blob: 8bd5d1793313597ced0bdea9621e438d3b77a5e9 [file] [log] [blame]
//! Assorted functions shared by several assists.
pub(crate) use gen_trait_fn_body::gen_trait_fn_body;
use hir::{db::HirDatabase, HasAttrs as HirHasAttrs, HirDisplay, InFile, Semantics};
use ide_db::{
famous_defs::FamousDefs, path_transform::PathTransform,
syntax_helpers::insert_whitespace_into_node::insert_ws_into, RootDatabase,
};
use stdx::format_to;
use syntax::{
ast::{
self,
edit::{AstNodeEdit, IndentLevel},
edit_in_place::{AttrsOwnerEdit, Indent, Removable},
make, HasArgList, HasAttrs, HasGenericParams, HasName, HasTypeBounds, Whitespace,
},
ted, AstNode, AstToken, Direction, SourceFile,
SyntaxKind::*,
SyntaxNode, TextRange, TextSize, T,
};
use crate::assist_context::{AssistContext, SourceChangeBuilder};
mod gen_trait_fn_body;
pub(crate) mod ref_field_expr;
pub(crate) mod suggest_name;
pub(crate) fn unwrap_trivial_block(block_expr: ast::BlockExpr) -> ast::Expr {
extract_trivial_expression(&block_expr)
.filter(|expr| !expr.syntax().text().contains_char('\n'))
.unwrap_or_else(|| block_expr.into())
}
pub fn extract_trivial_expression(block_expr: &ast::BlockExpr) -> Option<ast::Expr> {
if block_expr.modifier().is_some() {
return None;
}
let stmt_list = block_expr.stmt_list()?;
let has_anything_else = |thing: &SyntaxNode| -> bool {
let mut non_trivial_children =
stmt_list.syntax().children_with_tokens().filter(|it| match it.kind() {
WHITESPACE | T!['{'] | T!['}'] => false,
_ => it.as_node() != Some(thing),
});
non_trivial_children.next().is_some()
};
if let Some(expr) = stmt_list.tail_expr() {
if has_anything_else(expr.syntax()) {
return None;
}
return Some(expr);
}
// Unwrap `{ continue; }`
let stmt = stmt_list.statements().next()?;
if let ast::Stmt::ExprStmt(expr_stmt) = stmt {
if has_anything_else(expr_stmt.syntax()) {
return None;
}
let expr = expr_stmt.expr()?;
if matches!(expr.syntax().kind(), CONTINUE_EXPR | BREAK_EXPR | RETURN_EXPR) {
return Some(expr);
}
}
None
}
/// This is a method with a heuristics to support test methods annotated with custom test annotations, such as
/// `#[test_case(...)]`, `#[tokio::test]` and similar.
/// Also a regular `#[test]` annotation is supported.
///
/// It may produce false positives, for example, `#[wasm_bindgen_test]` requires a different command to run the test,
/// but it's better than not to have the runnables for the tests at all.
pub fn test_related_attribute(fn_def: &ast::Fn) -> Option<ast::Attr> {
fn_def.attrs().find_map(|attr| {
let path = attr.path()?;
let text = path.syntax().text().to_string();
if text.starts_with("test") || text.ends_with("test") {
Some(attr)
} else {
None
}
})
}
#[derive(Clone, Copy, PartialEq)]
pub enum IgnoreAssocItems {
DocHiddenAttrPresent,
No,
}
#[derive(Copy, Clone, PartialEq)]
pub enum DefaultMethods {
Only,
No,
}
pub fn filter_assoc_items(
sema: &Semantics<'_, RootDatabase>,
items: &[hir::AssocItem],
default_methods: DefaultMethods,
ignore_items: IgnoreAssocItems,
) -> Vec<InFile<ast::AssocItem>> {
return items
.iter()
.copied()
.filter(|assoc_item| {
if ignore_items == IgnoreAssocItems::DocHiddenAttrPresent
&& assoc_item.attrs(sema.db).has_doc_hidden()
{
if let hir::AssocItem::Function(f) = assoc_item {
if !f.has_body(sema.db) {
return true;
}
}
return false;
}
true
})
// Note: This throws away items with no source.
.filter_map(|assoc_item| {
let item = match assoc_item {
hir::AssocItem::Function(it) => sema.source(it)?.map(ast::AssocItem::Fn),
hir::AssocItem::TypeAlias(it) => sema.source(it)?.map(ast::AssocItem::TypeAlias),
hir::AssocItem::Const(it) => sema.source(it)?.map(ast::AssocItem::Const),
};
Some(item)
})
.filter(has_def_name)
.filter(|it| match &it.value {
ast::AssocItem::Fn(def) => matches!(
(default_methods, def.body()),
(DefaultMethods::Only, Some(_)) | (DefaultMethods::No, None)
),
ast::AssocItem::Const(def) => matches!(
(default_methods, def.body()),
(DefaultMethods::Only, Some(_)) | (DefaultMethods::No, None)
),
_ => default_methods == DefaultMethods::No,
})
.collect();
fn has_def_name(item: &InFile<ast::AssocItem>) -> bool {
match &item.value {
ast::AssocItem::Fn(def) => def.name(),
ast::AssocItem::TypeAlias(def) => def.name(),
ast::AssocItem::Const(def) => def.name(),
ast::AssocItem::MacroCall(_) => None,
}
.is_some()
}
}
/// Given `original_items` retrieved from the trait definition (usually by
/// [`filter_assoc_items()`]), clones each item for update and applies path transformation to it,
/// then inserts into `impl_`. Returns the modified `impl_` and the first associated item that got
/// inserted.
pub fn add_trait_assoc_items_to_impl(
sema: &Semantics<'_, RootDatabase>,
original_items: &[InFile<ast::AssocItem>],
trait_: hir::Trait,
impl_: &ast::Impl,
target_scope: hir::SemanticsScope<'_>,
) -> ast::AssocItem {
let new_indent_level = IndentLevel::from_node(impl_.syntax()) + 1;
let items = original_items.iter().map(|InFile { file_id, value: original_item }| {
let cloned_item = {
if file_id.is_macro() {
if let Some(formatted) =
ast::AssocItem::cast(insert_ws_into(original_item.syntax().clone()))
{
return formatted;
} else {
stdx::never!("formatted `AssocItem` could not be cast back to `AssocItem`");
}
}
original_item.clone_for_update()
};
if let Some(source_scope) = sema.scope(original_item.syntax()) {
// FIXME: Paths in nested macros are not handled well. See
// `add_missing_impl_members::paths_in_nested_macro_should_get_transformed` test.
let transform =
PathTransform::trait_impl(&target_scope, &source_scope, trait_, impl_.clone());
transform.apply(cloned_item.syntax());
}
cloned_item.remove_attrs_and_docs();
cloned_item.reindent_to(new_indent_level);
cloned_item
});
let assoc_item_list = impl_.get_or_create_assoc_item_list();
let mut first_item = None;
for item in items {
first_item.get_or_insert_with(|| item.clone());
match &item {
ast::AssocItem::Fn(fn_) if fn_.body().is_none() => {
let body = AstNodeEdit::indent(
&make::block_expr(None, Some(make::ext::expr_todo())),
new_indent_level,
);
ted::replace(fn_.get_or_create_body().syntax(), body.clone_for_update().syntax())
}
ast::AssocItem::TypeAlias(type_alias) => {
if let Some(type_bound_list) = type_alias.type_bound_list() {
type_bound_list.remove()
}
}
_ => {}
}
assoc_item_list.add_item(item)
}
first_item.unwrap()
}
pub(crate) fn vis_offset(node: &SyntaxNode) -> TextSize {
node.children_with_tokens()
.find(|it| !matches!(it.kind(), WHITESPACE | COMMENT | ATTR))
.map(|it| it.text_range().start())
.unwrap_or_else(|| node.text_range().start())
}
pub(crate) fn invert_boolean_expression(expr: ast::Expr) -> ast::Expr {
invert_special_case(&expr).unwrap_or_else(|| make::expr_prefix(T![!], expr))
}
fn invert_special_case(expr: &ast::Expr) -> Option<ast::Expr> {
match expr {
ast::Expr::BinExpr(bin) => {
let bin = bin.clone_for_update();
let op_token = bin.op_token()?;
let rev_token = match op_token.kind() {
T![==] => T![!=],
T![!=] => T![==],
T![<] => T![>=],
T![<=] => T![>],
T![>] => T![<=],
T![>=] => T![<],
// Parenthesize other expressions before prefixing `!`
_ => return Some(make::expr_prefix(T![!], make::expr_paren(expr.clone()))),
};
ted::replace(op_token, make::token(rev_token));
Some(bin.into())
}
ast::Expr::MethodCallExpr(mce) => {
let receiver = mce.receiver()?;
let method = mce.name_ref()?;
let arg_list = mce.arg_list()?;
let method = match method.text().as_str() {
"is_some" => "is_none",
"is_none" => "is_some",
"is_ok" => "is_err",
"is_err" => "is_ok",
_ => return None,
};
Some(make::expr_method_call(receiver, make::name_ref(method), arg_list))
}
ast::Expr::PrefixExpr(pe) if pe.op_kind()? == ast::UnaryOp::Not => match pe.expr()? {
ast::Expr::ParenExpr(parexpr) => parexpr.expr(),
_ => pe.expr(),
},
ast::Expr::Literal(lit) => match lit.kind() {
ast::LiteralKind::Bool(b) => match b {
true => Some(ast::Expr::Literal(make::expr_literal("false"))),
false => Some(ast::Expr::Literal(make::expr_literal("true"))),
},
_ => None,
},
_ => None,
}
}
pub(crate) fn next_prev() -> impl Iterator<Item = Direction> {
[Direction::Next, Direction::Prev].into_iter()
}
pub(crate) fn does_pat_match_variant(pat: &ast::Pat, var: &ast::Pat) -> bool {
let first_node_text = |pat: &ast::Pat| pat.syntax().first_child().map(|node| node.text());
let pat_head = match pat {
ast::Pat::IdentPat(bind_pat) => match bind_pat.pat() {
Some(p) => first_node_text(&p),
None => return pat.syntax().text() == var.syntax().text(),
},
pat => first_node_text(pat),
};
let var_head = first_node_text(var);
pat_head == var_head
}
pub(crate) fn does_nested_pattern(pat: &ast::Pat) -> bool {
let depth = calc_depth(pat, 0);
if 1 < depth {
return true;
}
false
}
fn calc_depth(pat: &ast::Pat, depth: usize) -> usize {
match pat {
ast::Pat::IdentPat(_)
| ast::Pat::BoxPat(_)
| ast::Pat::RestPat(_)
| ast::Pat::LiteralPat(_)
| ast::Pat::MacroPat(_)
| ast::Pat::OrPat(_)
| ast::Pat::ParenPat(_)
| ast::Pat::PathPat(_)
| ast::Pat::WildcardPat(_)
| ast::Pat::RangePat(_)
| ast::Pat::RecordPat(_)
| ast::Pat::RefPat(_)
| ast::Pat::SlicePat(_)
| ast::Pat::TuplePat(_)
| ast::Pat::ConstBlockPat(_) => depth,
// FIXME: Other patterns may also be nested. Currently it simply supports only `TupleStructPat`
ast::Pat::TupleStructPat(pat) => {
let mut max_depth = depth;
for p in pat.fields() {
let d = calc_depth(&p, depth + 1);
if d > max_depth {
max_depth = d
}
}
max_depth
}
}
}
// Uses a syntax-driven approach to find any impl blocks for the struct that
// exist within the module/file
//
// Returns `None` if we've found an existing fn
//
// FIXME: change the new fn checking to a more semantic approach when that's more
// viable (e.g. we process proc macros, etc)
// FIXME: this partially overlaps with `find_impl_block_*`
/// `find_struct_impl` looks for impl of a struct, but this also has additional feature
/// where it takes a list of function names and check if they exist inside impl_, if
/// even one match is found, it returns None.
///
/// That means this function can have 3 potential return values:
/// - `None`: an impl exists, but one of the function names within the impl matches one of the provided names.
/// - `Some(None)`: no impl exists.
/// - `Some(Some(_))`: an impl exists, with no matching function names.
pub(crate) fn find_struct_impl(
ctx: &AssistContext<'_>,
adt: &ast::Adt,
names: &[String],
) -> Option<Option<ast::Impl>> {
let db = ctx.db();
let module = adt.syntax().parent()?;
let struct_def = ctx.sema.to_def(adt)?;
let block = module.descendants().filter_map(ast::Impl::cast).find_map(|impl_blk| {
let blk = ctx.sema.to_def(&impl_blk)?;
// FIXME: handle e.g. `struct S<T>; impl<U> S<U> {}`
// (we currently use the wrong type parameter)
// also we wouldn't want to use e.g. `impl S<u32>`
let same_ty = match blk.self_ty(db).as_adt() {
Some(def) => def == struct_def,
None => false,
};
let not_trait_impl = blk.trait_(db).is_none();
if !(same_ty && not_trait_impl) {
None
} else {
Some(impl_blk)
}
});
if let Some(ref impl_blk) = block {
if has_any_fn(impl_blk, names) {
return None;
}
}
Some(block)
}
fn has_any_fn(imp: &ast::Impl, names: &[String]) -> bool {
if let Some(il) = imp.assoc_item_list() {
for item in il.assoc_items() {
if let ast::AssocItem::Fn(f) = item {
if let Some(name) = f.name() {
if names.iter().any(|n| n.eq_ignore_ascii_case(&name.text())) {
return true;
}
}
}
}
}
false
}
/// Find the end of the `impl` block for the given `ast::Impl`.
//
// FIXME: this partially overlaps with `find_struct_impl`
pub(crate) fn find_impl_block_end(impl_def: ast::Impl, buf: &mut String) -> Option<TextSize> {
buf.push('\n');
let end = impl_def
.assoc_item_list()
.and_then(|it| it.r_curly_token())?
.prev_sibling_or_token()?
.text_range()
.end();
Some(end)
}
/// Generates the surrounding `impl Type { <code> }` including type and lifetime
/// parameters.
// FIXME: migrate remaining uses to `generate_impl`
pub(crate) fn generate_impl_text(adt: &ast::Adt, code: &str) -> String {
generate_impl_text_inner(adt, None, true, code)
}
/// Generates the surrounding `impl <trait> for Type { <code> }` including type
/// and lifetime parameters, with `<trait>` appended to `impl`'s generic parameters' bounds.
///
/// This is useful for traits like `PartialEq`, since `impl<T> PartialEq for U<T>` often requires `T: PartialEq`.
// FIXME: migrate remaining uses to `generate_trait_impl`
pub(crate) fn generate_trait_impl_text(adt: &ast::Adt, trait_text: &str, code: &str) -> String {
generate_impl_text_inner(adt, Some(trait_text), true, code)
}
/// Generates the surrounding `impl <trait> for Type { <code> }` including type
/// and lifetime parameters, with `impl`'s generic parameters' bounds kept as-is.
///
/// This is useful for traits like `From<T>`, since `impl<T> From<T> for U<T>` doesn't require `T: From<T>`.
// FIXME: migrate remaining uses to `generate_trait_impl_intransitive`
pub(crate) fn generate_trait_impl_text_intransitive(
adt: &ast::Adt,
trait_text: &str,
code: &str,
) -> String {
generate_impl_text_inner(adt, Some(trait_text), false, code)
}
fn generate_impl_text_inner(
adt: &ast::Adt,
trait_text: Option<&str>,
trait_is_transitive: bool,
code: &str,
) -> String {
// Ensure lifetime params are before type & const params
let generic_params = adt.generic_param_list().map(|generic_params| {
let lifetime_params =
generic_params.lifetime_params().map(ast::GenericParam::LifetimeParam);
let ty_or_const_params = generic_params.type_or_const_params().map(|param| {
match param {
ast::TypeOrConstParam::Type(param) => {
let param = param.clone_for_update();
// remove defaults since they can't be specified in impls
param.remove_default();
let mut bounds =
param.type_bound_list().map_or_else(Vec::new, |it| it.bounds().collect());
if let Some(trait_) = trait_text {
// Add the current trait to `bounds` if the trait is transitive,
// meaning `impl<T> Trait for U<T>` requires `T: Trait`.
if trait_is_transitive {
bounds.push(make::type_bound_text(trait_));
}
};
// `{ty_param}: {bounds}`
let param =
make::type_param(param.name().unwrap(), make::type_bound_list(bounds));
ast::GenericParam::TypeParam(param)
}
ast::TypeOrConstParam::Const(param) => {
let param = param.clone_for_update();
// remove defaults since they can't be specified in impls
param.remove_default();
ast::GenericParam::ConstParam(param)
}
}
});
make::generic_param_list(itertools::chain(lifetime_params, ty_or_const_params))
});
// FIXME: use syntax::make & mutable AST apis instead
// `trait_text` and `code` can't be opaque blobs of text
let mut buf = String::with_capacity(code.len());
// Copy any cfg attrs from the original adt
buf.push_str("\n\n");
let cfg_attrs = adt
.attrs()
.filter(|attr| attr.as_simple_call().map(|(name, _arg)| name == "cfg").unwrap_or(false));
cfg_attrs.for_each(|attr| buf.push_str(&format!("{attr}\n")));
// `impl{generic_params} {trait_text} for {name}{generic_params.to_generic_args()}`
buf.push_str("impl");
if let Some(generic_params) = &generic_params {
format_to!(buf, "{generic_params}");
}
buf.push(' ');
if let Some(trait_text) = trait_text {
buf.push_str(trait_text);
buf.push_str(" for ");
}
buf.push_str(&adt.name().unwrap().text());
if let Some(generic_params) = generic_params {
format_to!(buf, "{}", generic_params.to_generic_args());
}
match adt.where_clause() {
Some(where_clause) => {
format_to!(buf, "\n{where_clause}\n{{\n{code}\n}}");
}
None => {
format_to!(buf, " {{\n{code}\n}}");
}
}
buf
}
/// Generates the corresponding `impl Type {}` including type and lifetime
/// parameters.
pub(crate) fn generate_impl(adt: &ast::Adt) -> ast::Impl {
generate_impl_inner(adt, None, true)
}
/// Generates the corresponding `impl <trait> for Type {}` including type
/// and lifetime parameters, with `<trait>` appended to `impl`'s generic parameters' bounds.
///
/// This is useful for traits like `PartialEq`, since `impl<T> PartialEq for U<T>` often requires `T: PartialEq`.
pub(crate) fn generate_trait_impl(adt: &ast::Adt, trait_: ast::Type) -> ast::Impl {
generate_impl_inner(adt, Some(trait_), true)
}
/// Generates the corresponding `impl <trait> for Type {}` including type
/// and lifetime parameters, with `impl`'s generic parameters' bounds kept as-is.
///
/// This is useful for traits like `From<T>`, since `impl<T> From<T> for U<T>` doesn't require `T: From<T>`.
pub(crate) fn generate_trait_impl_intransitive(adt: &ast::Adt, trait_: ast::Type) -> ast::Impl {
generate_impl_inner(adt, Some(trait_), false)
}
fn generate_impl_inner(
adt: &ast::Adt,
trait_: Option<ast::Type>,
trait_is_transitive: bool,
) -> ast::Impl {
// Ensure lifetime params are before type & const params
let generic_params = adt.generic_param_list().map(|generic_params| {
let lifetime_params =
generic_params.lifetime_params().map(ast::GenericParam::LifetimeParam);
let ty_or_const_params = generic_params.type_or_const_params().map(|param| {
match param {
ast::TypeOrConstParam::Type(param) => {
let param = param.clone_for_update();
// remove defaults since they can't be specified in impls
param.remove_default();
let mut bounds =
param.type_bound_list().map_or_else(Vec::new, |it| it.bounds().collect());
if let Some(trait_) = &trait_ {
// Add the current trait to `bounds` if the trait is transitive,
// meaning `impl<T> Trait for U<T>` requires `T: Trait`.
if trait_is_transitive {
bounds.push(make::type_bound(trait_.clone()));
}
};
// `{ty_param}: {bounds}`
let param =
make::type_param(param.name().unwrap(), make::type_bound_list(bounds));
ast::GenericParam::TypeParam(param)
}
ast::TypeOrConstParam::Const(param) => {
let param = param.clone_for_update();
// remove defaults since they can't be specified in impls
param.remove_default();
ast::GenericParam::ConstParam(param)
}
}
});
make::generic_param_list(itertools::chain(lifetime_params, ty_or_const_params))
});
let generic_args =
generic_params.as_ref().map(|params| params.to_generic_args().clone_for_update());
let ty = make::ty_path(make::ext::ident_path(&adt.name().unwrap().text()));
let impl_ = match trait_ {
Some(trait_) => make::impl_trait(
false,
None,
None,
generic_params,
generic_args,
false,
trait_,
ty,
None,
adt.where_clause(),
None,
),
None => make::impl_(generic_params, generic_args, ty, adt.where_clause(), None),
}
.clone_for_update();
// Copy any cfg attrs from the original adt
let cfg_attrs = adt
.attrs()
.filter(|attr| attr.as_simple_call().map(|(name, _arg)| name == "cfg").unwrap_or(false));
for attr in cfg_attrs {
impl_.add_attr(attr.clone_for_update());
}
impl_
}
pub(crate) fn add_method_to_adt(
builder: &mut SourceChangeBuilder,
adt: &ast::Adt,
impl_def: Option<ast::Impl>,
method: &str,
) {
let mut buf = String::with_capacity(method.len() + 2);
if impl_def.is_some() {
buf.push('\n');
}
buf.push_str(method);
let start_offset = impl_def
.and_then(|impl_def| find_impl_block_end(impl_def, &mut buf))
.unwrap_or_else(|| {
buf = generate_impl_text(adt, &buf);
adt.syntax().text_range().end()
});
builder.insert(start_offset, buf);
}
#[derive(Debug)]
pub(crate) struct ReferenceConversion {
conversion: ReferenceConversionType,
ty: hir::Type,
impls_deref: bool,
}
#[derive(Debug)]
enum ReferenceConversionType {
// reference can be stripped if the type is Copy
Copy,
// &String -> &str
AsRefStr,
// &Vec<T> -> &[T]
AsRefSlice,
// &Box<T> -> &T
Dereferenced,
// &Option<T> -> Option<&T>
Option,
// &Result<T, E> -> Result<&T, &E>
Result,
}
impl ReferenceConversion {
pub(crate) fn convert_type(&self, db: &dyn HirDatabase) -> ast::Type {
let ty = match self.conversion {
ReferenceConversionType::Copy => self.ty.display(db).to_string(),
ReferenceConversionType::AsRefStr => "&str".to_owned(),
ReferenceConversionType::AsRefSlice => {
let type_argument_name =
self.ty.type_arguments().next().unwrap().display(db).to_string();
format!("&[{type_argument_name}]")
}
ReferenceConversionType::Dereferenced => {
let type_argument_name =
self.ty.type_arguments().next().unwrap().display(db).to_string();
format!("&{type_argument_name}")
}
ReferenceConversionType::Option => {
let type_argument_name =
self.ty.type_arguments().next().unwrap().display(db).to_string();
format!("Option<&{type_argument_name}>")
}
ReferenceConversionType::Result => {
let mut type_arguments = self.ty.type_arguments();
let first_type_argument_name =
type_arguments.next().unwrap().display(db).to_string();
let second_type_argument_name =
type_arguments.next().unwrap().display(db).to_string();
format!("Result<&{first_type_argument_name}, &{second_type_argument_name}>")
}
};
make::ty(&ty)
}
pub(crate) fn getter(&self, field_name: String) -> ast::Expr {
let expr = make::expr_field(make::ext::expr_self(), &field_name);
match self.conversion {
ReferenceConversionType::Copy => expr,
ReferenceConversionType::AsRefStr
| ReferenceConversionType::AsRefSlice
| ReferenceConversionType::Dereferenced
| ReferenceConversionType::Option
| ReferenceConversionType::Result => {
if self.impls_deref {
make::expr_ref(expr, false)
} else {
make::expr_method_call(expr, make::name_ref("as_ref"), make::arg_list([]))
}
}
}
}
}
// FIXME: It should return a new hir::Type, but currently constructing new types is too cumbersome
// and all users of this function operate on string type names, so they can do the conversion
// itself themselves.
pub(crate) fn convert_reference_type(
ty: hir::Type,
db: &RootDatabase,
famous_defs: &FamousDefs<'_, '_>,
) -> Option<ReferenceConversion> {
handle_copy(&ty, db)
.or_else(|| handle_as_ref_str(&ty, db, famous_defs))
.or_else(|| handle_as_ref_slice(&ty, db, famous_defs))
.or_else(|| handle_dereferenced(&ty, db, famous_defs))
.or_else(|| handle_option_as_ref(&ty, db, famous_defs))
.or_else(|| handle_result_as_ref(&ty, db, famous_defs))
.map(|(conversion, impls_deref)| ReferenceConversion { ty, conversion, impls_deref })
}
fn could_deref_to_target(ty: &hir::Type, target: &hir::Type, db: &dyn HirDatabase) -> bool {
let ty_ref = hir::Type::reference(ty, hir::Mutability::Shared);
let target_ref = hir::Type::reference(target, hir::Mutability::Shared);
ty_ref.could_coerce_to(db, &target_ref)
}
fn handle_copy(ty: &hir::Type, db: &dyn HirDatabase) -> Option<(ReferenceConversionType, bool)> {
ty.is_copy(db).then_some((ReferenceConversionType::Copy, true))
}
fn handle_as_ref_str(
ty: &hir::Type,
db: &dyn HirDatabase,
famous_defs: &FamousDefs<'_, '_>,
) -> Option<(ReferenceConversionType, bool)> {
let str_type = hir::BuiltinType::str().ty(db);
ty.impls_trait(db, famous_defs.core_convert_AsRef()?, &[str_type.clone()])
.then_some((ReferenceConversionType::AsRefStr, could_deref_to_target(ty, &str_type, db)))
}
fn handle_as_ref_slice(
ty: &hir::Type,
db: &dyn HirDatabase,
famous_defs: &FamousDefs<'_, '_>,
) -> Option<(ReferenceConversionType, bool)> {
let type_argument = ty.type_arguments().next()?;
let slice_type = hir::Type::new_slice(type_argument);
ty.impls_trait(db, famous_defs.core_convert_AsRef()?, &[slice_type.clone()]).then_some((
ReferenceConversionType::AsRefSlice,
could_deref_to_target(ty, &slice_type, db),
))
}
fn handle_dereferenced(
ty: &hir::Type,
db: &dyn HirDatabase,
famous_defs: &FamousDefs<'_, '_>,
) -> Option<(ReferenceConversionType, bool)> {
let type_argument = ty.type_arguments().next()?;
ty.impls_trait(db, famous_defs.core_convert_AsRef()?, &[type_argument.clone()]).then_some((
ReferenceConversionType::Dereferenced,
could_deref_to_target(ty, &type_argument, db),
))
}
fn handle_option_as_ref(
ty: &hir::Type,
db: &dyn HirDatabase,
famous_defs: &FamousDefs<'_, '_>,
) -> Option<(ReferenceConversionType, bool)> {
if ty.as_adt() == famous_defs.core_option_Option()?.ty(db).as_adt() {
Some((ReferenceConversionType::Option, false))
} else {
None
}
}
fn handle_result_as_ref(
ty: &hir::Type,
db: &dyn HirDatabase,
famous_defs: &FamousDefs<'_, '_>,
) -> Option<(ReferenceConversionType, bool)> {
if ty.as_adt() == famous_defs.core_result_Result()?.ty(db).as_adt() {
Some((ReferenceConversionType::Result, false))
} else {
None
}
}
pub(crate) fn get_methods(items: &ast::AssocItemList) -> Vec<ast::Fn> {
items
.assoc_items()
.flat_map(|i| match i {
ast::AssocItem::Fn(f) => Some(f),
_ => None,
})
.filter(|f| f.name().is_some())
.collect()
}
/// Trim(remove leading and trailing whitespace) `initial_range` in `source_file`, return the trimmed range.
pub(crate) fn trimmed_text_range(source_file: &SourceFile, initial_range: TextRange) -> TextRange {
let mut trimmed_range = initial_range;
while source_file
.syntax()
.token_at_offset(trimmed_range.start())
.find_map(Whitespace::cast)
.is_some()
&& trimmed_range.start() < trimmed_range.end()
{
let start = trimmed_range.start() + TextSize::from(1);
trimmed_range = TextRange::new(start, trimmed_range.end());
}
while source_file
.syntax()
.token_at_offset(trimmed_range.end())
.find_map(Whitespace::cast)
.is_some()
&& trimmed_range.start() < trimmed_range.end()
{
let end = trimmed_range.end() - TextSize::from(1);
trimmed_range = TextRange::new(trimmed_range.start(), end);
}
trimmed_range
}
/// Convert a list of function params to a list of arguments that can be passed
/// into a function call.
pub(crate) fn convert_param_list_to_arg_list(list: ast::ParamList) -> ast::ArgList {
let mut args = vec![];
for param in list.params() {
if let Some(ast::Pat::IdentPat(pat)) = param.pat() {
if let Some(name) = pat.name() {
let name = name.to_string();
let expr = make::expr_path(make::ext::ident_path(&name));
args.push(expr);
}
}
}
make::arg_list(args)
}
/// Calculate the number of hashes required for a raw string containing `s`
pub(crate) fn required_hashes(s: &str) -> usize {
let mut res = 0usize;
for idx in s.match_indices('"').map(|(i, _)| i) {
let (_, sub) = s.split_at(idx + 1);
let n_hashes = sub.chars().take_while(|c| *c == '#').count();
res = res.max(n_hashes + 1)
}
res
}
#[test]
fn test_required_hashes() {
assert_eq!(0, required_hashes("abc"));
assert_eq!(0, required_hashes("###"));
assert_eq!(1, required_hashes("\""));
assert_eq!(2, required_hashes("\"#abc"));
assert_eq!(0, required_hashes("#abc"));
assert_eq!(3, required_hashes("#ab\"##c"));
assert_eq!(5, required_hashes("#ab\"##\"####c"));
}
/// Replaces the record expression, handling field shorthands including inside macros.
pub(crate) fn replace_record_field_expr(
ctx: &AssistContext<'_>,
edit: &mut SourceChangeBuilder,
record_field: ast::RecordExprField,
initializer: ast::Expr,
) {
if let Some(ast::Expr::PathExpr(path_expr)) = record_field.expr() {
// replace field shorthand
let file_range = ctx.sema.original_range(path_expr.syntax());
edit.insert(file_range.range.end(), format!(": {}", initializer.syntax().text()))
} else if let Some(expr) = record_field.expr() {
// just replace expr
let file_range = ctx.sema.original_range(expr.syntax());
edit.replace(file_range.range, initializer.syntax().text());
}
}