blob: e6b6bcaa4cb1fcb1be05288d4e3b204c18fefc7f [file] [log] [blame]
use core::iter;
use hex_literal::hex;
use hkdf::{Hkdf, HkdfExtract, SimpleHkdf, SimpleHkdfExtract};
use sha1::Sha1;
use sha2::{Sha256, Sha384, Sha512};
struct Test<'a> {
ikm: &'a [u8],
salt: &'a [u8],
info: &'a [u8],
prk: &'a [u8],
okm: &'a [u8],
}
// Test Vectors from https://tools.ietf.org/html/rfc5869.
#[test]
#[rustfmt::skip]
fn test_rfc5869_sha256() {
let tests = [
Test {
// Test Case 1
ikm: &hex!("0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b"),
salt: &hex!("000102030405060708090a0b0c"),
info: &hex!("f0f1f2f3f4f5f6f7f8f9"),
prk: &hex!("
077709362c2e32df0ddc3f0dc47bba63
90b6c73bb50f9c3122ec844ad7c2b3e5
"),
okm: &hex!("
3cb25f25faacd57a90434f64d0362f2a
2d2d0a90cf1a5a4c5db02d56ecc4c5bf
34007208d5b887185865
"),
},
Test {
// Test Case 2
ikm: &hex!("
000102030405060708090a0b0c0d0e0f
101112131415161718191a1b1c1d1e1f
202122232425262728292a2b2c2d2e2f
303132333435363738393a3b3c3d3e3f
404142434445464748494a4b4c4d4e4f
"),
salt: &hex!("
606162636465666768696a6b6c6d6e6f
707172737475767778797a7b7c7d7e7f
808182838485868788898a8b8c8d8e8f
909192939495969798999a9b9c9d9e9f
a0a1a2a3a4a5a6a7a8a9aaabacadaeaf
"),
info: &hex!("
b0b1b2b3b4b5b6b7b8b9babbbcbdbebf
c0c1c2c3c4c5c6c7c8c9cacbcccdcecf
d0d1d2d3d4d5d6d7d8d9dadbdcdddedf
e0e1e2e3e4e5e6e7e8e9eaebecedeeef
f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff
"),
prk: &hex!("
06a6b88c5853361a06104c9ceb35b45c
ef760014904671014a193f40c15fc244
"),
okm: &hex!("
b11e398dc80327a1c8e7f78c596a4934
4f012eda2d4efad8a050cc4c19afa97c
59045a99cac7827271cb41c65e590e09
da3275600c2f09b8367793a9aca3db71
cc30c58179ec3e87c14c01d5c1f3434f
1d87
"),
},
Test {
// Test Case 3
ikm: &hex!("0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b"),
salt: &hex!(""),
info: &hex!(""),
prk: &hex!("
19ef24a32c717b167f33a91d6f648bdf
96596776afdb6377ac434c1c293ccb04
"),
okm: &hex!("
8da4e775a563c18f715f802a063c5a31
b8a11f5c5ee1879ec3454e5f3c738d2d
9d201395faa4b61a96c8
"),
},
];
for Test { ikm, salt, info, prk, okm } in tests.iter() {
let salt = if salt.is_empty() {
None
} else {
Some(&salt[..])
};
let (prk2, hkdf) = Hkdf::<Sha256>::extract(salt, ikm);
let mut okm2 = vec![0u8; okm.len()];
assert!(hkdf.expand(&info[..], &mut okm2).is_ok());
assert_eq!(prk2[..], prk[..]);
assert_eq!(okm2[..], okm[..]);
okm2.iter_mut().for_each(|b| *b = 0);
let hkdf = Hkdf::<Sha256>::from_prk(prk).unwrap();
assert!(hkdf.expand(&info[..], &mut okm2).is_ok());
assert_eq!(okm2[..], okm[..]);
}
}
#[test]
#[rustfmt::skip]
fn test_rfc5869_sha1() {
let tests = [
Test {
// Test Case 4
ikm: &hex!("0b0b0b0b0b0b0b0b0b0b0b"),
salt: &hex!("000102030405060708090a0b0c"),
info: &hex!("f0f1f2f3f4f5f6f7f8f9"),
prk: &hex!("9b6c18c432a7bf8f0e71c8eb88f4b30baa2ba243"),
okm: &hex!("
085a01ea1b10f36933068b56efa5ad81
a4f14b822f5b091568a9cdd4f155fda2
c22e422478d305f3f896
"),
},
Test {
// Test Case 5
ikm: &hex!("
000102030405060708090a0b0c0d0e0f
101112131415161718191a1b1c1d1e1f
202122232425262728292a2b2c2d2e2f
303132333435363738393a3b3c3d3e3f
404142434445464748494a4b4c4d4e4f
"),
salt: &hex!("
606162636465666768696a6b6c6d6e6f
707172737475767778797a7b7c7d7e7f
808182838485868788898a8b8c8d8e8f
909192939495969798999a9b9c9d9e9f
a0a1a2a3a4a5a6a7a8a9aaabacadaeaf
"),
info: &hex!("
b0b1b2b3b4b5b6b7b8b9babbbcbdbebf
c0c1c2c3c4c5c6c7c8c9cacbcccdcecf
d0d1d2d3d4d5d6d7d8d9dadbdcdddedf
e0e1e2e3e4e5e6e7e8e9eaebecedeeef
f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff
"),
prk: &hex!("8adae09a2a307059478d309b26c4115a224cfaf6"),
okm: &hex!("
0bd770a74d1160f7c9f12cd5912a06eb
ff6adcae899d92191fe4305673ba2ffe
8fa3f1a4e5ad79f3f334b3b202b2173c
486ea37ce3d397ed034c7f9dfeb15c5e
927336d0441f4c4300e2cff0d0900b52
d3b4
"),
},
Test {
// Test Case 6
ikm: &hex!("0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b"),
salt: &hex!(""),
info: &hex!(""),
prk: &hex!("da8c8a73c7fa77288ec6f5e7c297786aa0d32d01"),
okm: &hex!("
0ac1af7002b3d761d1e55298da9d0506
b9ae52057220a306e07b6b87e8df21d0
ea00033de03984d34918
"),
},
Test {
// Test Case 7
ikm: &hex!("0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c"),
salt: &hex!(""), // "Not Provided"
info: &hex!(""),
prk: &hex!("2adccada18779e7c2077ad2eb19d3f3e731385dd"),
okm: &hex!("
2c91117204d745f3500d636a62f64f0a
b3bae548aa53d423b0d1f27ebba6f5e5
673a081d70cce7acfc48
"),
},
];
for Test { ikm, salt, info, prk, okm } in tests.iter() {
let salt = if salt.is_empty() {
None
} else {
Some(&salt[..])
};
let (prk2, hkdf) = Hkdf::<Sha1>::extract(salt, ikm);
let mut okm2 = vec![0u8; okm.len()];
assert!(hkdf.expand(&info[..], &mut okm2).is_ok());
assert_eq!(prk2[..], prk[..]);
assert_eq!(okm2[..], okm[..]);
okm2.iter_mut().for_each(|b| *b = 0);
let hkdf = Hkdf::<Sha1>::from_prk(prk).unwrap();
assert!(hkdf.expand(&info[..], &mut okm2).is_ok());
assert_eq!(okm2[..], okm[..]);
}
}
const MAX_SHA256_LENGTH: usize = 255 * (256 / 8); // =8160
#[test]
fn test_lengths() {
let hkdf = Hkdf::<Sha256>::new(None, &[]);
let mut longest = vec![0u8; MAX_SHA256_LENGTH];
assert!(hkdf.expand(&[], &mut longest).is_ok());
// Runtime is O(length), so exhaustively testing all legal lengths
// would take too long (at least without --release). Only test a
// subset: the first 500, the last 10, and every 100th in between.
let range = 500..MAX_SHA256_LENGTH - 10;
let lengths = (0..MAX_SHA256_LENGTH + 1).filter(|len| !range.contains(len) || *len % 100 == 0);
for length in lengths {
let mut okm = vec![0u8; length];
assert!(hkdf.expand(&[], &mut okm).is_ok());
assert_eq!(okm.len(), length);
assert_eq!(okm[..], longest[..length]);
}
}
#[test]
fn test_max_length() {
let hkdf = Hkdf::<Sha256>::new(Some(&[]), &[]);
let mut okm = vec![0u8; MAX_SHA256_LENGTH];
assert!(hkdf.expand(&[], &mut okm).is_ok());
}
#[test]
fn test_max_length_exceeded() {
let hkdf = Hkdf::<Sha256>::new(Some(&[]), &[]);
let mut okm = vec![0u8; MAX_SHA256_LENGTH + 1];
assert!(hkdf.expand(&[], &mut okm).is_err());
}
#[test]
fn test_unsupported_length() {
let hkdf = Hkdf::<Sha256>::new(Some(&[]), &[]);
let mut okm = vec![0u8; 90000];
assert!(hkdf.expand(&[], &mut okm).is_err());
}
#[test]
fn test_prk_too_short() {
use sha2::digest::Digest;
let output_len = Sha256::output_size();
let prk = vec![0; output_len - 1];
assert!(Hkdf::<Sha256>::from_prk(&prk).is_err());
}
#[test]
#[rustfmt::skip]
fn test_derive_sha1_with_none() {
let ikm = hex!("0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c");
let salt = None;
let info = hex!("");
let (prk, hkdf) = Hkdf::<Sha1>::extract(salt, &ikm[..]);
let mut okm = [0u8; 42];
assert!(hkdf.expand(&info[..], &mut okm).is_ok());
assert_eq!(
prk[..],
hex!("2adccada18779e7c2077ad2eb19d3f3e731385dd")[..]
);
assert_eq!(
okm[..],
hex!("
2c91117204d745f3500d636a62f64f0a
b3bae548aa53d423b0d1f27ebba6f5e5
673a081d70cce7acfc48
")[..],
);
}
#[test]
fn test_expand_multi_info() {
let info_components = &[
&b"09090909090909090909090909090909090909090909"[..],
&b"8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a"[..],
&b"0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0"[..],
&b"4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4"[..],
&b"1d1d1d1d1d1d1d1d1d1d1d1d1d1d1d1d1d"[..],
];
let (_, hkdf_ctx) = Hkdf::<Sha256>::extract(None, b"some ikm here");
// Compute HKDF-Expand on the concatenation of all the info components
let mut oneshot_res = [0u8; 16];
hkdf_ctx
.expand(&info_components.concat(), &mut oneshot_res)
.unwrap();
// Now iteratively join the components of info_components until it's all 1 component. The value
// of HKDF-Expand should be the same throughout
let mut num_concatted = 0;
let mut info_head = Vec::new();
while num_concatted < info_components.len() {
info_head.extend(info_components[num_concatted]);
// Build the new input to be the info head followed by the remaining components
let input: Vec<&[u8]> = iter::once(info_head.as_slice())
.chain(info_components.iter().cloned().skip(num_concatted + 1))
.collect();
// Compute and compare to the one-shot answer
let mut multipart_res = [0u8; 16];
hkdf_ctx
.expand_multi_info(&input, &mut multipart_res)
.unwrap();
assert_eq!(multipart_res, oneshot_res);
num_concatted += 1;
}
}
#[test]
fn test_extract_streaming() {
let ikm_components = &[
&b"09090909090909090909090909090909090909090909"[..],
&b"8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a"[..],
&b"0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0"[..],
&b"4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4"[..],
&b"1d1d1d1d1d1d1d1d1d1d1d1d1d1d1d1d1d"[..],
];
let salt = b"mysalt";
// Compute HKDF-Extract on the concatenation of all the IKM components
let (oneshot_res, _) = Hkdf::<Sha256>::extract(Some(&salt[..]), &ikm_components.concat());
// Now iteratively join the components of ikm_components until it's all 1 component. The value
// of HKDF-Extract should be the same throughout
let mut num_concatted = 0;
let mut ikm_head = Vec::new();
while num_concatted < ikm_components.len() {
ikm_head.extend(ikm_components[num_concatted]);
// Make a new extraction context and build the new input to be the IKM head followed by the
// remaining components
let mut extract_ctx = HkdfExtract::<Sha256>::new(Some(&salt[..]));
let input = iter::once(ikm_head.as_slice())
.chain(ikm_components.iter().cloned().skip(num_concatted + 1));
// Stream in the IKM input in the chunks specified
for ikm in input {
extract_ctx.input_ikm(ikm);
}
// Finalize and compare to the one-shot answer
let (multipart_res, _) = extract_ctx.finalize();
assert_eq!(multipart_res, oneshot_res);
num_concatted += 1;
}
let mut num_concatted = 0;
let mut ikm_head = Vec::new();
while num_concatted < ikm_components.len() {
ikm_head.extend(ikm_components[num_concatted]);
// Make a new extraction context and build the new input to be the IKM head followed by the
// remaining components
let mut extract_ctx = SimpleHkdfExtract::<Sha256>::new(Some(&salt[..]));
let input = iter::once(ikm_head.as_slice())
.chain(ikm_components.iter().cloned().skip(num_concatted + 1));
// Stream in the IKM input in the chunks specified
for ikm in input {
extract_ctx.input_ikm(ikm);
}
// Finalize and compare to the one-shot answer
let (multipart_res, _) = extract_ctx.finalize();
assert_eq!(multipart_res, oneshot_res);
num_concatted += 1;
}
}
/// Define test
macro_rules! new_test {
($name:ident, $test_name:expr, $hkdf:ty) => {
#[test]
fn $name() {
use blobby::Blob4Iterator;
fn run_test(ikm: &[u8], salt: &[u8], info: &[u8], okm: &[u8]) -> Option<&'static str> {
let prk = <$hkdf>::new(Some(salt), ikm);
let mut got_okm = vec![0; okm.len()];
if prk.expand(info, &mut got_okm).is_err() {
return Some("prk expand");
}
if got_okm != okm {
return Some("mismatch in okm");
}
None
}
let data = include_bytes!(concat!("data/", $test_name, ".blb"));
for (i, row) in Blob4Iterator::new(data).unwrap().enumerate() {
let [ikm, salt, info, okm] = row.unwrap();
if let Some(desc) = run_test(ikm, salt, info, okm) {
panic!(
"\n\
Failed test №{}: {}\n\
ikm:\t{:?}\n\
salt:\t{:?}\n\
info:\t{:?}\n\
okm:\t{:?}\n",
i, desc, ikm, salt, info, okm
);
}
}
}
};
}
new_test!(wycheproof_sha1, "wycheproof-sha1", Hkdf::<Sha1>);
new_test!(wycheproof_sha256, "wycheproof-sha256", Hkdf::<Sha256>);
new_test!(wycheproof_sha384, "wycheproof-sha384", Hkdf::<Sha384>);
new_test!(wycheproof_sha512, "wycheproof-sha512", Hkdf::<Sha512>);
new_test!(
wycheproof_sha1_simple,
"wycheproof-sha1",
SimpleHkdf::<Sha1>
);
new_test!(
wycheproof_sha256_simple,
"wycheproof-sha256",
SimpleHkdf::<Sha256>
);
new_test!(
wycheproof_sha384_simple,
"wycheproof-sha384",
SimpleHkdf::<Sha384>
);
new_test!(
wycheproof_sha512_simple,
"wycheproof-sha512",
SimpleHkdf::<Sha512>
);
#[test]
fn test_debug_impls() {
fn needs_debug<T: std::fmt::Debug>() {}
needs_debug::<Hkdf<Sha256>>();
needs_debug::<HkdfExtract<Sha256>>();
}