blob: 2800d9a7328909c83b92fc099906778a19f01de1 [file] [log] [blame]
/*
* Copyright 2020 Actyx AG
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//! A mutual exclusion primitive that relies on static type information only
//!
//! This library is inspired by [this discussion](https://internals.rust-lang.org/t/what-shall-sync-mean-across-an-await/12020/2).
#![doc(html_logo_url = "https://developer.actyx.com/img/logo.svg")]
#![doc(html_favicon_url = "https://developer.actyx.com/img/favicon.ico")]
#![no_std]
use core::{
fmt::{self, Debug, Formatter},
pin::Pin,
future::Future,
task::{Context, Poll},
};
/// A mutual exclusion primitive that relies on static type information only
///
/// In some cases synchronization can be proven statically: whenever you hold an exclusive `&mut`
/// reference, the Rust type system ensures that no other part of the program can hold another
/// reference to the data. Therefore it is safe to access it even if the current thread obtained
/// this reference via a channel. Whenever this is the case, the overhead of allocating and locking
/// a [`Mutex`] can be avoided by using this static version.
///
/// One example where this is often applicable is [`Future`], which requires an exclusive reference
/// for its [`poll`] method: While a given `Future` implementation may not be safe to access by
/// multiple threads concurrently, the executor can only run the `Future` on one thread at any
/// given time, making it [`Sync`] in practice as long as the implementation is `Send`. You can
/// therefore use the static mutex to prove that your data structure is `Sync` even though it
/// contains such a `Future`.
///
/// # Example
///
/// ```
/// use sync_wrapper::SyncWrapper;
/// use std::future::Future;
///
/// struct MyThing {
/// future: SyncWrapper<Box<dyn Future<Output = String> + Send>>,
/// }
///
/// impl MyThing {
/// // all accesses to `self.future` now require an exclusive reference or ownership
/// }
///
/// fn assert_sync<T: Sync>() {}
///
/// assert_sync::<MyThing>();
/// ```
///
/// [`Mutex`]: https://doc.rust-lang.org/std/sync/struct.Mutex.html
/// [`Future`]: https://doc.rust-lang.org/std/future/trait.Future.html
/// [`poll`]: https://doc.rust-lang.org/std/future/trait.Future.html#method.poll
/// [`Sync`]: https://doc.rust-lang.org/std/marker/trait.Sync.html
#[repr(transparent)]
pub struct SyncWrapper<T>(T);
impl<T> SyncWrapper<T> {
/// Creates a new static mutex containing the given value.
///
/// # Examples
///
/// ```
/// use sync_wrapper::SyncWrapper;
///
/// let mutex = SyncWrapper::new(42);
/// ```
pub const fn new(value: T) -> Self {
Self(value)
}
/// Acquires a reference to the protected value.
///
/// This is safe because it requires an exclusive reference to the mutex. Therefore this method
/// neither panics nor does it return an error. This is in contrast to [`Mutex::get_mut`] which
/// returns an error if another thread panicked while holding the lock. It is not recommended
/// to send an exclusive reference to a potentially damaged value to another thread for further
/// processing.
///
/// [`Mutex::get_mut`]: https://doc.rust-lang.org/std/sync/struct.Mutex.html#method.get_mut
///
/// # Examples
///
/// ```
/// use sync_wrapper::SyncWrapper;
///
/// let mut mutex = SyncWrapper::new(42);
/// let value = mutex.get_mut();
/// *value = 0;
/// assert_eq!(*mutex.get_mut(), 0);
/// ```
pub fn get_mut(&mut self) -> &mut T {
&mut self.0
}
/// Acquires a pinned reference to the protected value.
///
/// See [`Self::get_mut`] for why this method is safe.
///
/// # Examples
///
/// ```
/// use std::future::Future;
/// use std::pin::Pin;
/// use std::task::{Context, Poll};
///
/// use pin_project_lite::pin_project;
/// use sync_wrapper::SyncWrapper;
///
/// pin_project! {
/// struct FutureWrapper<F> {
/// #[pin]
/// inner: SyncWrapper<F>,
/// }
/// }
///
/// impl<F: Future> Future for FutureWrapper<F> {
/// type Output = F::Output;
///
/// fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
/// self.project().inner.get_pin_mut().poll(cx)
/// }
/// }
/// ```
pub fn get_pin_mut(self: Pin<&mut Self>) -> Pin<&mut T> {
unsafe { Pin::map_unchecked_mut(self, |this| &mut this.0) }
}
/// Consumes this mutex, returning the underlying data.
///
/// This is safe because it requires ownership of the mutex, therefore this method will neither
/// panic nor does it return an error. This is in contrast to [`Mutex::into_inner`] which
/// returns an error if another thread panicked while holding the lock. It is not recommended
/// to send an exclusive reference to a potentially damaged value to another thread for further
/// processing.
///
/// [`Mutex::into_inner`]: https://doc.rust-lang.org/std/sync/struct.Mutex.html#method.into_inner
///
/// # Examples
///
/// ```
/// use sync_wrapper::SyncWrapper;
///
/// let mut mutex = SyncWrapper::new(42);
/// assert_eq!(mutex.into_inner(), 42);
/// ```
pub fn into_inner(self) -> T {
self.0
}
}
// this is safe because the only operations permitted on this data structure require exclusive
// access or ownership
unsafe impl<T> Sync for SyncWrapper<T> {}
impl<T> Debug for SyncWrapper<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.pad("SyncWrapper")
}
}
impl<T: Default> Default for SyncWrapper<T> {
fn default() -> Self {
Self::new(T::default())
}
}
impl<T> From<T> for SyncWrapper<T> {
fn from(value: T) -> Self {
Self::new(value)
}
}
/// `Future` which is `Sync`.
///
/// # Examples
///
/// ```
/// use sync_wrapper::{SyncWrapper, SyncFuture};
///
/// let fut = async { 1 };
/// let fut = SyncFuture::new(fut);
/// ```
pub struct SyncFuture<F> {
inner: SyncWrapper<F>
}
impl <F: Future> SyncFuture<F> {
pub fn new(inner: F) -> Self {
Self { inner: SyncWrapper::new(inner) }
}
pub fn into_inner(self) -> F {
self.inner.into_inner()
}
}
impl <F: Future> Future for SyncFuture<F> {
type Output = F::Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let inner = unsafe { self.map_unchecked_mut(|x| x.inner.get_mut()) };
inner.poll(cx)
}
}
/// `Stream` which is `Sync`.
///
/// # Examples
///
/// ```
/// use sync_wrapper::SyncStream;
/// use futures::stream;
///
/// let st = stream::iter(vec![1]);
/// let st = SyncStream::new(st);
/// ```
#[cfg(feature = "futures")]
pub struct SyncStream<S> {
inner: SyncWrapper<S>
}
#[cfg(feature = "futures")]
impl <S: futures_core::Stream> SyncStream<S> {
pub fn new(inner: S) -> Self {
Self { inner: SyncWrapper::new(inner) }
}
pub fn into_inner(self) -> S {
self.inner.into_inner()
}
}
#[cfg(feature = "futures")]
impl <S: futures_core::Stream> futures_core::Stream for SyncStream<S> {
type Item = S::Item;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let inner = unsafe { self.map_unchecked_mut(|x| x.inner.get_mut()) };
inner.poll_next(cx)
}
}