blob: fc8fab0eabc8386b625aedf50cc47d9a3d2b0db8 [file] [log] [blame]
// Coherence phase
//
// The job of the coherence phase of typechecking is to ensure that
// each trait has at most one implementation for each type. This is
// done by the orphan and overlap modules. Then we build up various
// mappings. That mapping code resides here.
use crate::errors;
use rustc_errors::{error_code, struct_span_err};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::query::Providers;
use rustc_middle::ty::{self, TyCtxt, TypeVisitableExt};
use rustc_trait_selection::traits;
mod builtin;
mod inherent_impls;
mod inherent_impls_overlap;
mod orphan;
mod unsafety;
fn check_impl(tcx: TyCtxt<'_>, impl_def_id: LocalDefId, trait_ref: ty::TraitRef<'_>) {
debug!(
"(checking implementation) adding impl for trait '{:?}', item '{}'",
trait_ref,
tcx.def_path_str(impl_def_id)
);
// Skip impls where one of the self type is an error type.
// This occurs with e.g., resolve failures (#30589).
if trait_ref.references_error() {
return;
}
enforce_trait_manually_implementable(tcx, impl_def_id, trait_ref.def_id);
enforce_empty_impls_for_marker_traits(tcx, impl_def_id, trait_ref.def_id);
}
fn enforce_trait_manually_implementable(
tcx: TyCtxt<'_>,
impl_def_id: LocalDefId,
trait_def_id: DefId,
) {
let impl_header_span = tcx.def_span(impl_def_id);
// Disallow *all* explicit impls of traits marked `#[rustc_deny_explicit_impl]`
if tcx.trait_def(trait_def_id).deny_explicit_impl {
let trait_name = tcx.item_name(trait_def_id);
let mut err = struct_span_err!(
tcx.sess,
impl_header_span,
E0322,
"explicit impls for the `{trait_name}` trait are not permitted"
);
err.span_label(impl_header_span, format!("impl of `{trait_name}` not allowed"));
// Maintain explicit error code for `Unsize`, since it has a useful
// explanation about using `CoerceUnsized` instead.
if Some(trait_def_id) == tcx.lang_items().unsize_trait() {
err.code(error_code!(E0328));
}
err.emit();
return;
}
if let ty::trait_def::TraitSpecializationKind::AlwaysApplicable =
tcx.trait_def(trait_def_id).specialization_kind
{
if !tcx.features().specialization && !tcx.features().min_specialization {
tcx.sess.emit_err(errors::SpecializationTrait { span: impl_header_span });
return;
}
}
}
/// We allow impls of marker traits to overlap, so they can't override impls
/// as that could make it ambiguous which associated item to use.
fn enforce_empty_impls_for_marker_traits(
tcx: TyCtxt<'_>,
impl_def_id: LocalDefId,
trait_def_id: DefId,
) {
if !tcx.trait_def(trait_def_id).is_marker {
return;
}
if tcx.associated_item_def_ids(trait_def_id).is_empty() {
return;
}
struct_span_err!(
tcx.sess,
tcx.def_span(impl_def_id),
E0715,
"impls for marker traits cannot contain items"
)
.emit();
}
pub fn provide(providers: &mut Providers) {
use self::builtin::coerce_unsized_info;
use self::inherent_impls::{crate_incoherent_impls, crate_inherent_impls, inherent_impls};
use self::inherent_impls_overlap::crate_inherent_impls_overlap_check;
use self::orphan::orphan_check_impl;
*providers = Providers {
coherent_trait,
crate_inherent_impls,
crate_incoherent_impls,
inherent_impls,
crate_inherent_impls_overlap_check,
coerce_unsized_info,
orphan_check_impl,
..*providers
};
}
fn coherent_trait(tcx: TyCtxt<'_>, def_id: DefId) {
// Trigger building the specialization graph for the trait. This will detect and report any
// overlap errors.
tcx.ensure().specialization_graph_of(def_id);
let impls = tcx.hir().trait_impls(def_id);
for &impl_def_id in impls {
let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap().instantiate_identity();
check_impl(tcx, impl_def_id, trait_ref);
check_object_overlap(tcx, impl_def_id, trait_ref);
unsafety::check_item(tcx, impl_def_id);
tcx.ensure().orphan_check_impl(impl_def_id);
}
builtin::check_trait(tcx, def_id);
}
/// Checks whether an impl overlaps with the automatic `impl Trait for dyn Trait`.
fn check_object_overlap<'tcx>(
tcx: TyCtxt<'tcx>,
impl_def_id: LocalDefId,
trait_ref: ty::TraitRef<'tcx>,
) {
let trait_def_id = trait_ref.def_id;
if trait_ref.references_error() {
debug!("coherence: skipping impl {:?} with error {:?}", impl_def_id, trait_ref);
return;
}
// check for overlap with the automatic `impl Trait for dyn Trait`
if let ty::Dynamic(data, ..) = trait_ref.self_ty().kind() {
// This is something like impl Trait1 for Trait2. Illegal
// if Trait1 is a supertrait of Trait2 or Trait2 is not object safe.
let component_def_ids = data.iter().flat_map(|predicate| {
match predicate.skip_binder() {
ty::ExistentialPredicate::Trait(tr) => Some(tr.def_id),
ty::ExistentialPredicate::AutoTrait(def_id) => Some(def_id),
// An associated type projection necessarily comes with
// an additional `Trait` requirement.
ty::ExistentialPredicate::Projection(..) => None,
}
});
for component_def_id in component_def_ids {
if !tcx.check_is_object_safe(component_def_id) {
// Without the 'object_safe_for_dispatch' feature this is an error
// which will be reported by wfcheck. Ignore it here.
// This is tested by `coherence-impl-trait-for-trait-object-safe.rs`.
// With the feature enabled, the trait is not implemented automatically,
// so this is valid.
} else {
let mut supertrait_def_ids = traits::supertrait_def_ids(tcx, component_def_id);
if supertrait_def_ids.any(|d| d == trait_def_id) {
let span = tcx.def_span(impl_def_id);
struct_span_err!(
tcx.sess,
span,
E0371,
"the object type `{}` automatically implements the trait `{}`",
trait_ref.self_ty(),
tcx.def_path_str(trait_def_id)
)
.span_label(
span,
format!(
"`{}` automatically implements trait `{}`",
trait_ref.self_ty(),
tcx.def_path_str(trait_def_id)
),
)
.emit();
}
}
}
}
}