *not* include generic params at all - like `Option<i32>: From<U>`)
///
/// Can we make this a bit more formal? Let's define "dependency" between generic parameters and
/// trait bounds:
/// - A generic parameter `T` depends on a trait bound if `T` appears in the self type (i.e. left
/// part) of the bound.
/// - A trait bound depends on a generic parameter `T` if `T` appears in the bound.
///
/// Using the notion, what we want is all the bounds that params in `necessary_params`
/// *transitively* depend on!
///
/// Now it's not hard to solve: we build a dependency graph and compute all reachable nodes from
/// nodes that represent params in `necessary_params` by usual and boring DFS.
///
/// The time complexity is O(|generic_params| + |where_preds| + |necessary_params|).
fn filter_unnecessary_bounds(
generic_params: &mut Vec<ParamBoundWithParams>,
where_preds: &mut Vec<WherePredWithParams>,
necessary_params: FxHashSet<hir::GenericParam>,
) {
// All `self_ty_param` should be unique as they were collected from `ast::GenericParamList`s.
let param_map: FxHashMap<hir::GenericParam, usize> =
generic_params.iter().map(|it| it.self_ty_param).zip(0..).collect();
let param_count = param_map.len();
let generic_params_upper_bound = param_count + generic_params.len();
let node_count = generic_params_upper_bound + where_preds.len();
// | node index range | what the node represents |
// |-----------------------------------------|--------------------------|
// | 0..param_count | generic parameter |
// | param_count..generic_params_upper_bound | `ast::GenericParam` |
// | generic_params_upper_bound..node_count | `ast::WherePred` |
let mut graph = Graph::new(node_count);
for (pred, pred_idx) in generic_params.iter().zip(param_count..) {
let param_idx = param_map[&pred.self_ty_param];
graph.add_edge(param_idx, pred_idx);
graph.add_edge(pred_idx, param_idx);
for param in &pred.other_params {
let param_idx = param_map[param];
graph.add_edge(pred_idx, param_idx);
}
}
for (pred, pred_idx) in where_preds.iter().zip(generic_params_upper_bound..) {
for param in &pred.self_ty_params {
let param_idx = param_map[param];
graph.add_edge(param_idx, pred_idx);
graph.add_edge(pred_idx, param_idx);
}
for param in &pred.other_params {
let param_idx = param_map[param];
graph.add_edge(pred_idx, param_idx);
}
}
let starting_nodes = necessary_params.iter().map(|param| param_map[param]);
let reachable = graph.compute_reachable_nodes(starting_nodes);
// Not pretty, but effective. If only there were `Vec::retain_index()`...
let mut idx = param_count;
generic_params.retain(|_| {
idx += 1;
reachable[idx - 1]
});
stdx::always!(idx == generic_params_upper_bound, "inconsistent index");
where_preds.retain(|_| {
idx += 1;
reachable[idx - 1]
});
}
/// Filters out bounds from impl if we're generating the function into the same impl we're
/// generating from.
fn filter_bounds_in_scope(
generic_params: &mut Vec<ParamBoundWithParams>,
where_preds: &mut Vec<WherePredWithParams>,
ctx: &AssistContext<'_>,
target: &GeneratedFunctionTarget,
) -> Option<()> {
let target_impl = target.parent().ancestors().find_map(ast::Impl::cast)?;
let target_impl = ctx.sema.to_def(&target_impl)?;
// It's sufficient to test only the first element of `generic_params` because of the order of
// insertion (see `params_and_where_preds_in_scope()`).
let def = generic_params.first()?.self_ty_param.parent();
if def != hir::GenericDef::Impl(target_impl) {
return None;
}
// Now we know every element that belongs to an impl would be in scope at `target`, we can
// filter them out just by looking at their parent.
generic_params.retain(|it| !matches!(it.self_ty_param.parent(), hir::GenericDef::Impl(_)));
where_preds.retain(|it| {
it.node.syntax().parent().and_then(|it| it.parent()).and_then(ast::Impl::cast).is_none()
});
Some(())
}
/// Makes duplicate argument names unique by appending incrementing numbers.
///
/// ```
/// let mut names: Vec<String> =
/// vec!["foo".into(), "foo".into(), "bar".into(), "baz".into(), "bar".into()];
/// deduplicate_arg_names(&mut names);
/// let expected: Vec<String> =
/// vec!["foo_1".into(), "foo_2".into(), "bar_1".into(), "baz".into(), "bar_2".into()];
/// assert_eq!(names, expected);
/// ```
fn deduplicate_arg_names(arg_names: &mut [String]) {
let mut arg_name_counts = FxHashMap::default();
for name in arg_names.iter() {
*arg_name_counts.entry(name).or_insert(0) += 1;
}
let duplicate_arg_names: FxHashSet<String> = arg_name_counts
.into_iter()
.filter(|(_, count)| *count >= 2)
.map(|(name, _)| name.clone())
.collect();
let mut counter_per_name = FxHashMap::default();
for arg_name in arg_names.iter_mut() {
if duplicate_arg_names.contains(arg_name) {
let counter = counter_per_name.entry(arg_name.clone()).or_insert(1);
arg_name.push('_');
arg_name.push_str(&counter.to_string());
*counter += 1;
}
}
}
fn fn_arg_name(sema: &Semantics<'_, RootDatabase>, arg_expr: &ast::Expr) -> String {
let name = (|| match arg_expr {
ast::Expr::CastExpr(cast_expr) => Some(fn_arg_name(sema, &cast_expr.expr()?)),
expr => {
let name_ref = expr
.syntax()
.descendants()
.filter_map(ast::NameRef::cast)
.filter(|name| name.ident_token().is_some())
.last()?;
if let Some(NameRefClass::Definition(Definition::Const(_) | Definition::Static(_))) =
NameRefClass::classify(sema, &name_ref)
{
return Some(name_ref.to_string().to_lowercase());
};
Some(to_lower_snake_case(&name_ref.to_string()))
}
})();
match name {
Some(mut name) if name.starts_with(|c: char| c.is_ascii_digit()) => {
name.insert_str(0, "arg");
name
}
Some(name) => name,
None => "arg".to_string(),
}
}
fn fn_arg_type(
ctx: &AssistContext<'_>,
target_module: Module,
fn_arg: &ast::Expr,
generic_params: &mut FxHashSet<hir::GenericParam>,
) -> String {
fn maybe_displayed_type(
ctx: &AssistContext<'_>,
target_module: Module,
fn_arg: &ast::Expr,
generic_params: &mut FxHashSet<hir::GenericParam>,
) -> Option<String> {
let ty = ctx.sema.type_of_expr(fn_arg)?.adjusted();
if ty.is_unknown() {
return None;
}
generic_params.extend(ty.generic_params(ctx.db()));
if ty.is_reference() || ty.is_mutable_reference() {
let famous_defs = &FamousDefs(&ctx.sema, ctx.sema.scope(fn_arg.syntax())?.krate());
convert_reference_type(ty.strip_references(), ctx.db(), famous_defs)
.map(|conversion| conversion.convert_type(ctx.db()))
.or_else(|| ty.display_source_code(ctx.db(), target_module.into(), true).ok())
} else {
ty.display_source_code(ctx.db(), target_module.into(), true).ok()
}
}
maybe_displayed_type(ctx, target_module, fn_arg, generic_params)
.unwrap_or_else(|| String::from("_"))
}
/// Returns the position inside the current mod or file
/// directly after the current block
/// We want to write the generated function directly after
/// fns, impls or macro calls, but inside mods
fn next_space_for_fn_after_call_site(expr: ast::CallableExpr) -> Option<GeneratedFunctionTarget> {
let mut ancestors = expr.syntax().ancestors().peekable();
let mut last_ancestor: Option<SyntaxNode> = None;
while let Some(next_ancestor) = ancestors.next() {
match next_ancestor.kind() {
SyntaxKind::SOURCE_FILE => {
break;
}
SyntaxKind::ITEM_LIST => {
if ancestors.peek().map(|a| a.kind()) == Some(SyntaxKind::MODULE) {
break;
}
}
_ => {}
}
last_ancestor = Some(next_ancestor);
}
last_ancestor.map(GeneratedFunctionTarget::BehindItem)
}
fn next_space_for_fn_in_module(
db: &dyn hir::db::ExpandDatabase,
module_source: &hir::InFile<hir::ModuleSource>,
) -> Option<(FileId, GeneratedFunctionTarget)> {
let file = module_source.file_id.original_file(db);
let assist_item = match &module_source.value {
hir::ModuleSource::SourceFile(it) => match it.items().last() {
Some(last_item) => GeneratedFunctionTarget::BehindItem(last_item.syntax().clone()),
None => GeneratedFunctionTarget::BehindItem(it.syntax().clone()),
},
hir::ModuleSource::Module(it) => match it.item_list().and_then(|it| it.items().last()) {
Some(last_item) => GeneratedFunctionTarget::BehindItem(last_item.syntax().clone()),
None => GeneratedFunctionTarget::InEmptyItemList(it.item_list()?.syntax().clone()),
},
hir::ModuleSource::BlockExpr(it) => {
if let Some(last_item) =
it.statements().take_while(|stmt| matches!(stmt, ast::Stmt::Item(_))).last()
{
GeneratedFunctionTarget::BehindItem(last_item.syntax().clone())
} else {
GeneratedFunctionTarget::InEmptyItemList(it.syntax().clone())
}
}
};
Some((file, assist_item))
}
fn next_space_for_fn_in_impl(impl_: &ast::Impl) -> Option<GeneratedFunctionTarget> {
let assoc_item_list = impl_.assoc_item_list()?;
if let Some(last_item) = assoc_item_list.assoc_items().last() {
Some(GeneratedFunctionTarget::BehindItem(last_item.syntax().clone()))
} else {
Some(GeneratedFunctionTarget::InEmptyItemList(assoc_item_list.syntax().clone()))
}
}
#[derive(Clone, Copy)]
enum Visibility {
None,
Crate,
Pub,
}
fn calculate_necessary_visibility(
current_module: Module,
target_module: Module,
ctx: &AssistContext<'_>,
) -> Visibility {
let db = ctx.db();
let current_module = current_module.nearest_non_block_module(db);
let target_module = target_module.nearest_non_block_module(db);
if target_module.krate() != current_module.krate() {
Visibility::Pub
} else if current_module.path_to_root(db).contains(&target_module) {
Visibility::None
} else {
Visibility::Crate
}
}
// This is never intended to be used as a generic graph structure. If there's ever another need of
// graph algorithm, consider adding a library for that (and replace the following).
/// Minimally implemented directed graph structure represented by adjacency list.
struct Graph {
edges: Vec<Vec<usize>>,
}
impl Graph {
fn new(node_count: usize) -> Self {
Self { edges: vec![Vec::new(); node_count] }
}
fn add_edge(&mut self, from: usize, to: usize) {
self.edges[from].push(to);
}
fn edges_for(&self, node_idx: usize) -> &[usize] {
&self.edges[node_idx]
}
fn len(&self) -> usize {
self.edges.len()
}
fn compute_reachable_nodes(
&self,
starting_nodes: impl IntoIterator<Item = usize>,
) -> Vec<bool> {
let mut visitor = Visitor::new(self);
for idx in starting_nodes {
visitor.mark_reachable(idx);
}
visitor.visited
}
}
struct Visitor<'g> {
graph: &'g Graph,
visited: Vec<bool>,
// Stack is held in this struct so we can reuse its buffer.
stack: Vec<usize>,
}
impl<'g> Visitor<'g> {
fn new(graph: &'g Graph) -> Self {
let visited = vec![false; graph.len()];
Self { graph, visited, stack: Vec::new() }
}
fn mark_reachable(&mut self, start_idx: usize) {
// non-recursive DFS
stdx::always!(self.stack.is_empty());
self.stack.push(start_idx);
while let Some(idx) = self.stack.pop() {
if !self.visited[idx] {
self.visited[idx] = true;
for &neighbor in self.graph.edges_for(idx) {
if !self.visited[neighbor] {
self.stack.push(neighbor);
}
}
}
}
}
}
#[cfg(test)]
mod tests {
use crate::tests::{check_assist, check_assist_not_applicable};
use super::*;
#[test]
fn add_function_with_no_args() {
check_assist(
generate_function,
r"
fn foo() {
bar$0();
}
",
r"
fn foo() {
bar();
}
fn bar() ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn add_function_from_method() {
// This ensures that the function is correctly generated
// in the next outer mod or file
check_assist(
generate_function,
r"
impl Foo {
fn foo() {
bar$0();
}
}
",
r"
impl Foo {
fn foo() {
bar();
}
}
fn bar() ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn add_function_directly_after_current_block() {
// The new fn should not be created at the end of the file or module
check_assist(
generate_function,
r"
fn foo1() {
bar$0();
}
fn foo2() {}
",
r"
fn foo1() {
bar();
}
fn bar() ${0:-> _} {
todo!()
}
fn foo2() {}
",
)
}
#[test]
fn add_function_with_no_args_in_same_module() {
check_assist(
generate_function,
r"
mod baz {
fn foo() {
bar$0();
}
}
",
r"
mod baz {
fn foo() {
bar();
}
fn bar() ${0:-> _} {
todo!()
}
}
",
)
}
#[test]
fn add_function_with_upper_camel_case_arg() {
check_assist(
generate_function,
r"
struct BazBaz;
fn foo() {
bar$0(BazBaz);
}
",
r"
struct BazBaz;
fn foo() {
bar(BazBaz);
}
fn bar(baz_baz: BazBaz) ${0:-> _} {
todo!()
}
",
);
}
#[test]
fn add_function_with_upper_camel_case_arg_as_cast() {
check_assist(
generate_function,
r"
struct BazBaz;
fn foo() {
bar$0(&BazBaz as *const BazBaz);
}
",
r"
struct BazBaz;
fn foo() {
bar(&BazBaz as *const BazBaz);
}
fn bar(baz_baz: *const BazBaz) ${0:-> _} {
todo!()
}
",
);
}
#[test]
fn add_function_with_function_call_arg() {
check_assist(
generate_function,
r"
struct Baz;
fn baz() -> Baz { todo!() }
fn foo() {
bar$0(baz());
}
",
r"
struct Baz;
fn baz() -> Baz { todo!() }
fn foo() {
bar(baz());
}
fn bar(baz: Baz) ${0:-> _} {
todo!()
}
",
);
}
#[test]
fn add_function_with_method_call_arg() {
check_assist(
generate_function,
r"
struct Baz;
impl Baz {
fn foo(&self) -> Baz {
ba$0r(self.baz())
}
fn baz(&self) -> Baz {
Baz
}
}
",
r"
struct Baz;
impl Baz {
fn foo(&self) -> Baz {
bar(self.baz())
}
fn baz(&self) -> Baz {
Baz
}
}
fn bar(baz: Baz) -> Baz {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_with_string_literal_arg() {
check_assist(
generate_function,
r#"
fn foo() {
$0bar("bar")
}
"#,
r#"
fn foo() {
bar("bar")
}
fn bar(arg: &str) {
${0:todo!()}
}
"#,
)
}
#[test]
fn add_function_with_char_literal_arg() {
check_assist(
generate_function,
r#"
fn foo() {
$0bar('x')
}
"#,
r#"
fn foo() {
bar('x')
}
fn bar(arg: char) {
${0:todo!()}
}
"#,
)
}
#[test]
fn add_function_with_int_literal_arg() {
check_assist(
generate_function,
r"
fn foo() {
$0bar(42)
}
",
r"
fn foo() {
bar(42)
}
fn bar(arg: i32) {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_with_cast_int_literal_arg() {
check_assist(
generate_function,
r"
fn foo() {
$0bar(42 as u8)
}
",
r"
fn foo() {
bar(42 as u8)
}
fn bar(arg: u8) {
${0:todo!()}
}
",
)
}
#[test]
fn name_of_cast_variable_is_used() {
// Ensures that the name of the cast type isn't used
// in the generated function signature.
check_assist(
generate_function,
r"
fn foo() {
let x = 42;
bar$0(x as u8)
}
",
r"
fn foo() {
let x = 42;
bar(x as u8)
}
fn bar(x: u8) {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_with_variable_arg() {
check_assist(
generate_function,
r"
fn foo() {
let worble = ();
$0bar(worble)
}
",
r"
fn foo() {
let worble = ();
bar(worble)
}
fn bar(worble: ()) {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_with_impl_trait_arg() {
check_assist(
generate_function,
r#"
//- minicore: sized
trait Foo {}
fn foo() -> impl Foo {
todo!()
}
fn baz() {
$0bar(foo())
}
"#,
r#"
trait Foo {}
fn foo() -> impl Foo {
todo!()
}
fn baz() {
bar(foo())
}
fn bar(foo: impl Foo) {
${0:todo!()}
}
"#,
)
}
#[test]
fn borrowed_arg() {
check_assist(
generate_function,
r"
struct Baz;
fn baz() -> Baz { todo!() }
fn foo() {
bar$0(&baz())
}
",
r"
struct Baz;
fn baz() -> Baz { todo!() }
fn foo() {
bar(&baz())
}
fn bar(baz: &Baz) {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_with_qualified_path_arg() {
check_assist(
generate_function,
r"
mod Baz {
pub struct Bof;
pub fn baz() -> Bof { Bof }
}
fn foo() {
$0bar(Baz::baz())
}
",
r"
mod Baz {
pub struct Bof;
pub fn baz() -> Bof { Bof }
}
fn foo() {
bar(Baz::baz())
}
fn bar(baz: Baz::Bof) {
${0:todo!()}
}
",
)
}
#[test]
fn generate_function_with_generic_param() {
check_assist(
generate_function,
r"
fn foo<T, const N: usize>(t: [T; N]) { $0bar(t) }
",
r"
fn foo<T, const N: usize>(t: [T; N]) { bar(t) }
fn bar<T, const N: usize>(t: [T; N]) {
${0:todo!()}
}
",
)
}
#[test]
fn generate_function_with_parent_generic_param() {
check_assist(
generate_function,
r"
struct S<T>(T);
impl<T> S<T> {
fn foo<U>(t: T, u: U) { $0bar(t, u) }
}
",
r"
struct S<T>(T);
impl<T> S<T> {
fn foo<U>(t: T, u: U) { bar(t, u) }
}
fn bar<T, U>(t: T, u: U) {
${0:todo!()}
}
",
)
}
#[test]
fn generic_param_in_receiver_type() {
// FIXME: Generic parameter `T` should be part of impl, not method.
check_assist(
generate_function,
r"
struct S<T>(T);
fn foo<T, U>(s: S<T>, u: U) { s.$0foo(u) }
",
r"
struct S<T>(T);
impl S {
fn foo<T, U>(&self, u: U) {
${0:todo!()}
}
}
fn foo<T, U>(s: S<T>, u: U) { s.foo(u) }
",
)
}
#[test]
fn generic_param_in_return_type() {
check_assist(
generate_function,
r"
fn foo<T, const N: usize>() -> [T; N] { $0bar() }
",
r"
fn foo<T, const N: usize>() -> [T; N] { bar() }
fn bar<T, const N: usize>() -> [T; N] {
${0:todo!()}
}
",
)
}
#[test]
fn generate_fn_with_bounds() {
// FIXME: where predicates should be on next lines.
check_assist(
generate_function,
r"
trait A<T> {}
struct S<T>(T);
impl<T: A<i32>> S<T>
where
T: A<i64>,
{
fn foo<U>(t: T, u: U)
where
T: A<()>,
U: A<i32> + A<i64>,
{
$0bar(t, u)
}
}
",
r"
trait A<T> {}
struct S<T>(T);
impl<T: A<i32>> S<T>
where
T: A<i64>,
{
fn foo<U>(t: T, u: U)
where
T: A<()>,
U: A<i32> + A<i64>,
{
bar(t, u)
}
}
fn bar<T: A<i32>, U>(t: T, u: U) where T: A<i64>, T: A<()>, U: A<i32> + A<i64> {
${0:todo!()}
}
",
)
}
#[test]
fn include_transitive_param_dependency() {
// FIXME: where predicates should be on next lines.
check_assist(
generate_function,
r"
trait A<T> { type Assoc; }
trait B { type Item; }
struct S<T>(T);
impl<T, U, V: B, W> S<(T, U, V, W)>
where
T: A<U, Assoc = V>,
S<V::Item>: A<U, Assoc = W>,
{
fn foo<I>(t: T, u: U)
where
U: A<T, Assoc = I>,
{
$0bar(u)
}
}
",
r"
trait A<T> { type Assoc; }
trait B { type Item; }
struct S<T>(T);
impl<T, U, V: B, W> S<(T, U, V, W)>
where
T: A<U, Assoc = V>,
S<V::Item>: A<U, Assoc = W>,
{
fn foo<I>(t: T, u: U)
where
U: A<T, Assoc = I>,
{
bar(u)
}
}
fn bar<T, U, V: B, W, I>(u: U) where T: A<U, Assoc = V>, S<V::Item>: A<U, Assoc = W>, U: A<T, Assoc = I> {
${0:todo!()}
}
",
)
}
#[test]
fn irrelevant_bounds_are_filtered_out() {
check_assist(
generate_function,
r"
trait A<T> {}
struct S<T>(T);
impl<T, U, V, W> S<(T, U, V, W)>
where
T: A<U>,
V: A<W>,
{
fn foo<I>(t: T, u: U)
where
U: A<T> + A<I>,
{
$0bar(u)
}
}
",
r"
trait A<T> {}
struct S<T>(T);
impl<T, U, V, W> S<(T, U, V, W)>
where
T: A<U>,
V: A<W>,
{
fn foo<I>(t: T, u: U)
where
U: A<T> + A<I>,
{
bar(u)
}
}
fn bar<T, U, I>(u: U) where T: A<U>, U: A<T> + A<I> {
${0:todo!()}
}
",
)
}
#[test]
fn params_in_trait_arg_are_not_dependency() {
// Even though `bar` depends on `U` and `I`, we don't have to copy these bounds:
// `T: A<I>` and `T: A<U>`.
check_assist(
generate_function,
r"
trait A<T> {}
struct S<T>(T);
impl<T, U> S<(T, U)>
where
T: A<U>,
{
fn foo<I>(t: T, u: U)
where
T: A<I>,
U: A<I>,
{
$0bar(u)
}
}
",
r"
trait A<T> {}
struct S<T>(T);
impl<T, U> S<(T, U)>
where
T: A<U>,
{
fn foo<I>(t: T, u: U)
where
T: A<I>,
U: A<I>,
{
bar(u)
}
}
fn bar<U, I>(u: U) where U: A<I> {
${0:todo!()}
}
",
)
}
#[test]
fn dont_copy_bounds_already_in_scope() {
check_assist(
generate_function,
r"
trait A<T> {}
struct S<T>(T);
impl<T: A<i32>> S<T>
where
T: A<usize>,
{
fn foo<U: A<()>>(t: T, u: U)
where
T: A<S<i32>>,
{
Self::$0bar(t, u);
}
}
",
r"
trait A<T> {}
struct S<T>(T);
impl<T: A<i32>> S<T>
where
T: A<usize>,
{
fn foo<U: A<()>>(t: T, u: U)
where
T: A<S<i32>>,
{
Self::bar(t, u);
}
fn bar<U: A<()>>(t: T, u: U) ${0:-> _} where T: A<S<i32>> {
todo!()
}
}
",
)
}
#[test]
fn add_function_with_fn_arg() {
check_assist(
generate_function,
r"
struct Baz;
impl Baz {
fn new() -> Self { Baz }
}
fn foo() {
$0bar(Baz::new);
}
",
r"
struct Baz;
impl Baz {
fn new() -> Self { Baz }
}
fn foo() {
bar(Baz::new);
}
fn bar(new: fn() -> Baz) ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn add_function_with_closure_arg() {
check_assist(
generate_function,
r"
fn foo() {
let closure = |x: i64| x - 1;
$0bar(closure)
}
",
r"
fn foo() {
let closure = |x: i64| x - 1;
bar(closure)
}
fn bar(closure: impl Fn(i64) -> i64) {
${0:todo!()}
}
",
)
}
#[test]
fn unresolveable_types_default_to_placeholder() {
check_assist(
generate_function,
r"
fn foo() {
$0bar(baz)
}
",
r"
fn foo() {
bar(baz)
}
fn bar(baz: _) {
${0:todo!()}
}
",
)
}
#[test]
fn arg_names_dont_overlap() {
check_assist(
generate_function,
r"
struct Baz;
fn baz() -> Baz { Baz }
fn foo() {
$0bar(baz(), baz())
}
",
r"
struct Baz;
fn baz() -> Baz { Baz }
fn foo() {
bar(baz(), baz())
}
fn bar(baz_1: Baz, baz_2: Baz) {
${0:todo!()}
}
",
)
}
#[test]
fn arg_name_counters_start_at_1_per_name() {
check_assist(
generate_function,
r#"
struct Baz;
fn baz() -> Baz { Baz }
fn foo() {
$0bar(baz(), baz(), "foo", "bar")
}
"#,
r#"
struct Baz;
fn baz() -> Baz { Baz }
fn foo() {
bar(baz(), baz(), "foo", "bar")
}
fn bar(baz_1: Baz, baz_2: Baz, arg_1: &str, arg_2: &str) {
${0:todo!()}
}
"#,
)
}
#[test]
fn add_function_in_module() {
check_assist(
generate_function,
r"
mod bar {}
fn foo() {
bar::my_fn$0()
}
",
r"
mod bar {
pub(crate) fn my_fn() {
${0:todo!()}
}
}
fn foo() {
bar::my_fn()
}
",
)
}
#[test]
fn qualified_path_uses_correct_scope() {
check_assist(
generate_function,
r#"
mod foo {
pub struct Foo;
}
fn bar() {
use foo::Foo;
let foo = Foo;
baz$0(foo)
}
"#,
r#"
mod foo {
pub struct Foo;
}
fn bar() {
use foo::Foo;
let foo = Foo;
baz(foo)
}
fn baz(foo: foo::Foo) {
${0:todo!()}
}
"#,
)
}
#[test]
fn qualified_path_in_generic_bounds_uses_correct_scope() {
check_assist(
generate_function,
r"
mod a {
pub trait A {};
}
pub mod b {
pub struct S<T>(T);
}
struct S<T>(T);
impl<T> S<T>
where
T: a::A,
{
fn foo<U: a::A>(t: b::S<T>, u: S<U>) {
a::$0bar(t, u);
}
}
",
r"
mod a {
pub trait A {}
pub(crate) fn bar<T, U: self::A>(t: crate::b::S<T>, u: crate::S<U>) ${0:-> _} where T: self::A {
todo!()
};
}
pub mod b {
pub struct S<T>(T);
}
struct S<T>(T);
impl<T> S<T>
where
T: a::A,
{
fn foo<U: a::A>(t: b::S<T>, u: S<U>) {
a::bar(t, u);
}
}
",
)
}
#[test]
fn add_function_in_module_containing_other_items() {
check_assist(
generate_function,
r"
mod bar {
fn something_else() {}
}
fn foo() {
bar::my_fn$0()
}
",
r"
mod bar {
fn something_else() {}
pub(crate) fn my_fn() {
${0:todo!()}
}
}
fn foo() {
bar::my_fn()
}
",
)
}
#[test]
fn add_function_in_nested_module() {
check_assist(
generate_function,
r"
mod bar {
pub mod baz {}
}
fn foo() {
bar::baz::my_fn$0()
}
",
r"
mod bar {
pub mod baz {
pub(crate) fn my_fn() {
${0:todo!()}
}
}
}
fn foo() {
bar::baz::my_fn()
}
",
)
}
#[test]
fn add_function_in_another_file() {
check_assist(
generate_function,
r"
//- /main.rs
mod foo;
fn main() {
foo::bar$0()
}
//- /foo.rs
",
r"
pub(crate) fn bar() {
${0:todo!()}
}",
)
}
#[test]
fn add_function_with_return_type() {
check_assist(
generate_function,
r"
fn main() {
let x: u32 = foo$0();
}
",
r"
fn main() {
let x: u32 = foo();
}
fn foo() -> u32 {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_not_applicable_if_function_already_exists() {
check_assist_not_applicable(
generate_function,
r"
fn foo() {
bar$0();
}
fn bar() {}
",
)
}
#[test]
fn add_function_not_applicable_if_unresolved_variable_in_call_is_selected() {
check_assist_not_applicable(
// bar is resolved, but baz isn't.
// The assist is only active if the cursor is on an unresolved path,
// but the assist should only be offered if the path is a function call.
generate_function,
r#"
fn foo() {
bar(b$0az);
}
fn bar(baz: ()) {}
"#,
)
}
#[test]
fn create_method_with_no_args() {
check_assist(
generate_function,
r#"
struct Foo;
impl Foo {
fn foo(&self) {
self.bar()$0;
}
}
"#,
r#"
struct Foo;
impl Foo {
fn foo(&self) {
self.bar();
}
fn bar(&self) ${0:-> _} {
todo!()
}
}
"#,
)
}
#[test]
fn create_function_with_async() {
check_assist(
generate_function,
r"
async fn foo() {
$0bar(42).await;
}
",
r"
async fn foo() {
bar(42).await;
}
async fn bar(arg: i32) ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn return_type_for_async_fn() {
check_assist(
generate_function,
r"
//- minicore: result
async fn foo() {
if Err(()) = $0bar(42).await {}
}
",
r"
async fn foo() {
if Err(()) = bar(42).await {}
}
async fn bar(arg: i32) -> Result<_, ()> {
${0:todo!()}
}
",
);
}
#[test]
fn create_method() {
check_assist(
generate_function,
r"
struct S;
fn foo() {S.bar$0();}
",
r"
struct S;
impl S {
fn bar(&self) ${0:-> _} {
todo!()
}
}
fn foo() {S.bar();}
",
)
}
#[test]
fn create_method_within_an_impl() {
check_assist(
generate_function,
r"
struct S;
fn foo() {S.bar$0();}
impl S {}
",
r"
struct S;
fn foo() {S.bar();}
impl S {
fn bar(&self) ${0:-> _} {
todo!()
}
}
",
)
}
#[test]
fn create_method_from_different_module() {
check_assist(
generate_function,
r"
mod s {
pub struct S;
}
fn foo() {s::S.bar$0();}
",
r"
mod s {
pub struct S;
impl S {
pub(crate) fn bar(&self) ${0:-> _} {
todo!()
}
}
}
fn foo() {s::S.bar();}
",
)
}
#[test]
fn create_method_from_descendant_module() {
check_assist(
generate_function,
r"
struct S;
mod s {
fn foo() {
super::S.bar$0();
}
}
",
r"
struct S;
impl S {
fn bar(&self) ${0:-> _} {
todo!()
}
}
mod s {
fn foo() {
super::S.bar();
}
}
",
)
}
#[test]
fn create_method_with_cursor_anywhere_on_call_expression() {
check_assist(
generate_function,
r"
struct S;
fn foo() {$0S.bar();}
",
r"
struct S;
impl S {
fn bar(&self) ${0:-> _} {
todo!()
}
}
fn foo() {S.bar();}
",
)
}
#[test]
fn create_async_method() {
check_assist(
generate_function,
r"
//- minicore: result
struct S;
async fn foo() {
if let Err(()) = S.$0bar(42).await {}
}
",
r"
struct S;
impl S {
async fn bar(&self, arg: i32) -> Result<_, ()> {
${0:todo!()}
}
}
async fn foo() {
if let Err(()) = S.bar(42).await {}
}
",
)
}
#[test]
fn create_static_method() {
check_assist(
generate_function,
r"
struct S;
fn foo() {S::bar$0();}
",
r"
struct S;
impl S {
fn bar() ${0:-> _} {
todo!()
}
}
fn foo() {S::bar();}
",
)
}
#[test]
fn create_async_static_method() {
check_assist(
generate_function,
r"
//- minicore: result
struct S;
async fn foo() {
if let Err(()) = S::$0bar(42).await {}
}
",
r"
struct S;
impl S {
async fn bar(arg: i32) -> Result<_, ()> {
${0:todo!()}
}
}
async fn foo() {
if let Err(()) = S::bar(42).await {}
}
",
)
}
#[test]
fn create_generic_static_method() {
check_assist(
generate_function,
r"
struct S;
fn foo<T, const N: usize>(t: [T; N]) { S::bar$0(t); }
",
r"
struct S;
impl S {
fn bar<T, const N: usize>(t: [T; N]) ${0:-> _} {
todo!()
}
}
fn foo<T, const N: usize>(t: [T; N]) { S::bar(t); }
",
)
}
#[test]
fn create_static_method_within_an_impl() {
check_assist(
generate_function,
r"
struct S;
fn foo() {S::bar$0();}
impl S {}
",
r"
struct S;
fn foo() {S::bar();}
impl S {
fn bar() ${0:-> _} {
todo!()
}
}
",
)
}
#[test]
fn create_static_method_from_different_module() {
check_assist(
generate_function,
r"
mod s {
pub struct S;
}
fn foo() {s::S::bar$0();}
",
r"
mod s {
pub struct S;
impl S {
pub(crate) fn bar() ${0:-> _} {
todo!()
}
}
}
fn foo() {s::S::bar();}
",
)
}
#[test]
fn create_static_method_with_cursor_anywhere_on_call_expression() {
check_assist(
generate_function,
r"
struct S;
fn foo() {$0S::bar();}
",
r"
struct S;
impl S {
fn bar() ${0:-> _} {
todo!()
}
}
fn foo() {S::bar();}
",
)
}
#[test]
fn create_static_method_within_an_impl_with_self_syntax() {
check_assist(
generate_function,
r"
struct S;
impl S {
fn foo(&self) {
Self::bar$0();
}
}
",
r"
struct S;
impl S {
fn foo(&self) {
Self::bar();
}
fn bar() ${0:-> _} {
todo!()
}
}
",
)
}
#[test]
fn no_panic_on_invalid_global_path() {
check_assist(
generate_function,
r"
fn main() {
::foo$0();
}
",
r"
fn main() {
::foo();
}
fn foo() ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn handle_tuple_indexing() {
check_assist(
generate_function,
r"
fn main() {
let a = ((),);
foo$0(a.0);
}
",
r"
fn main() {
let a = ((),);
foo(a.0);
}
fn foo(a: ()) ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn add_function_with_const_arg() {
check_assist(
generate_function,
r"
const VALUE: usize = 0;
fn main() {
foo$0(VALUE);
}
",
r"
const VALUE: usize = 0;
fn main() {
foo(VALUE);
}
fn foo(value: usize) ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn add_function_with_static_arg() {
check_assist(
generate_function,
r"
static VALUE: usize = 0;
fn main() {
foo$0(VALUE);
}
",
r"
static VALUE: usize = 0;
fn main() {
foo(VALUE);
}
fn foo(value: usize) ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn add_function_with_static_mut_arg() {
check_assist(
generate_function,
r"
static mut VALUE: usize = 0;
fn main() {
foo$0(VALUE);
}
",
r"
static mut VALUE: usize = 0;
fn main() {
foo(VALUE);
}
fn foo(value: usize) ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn not_applicable_for_enum_variant() {
check_assist_not_applicable(
generate_function,
r"
enum Foo {}
fn main() {
Foo::Bar$0(true)
}
",
);
}
#[test]
fn applicable_for_enum_method() {
check_assist(
generate_function,
r"
enum Foo {}
fn main() {
Foo::new$0();
}
",
r"
enum Foo {}
impl Foo {
fn new() ${0:-> _} {
todo!()
}
}
fn main() {
Foo::new();
}
",
)
}
#[test]
fn applicable_in_different_local_crate() {
check_assist(
generate_function,
r"
//- /lib.rs crate:lib new_source_root:local
fn dummy() {}
//- /main.rs crate:main deps:lib new_source_root:local
fn main() {
lib::foo$0();
}
",
r"
fn dummy() {}
pub fn foo() ${0:-> _} {
todo!()
}
",
);
}
#[test]
fn applicable_in_different_local_crate_method() {
check_assist(
generate_function,
r"
//- /lib.rs crate:lib new_source_root:local
pub struct S;
//- /main.rs crate:main deps:lib new_source_root:local
fn main() {
lib::S.foo$0();
}
",
r"
pub struct S;
impl S {
pub fn foo(&self) ${0:-> _} {
todo!()
}
}
",
);
}
#[test]
fn not_applicable_in_different_library_crate() {
check_assist_not_applicable(
generate_function,
r"
//- /lib.rs crate:lib new_source_root:library
fn dummy() {}
//- /main.rs crate:main deps:lib new_source_root:local
fn main() {
lib::foo$0();
}
",
);
}
#[test]
fn not_applicable_in_different_library_crate_method() {
check_assist_not_applicable(
generate_function,
r"
//- /lib.rs crate:lib new_source_root:library
pub struct S;
//- /main.rs crate:main deps:lib new_source_root:local
fn main() {
lib::S.foo$0();
}
",
);
}
}