blob: c64fe00beaefe09d8c91e1a2eea6a8313741d883 [file] [log] [blame]
//===------ BPFPreserveStaticOffset.cpp -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// TLDR: replaces llvm.preserve.static.offset + GEP + load / store
// with llvm.bpf.getelementptr.and.load / store
//
// This file implements BPFPreserveStaticOffsetPass transformation.
// This transformation address two BPF verifier specific issues:
//
// (a) Access to the fields of some structural types is allowed only
// using load and store instructions with static immediate offsets.
//
// Examples of such types are `struct __sk_buff` and `struct
// bpf_sock_ops`. This is so because offsets of the fields of
// these structures do not match real offsets in the running
// kernel. During BPF program load LDX and STX instructions
// referring to the fields of these types are rewritten so that
// offsets match real offsets. For this rewrite to happen field
// offsets have to be encoded as immediate operands of the
// instructions.
//
// See kernel/bpf/verifier.c:convert_ctx_access function in the
// Linux kernel source tree for details.
//
// (b) Pointers to context parameters of BPF programs must not be
// modified before access.
//
// During BPF program verification a tag PTR_TO_CTX is tracked for
// register values. In case if register with such tag is modified
// BPF program is not allowed to read or write memory using this
// register. See kernel/bpf/verifier.c:check_mem_access function
// in the Linux kernel source tree for details.
//
// The following sequence of the IR instructions:
//
// %x = getelementptr %ptr, %constant_offset
// %y = load %x
//
// Is translated as a single machine instruction:
//
// LDW %ptr, %constant_offset
//
// In order for cases (a) and (b) to work the sequence %x-%y above has
// to be preserved by the IR passes.
//
// However, several optimization passes might sink `load` instruction
// or hoist `getelementptr` instruction so that the instructions are
// no longer in sequence. Examples of such passes are:
// SimplifyCFGPass, InstCombinePass, GVNPass.
// After such modification the verifier would reject the BPF program.
//
// To avoid this issue the patterns like (load/store (getelementptr ...))
// are replaced by calls to BPF specific intrinsic functions:
// - llvm.bpf.getelementptr.and.load
// - llvm.bpf.getelementptr.and.store
//
// These calls are lowered back to (load/store (getelementptr ...))
// by BPFCheckAndAdjustIR pass right before the translation from IR to
// machine instructions.
//
// The transformation is split into the following steps:
// - When IR is generated from AST the calls to intrinsic function
// llvm.preserve.static.offset are inserted.
// - BPFPreserveStaticOffsetPass is executed as early as possible
// with AllowPatial set to true, this handles marked GEP chains
// with constant offsets.
// - BPFPreserveStaticOffsetPass is executed at ScalarOptimizerLateEPCallback
// with AllowPatial set to false, this handles marked GEP chains
// with offsets that became constant after loop unrolling, e.g.
// to handle the following code:
//
// struct context { int x[4]; } __attribute__((preserve_static_offset));
//
// struct context *ctx = ...;
// #pragma clang loop unroll(full)
// for (int i = 0; i < 4; ++i)
// foo(ctx->x[i]);
//
// The early BPFPreserveStaticOffsetPass run is necessary to allow
// additional GVN / CSE opportunities after functions inlining.
// The relative order of optimization applied to function:
// - early stage (1)
// - ...
// - function inlining (2)
// - ...
// - loop unrolling
// - ...
// - ScalarOptimizerLateEPCallback (3)
//
// When function A is inlined into function B all optimizations for A
// are already done, while some passes remain for B. In case if
// BPFPreserveStaticOffsetPass is done at (3) but not done at (1)
// the code after (2) would contain a mix of
// (load (gep %p)) and (get.and.load %p) usages:
// - the (load (gep %p)) would come from the calling function;
// - the (get.and.load %p) would come from the callee function.
// Thus clobbering CSE / GVN passes done after inlining.
#include "BPF.h"
#include "BPFCORE.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsBPF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#define DEBUG_TYPE "bpf-preserve-static-offset"
using namespace llvm;
static const unsigned GepAndLoadFirstIdxArg = 6;
static const unsigned GepAndStoreFirstIdxArg = 7;
static bool isIntrinsicCall(Value *I, Intrinsic::ID Id) {
if (auto *Call = dyn_cast<CallInst>(I))
if (Function *Func = Call->getCalledFunction())
return Func->getIntrinsicID() == Id;
return false;
}
static bool isPreserveStaticOffsetCall(Value *I) {
return isIntrinsicCall(I, Intrinsic::preserve_static_offset);
}
static CallInst *isGEPAndLoad(Value *I) {
if (isIntrinsicCall(I, Intrinsic::bpf_getelementptr_and_load))
return cast<CallInst>(I);
return nullptr;
}
static CallInst *isGEPAndStore(Value *I) {
if (isIntrinsicCall(I, Intrinsic::bpf_getelementptr_and_store))
return cast<CallInst>(I);
return nullptr;
}
template <class T = Instruction>
static DILocation *mergeDILocations(SmallVector<T *> &Insns) {
DILocation *Merged = (*Insns.begin())->getDebugLoc();
for (T *I : Insns)
Merged = DILocation::getMergedLocation(Merged, I->getDebugLoc());
return Merged;
}
static CallInst *makeIntrinsicCall(Module *M,
Intrinsic::BPFIntrinsics Intrinsic,
ArrayRef<Type *> Types,
ArrayRef<Value *> Args) {
Function *Fn = Intrinsic::getDeclaration(M, Intrinsic, Types);
return CallInst::Create(Fn, Args);
}
static void setParamElementType(CallInst *Call, unsigned ArgNo, Type *Type) {
LLVMContext &C = Call->getContext();
Call->addParamAttr(ArgNo, Attribute::get(C, Attribute::ElementType, Type));
}
static void setParamReadNone(CallInst *Call, unsigned ArgNo) {
LLVMContext &C = Call->getContext();
Call->addParamAttr(ArgNo, Attribute::get(C, Attribute::ReadNone));
}
static void setParamReadOnly(CallInst *Call, unsigned ArgNo) {
LLVMContext &C = Call->getContext();
Call->addParamAttr(ArgNo, Attribute::get(C, Attribute::ReadOnly));
}
static void setParamWriteOnly(CallInst *Call, unsigned ArgNo) {
LLVMContext &C = Call->getContext();
Call->addParamAttr(ArgNo, Attribute::get(C, Attribute::WriteOnly));
}
namespace {
struct GEPChainInfo {
bool InBounds;
Type *SourceElementType;
SmallVector<Value *> Indices;
SmallVector<GetElementPtrInst *> Members;
GEPChainInfo() { reset(); }
void reset() {
InBounds = true;
SourceElementType = nullptr;
Indices.clear();
Members.clear();
}
};
} // Anonymous namespace
template <class T = std::disjunction<LoadInst, StoreInst>>
static void fillCommonArgs(LLVMContext &C, SmallVector<Value *> &Args,
GEPChainInfo &GEP, T *Insn) {
Type *Int8Ty = Type::getInt8Ty(C);
Type *Int1Ty = Type::getInt1Ty(C);
// Implementation of Align guarantees that ShiftValue < 64
unsigned AlignShiftValue = Log2_64(Insn->getAlign().value());
Args.push_back(GEP.Members[0]->getPointerOperand());
Args.push_back(ConstantInt::get(Int1Ty, Insn->isVolatile()));
Args.push_back(ConstantInt::get(Int8Ty, (unsigned)Insn->getOrdering()));
Args.push_back(ConstantInt::get(Int8Ty, (unsigned)Insn->getSyncScopeID()));
Args.push_back(ConstantInt::get(Int8Ty, AlignShiftValue));
Args.push_back(ConstantInt::get(Int1Ty, GEP.InBounds));
Args.append(GEP.Indices.begin(), GEP.Indices.end());
}
static Instruction *makeGEPAndLoad(Module *M, GEPChainInfo &GEP,
LoadInst *Load) {
SmallVector<Value *> Args;
fillCommonArgs(M->getContext(), Args, GEP, Load);
CallInst *Call = makeIntrinsicCall(M, Intrinsic::bpf_getelementptr_and_load,
{Load->getType()}, Args);
setParamElementType(Call, 0, GEP.SourceElementType);
Call->applyMergedLocation(mergeDILocations(GEP.Members), Load->getDebugLoc());
Call->setName((*GEP.Members.rbegin())->getName());
if (Load->isUnordered()) {
Call->setOnlyReadsMemory();
Call->setOnlyAccessesArgMemory();
setParamReadOnly(Call, 0);
}
for (unsigned I = GepAndLoadFirstIdxArg; I < Args.size(); ++I)
Call->addParamAttr(I, Attribute::ImmArg);
Call->setAAMetadata(Load->getAAMetadata());
return Call;
}
static Instruction *makeGEPAndStore(Module *M, GEPChainInfo &GEP,
StoreInst *Store) {
SmallVector<Value *> Args;
Args.push_back(Store->getValueOperand());
fillCommonArgs(M->getContext(), Args, GEP, Store);
CallInst *Call =
makeIntrinsicCall(M, Intrinsic::bpf_getelementptr_and_store,
{Store->getValueOperand()->getType()}, Args);
setParamElementType(Call, 1, GEP.SourceElementType);
if (Store->getValueOperand()->getType()->isPointerTy())
setParamReadNone(Call, 0);
Call->applyMergedLocation(mergeDILocations(GEP.Members),
Store->getDebugLoc());
if (Store->isUnordered()) {
Call->setOnlyWritesMemory();
Call->setOnlyAccessesArgMemory();
setParamWriteOnly(Call, 1);
}
for (unsigned I = GepAndStoreFirstIdxArg; I < Args.size(); ++I)
Call->addParamAttr(I, Attribute::ImmArg);
Call->setAAMetadata(Store->getAAMetadata());
return Call;
}
static unsigned getOperandAsUnsigned(CallInst *Call, unsigned ArgNo) {
if (auto *Int = dyn_cast<ConstantInt>(Call->getOperand(ArgNo)))
return Int->getValue().getZExtValue();
std::string Report;
raw_string_ostream ReportS(Report);
ReportS << "Expecting ConstantInt as argument #" << ArgNo << " of " << *Call
<< "\n";
report_fatal_error(StringRef(Report));
}
static GetElementPtrInst *reconstructGEP(CallInst *Call, int Delta) {
SmallVector<Value *> Indices;
Indices.append(Call->data_operands_begin() + 6 + Delta,
Call->data_operands_end());
Type *GEPPointeeType = Call->getParamElementType(Delta);
auto *GEP =
GetElementPtrInst::Create(GEPPointeeType, Call->getOperand(Delta),
ArrayRef<Value *>(Indices), Call->getName());
GEP->setIsInBounds(getOperandAsUnsigned(Call, 5 + Delta));
return GEP;
}
template <class T = std::disjunction<LoadInst, StoreInst>>
static void reconstructCommon(CallInst *Call, GetElementPtrInst *GEP, T *Insn,
int Delta) {
Insn->setVolatile(getOperandAsUnsigned(Call, 1 + Delta));
Insn->setOrdering((AtomicOrdering)getOperandAsUnsigned(Call, 2 + Delta));
Insn->setSyncScopeID(getOperandAsUnsigned(Call, 3 + Delta));
unsigned AlignShiftValue = getOperandAsUnsigned(Call, 4 + Delta);
Insn->setAlignment(Align(1ULL << AlignShiftValue));
GEP->setDebugLoc(Call->getDebugLoc());
Insn->setDebugLoc(Call->getDebugLoc());
Insn->setAAMetadata(Call->getAAMetadata());
}
std::pair<GetElementPtrInst *, LoadInst *>
BPFPreserveStaticOffsetPass::reconstructLoad(CallInst *Call) {
GetElementPtrInst *GEP = reconstructGEP(Call, 0);
Type *ReturnType = Call->getFunctionType()->getReturnType();
auto *Load = new LoadInst(ReturnType, GEP, "",
/* These would be set in reconstructCommon */
false, Align(1));
reconstructCommon(Call, GEP, Load, 0);
return std::pair{GEP, Load};
}
std::pair<GetElementPtrInst *, StoreInst *>
BPFPreserveStaticOffsetPass::reconstructStore(CallInst *Call) {
GetElementPtrInst *GEP = reconstructGEP(Call, 1);
auto *Store = new StoreInst(Call->getOperand(0), GEP,
/* These would be set in reconstructCommon */
false, Align(1));
reconstructCommon(Call, GEP, Store, 1);
return std::pair{GEP, Store};
}
static bool isZero(Value *V) {
auto *CI = dyn_cast<ConstantInt>(V);
return CI && CI->isZero();
}
// Given a chain of GEP instructions collect information necessary to
// merge this chain as a single GEP instruction of form:
// getelementptr %<type>, ptr %p, i32 0, <field_idx1>, <field_idx2>, ...
static bool foldGEPChainAsStructAccess(SmallVector<GetElementPtrInst *> &GEPs,
GEPChainInfo &Info) {
if (GEPs.empty())
return false;
if (!all_of(GEPs, [=](GetElementPtrInst *GEP) {
return GEP->hasAllConstantIndices();
}))
return false;
GetElementPtrInst *First = GEPs[0];
Info.InBounds = First->isInBounds();
Info.SourceElementType = First->getSourceElementType();
Type *ResultElementType = First->getResultElementType();
Info.Indices.append(First->idx_begin(), First->idx_end());
Info.Members.push_back(First);
for (auto *Iter = GEPs.begin() + 1; Iter != GEPs.end(); ++Iter) {
GetElementPtrInst *GEP = *Iter;
if (!isZero(*GEP->idx_begin())) {
Info.reset();
return false;
}
if (!GEP->getSourceElementType() ||
GEP->getSourceElementType() != ResultElementType) {
Info.reset();
return false;
}
Info.InBounds &= GEP->isInBounds();
Info.Indices.append(GEP->idx_begin() + 1, GEP->idx_end());
Info.Members.push_back(GEP);
ResultElementType = GEP->getResultElementType();
}
return true;
}
// Given a chain of GEP instructions collect information necessary to
// merge this chain as a single GEP instruction of form:
// getelementptr i8, ptr %p, i64 %offset
static bool foldGEPChainAsU8Access(SmallVector<GetElementPtrInst *> &GEPs,
GEPChainInfo &Info) {
if (GEPs.empty())
return false;
GetElementPtrInst *First = GEPs[0];
const DataLayout &DL = First->getModule()->getDataLayout();
LLVMContext &C = First->getContext();
Type *PtrTy = First->getType()->getScalarType();
APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0);
for (GetElementPtrInst *GEP : GEPs) {
if (!GEP->accumulateConstantOffset(DL, Offset)) {
Info.reset();
return false;
}
Info.InBounds &= GEP->isInBounds();
Info.Members.push_back(GEP);
}
Info.SourceElementType = Type::getInt8Ty(C);
Info.Indices.push_back(ConstantInt::get(C, Offset));
return true;
}
static void reportNonStaticGEPChain(Instruction *Insn) {
auto Msg = DiagnosticInfoUnsupported(
*Insn->getFunction(),
Twine("Non-constant offset in access to a field of a type marked "
"with preserve_static_offset might be rejected by BPF verifier")
.concat(Insn->getDebugLoc()
? ""
: " (pass -g option to get exact location)"),
Insn->getDebugLoc(), DS_Warning);
Insn->getContext().diagnose(Msg);
}
static bool allZeroIndices(SmallVector<GetElementPtrInst *> &GEPs) {
return GEPs.empty() || all_of(GEPs, [=](GetElementPtrInst *GEP) {
return GEP->hasAllZeroIndices();
});
}
static bool tryToReplaceWithGEPBuiltin(Instruction *LoadOrStoreTemplate,
SmallVector<GetElementPtrInst *> &GEPs,
Instruction *InsnToReplace) {
GEPChainInfo GEPChain;
if (!foldGEPChainAsStructAccess(GEPs, GEPChain) &&
!foldGEPChainAsU8Access(GEPs, GEPChain)) {
return false;
}
Module *M = InsnToReplace->getModule();
if (auto *Load = dyn_cast<LoadInst>(LoadOrStoreTemplate)) {
Instruction *Replacement = makeGEPAndLoad(M, GEPChain, Load);
Replacement->insertBefore(InsnToReplace);
InsnToReplace->replaceAllUsesWith(Replacement);
}
if (auto *Store = dyn_cast<StoreInst>(LoadOrStoreTemplate)) {
Instruction *Replacement = makeGEPAndStore(M, GEPChain, Store);
Replacement->insertBefore(InsnToReplace);
}
return true;
}
// Check if U->getPointerOperand() == I
static bool isPointerOperand(Value *I, User *U) {
if (auto *L = dyn_cast<LoadInst>(U))
return L->getPointerOperand() == I;
if (auto *S = dyn_cast<StoreInst>(U))
return S->getPointerOperand() == I;
if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
return GEP->getPointerOperand() == I;
if (auto *Call = isGEPAndLoad(U))
return Call->getArgOperand(0) == I;
if (auto *Call = isGEPAndStore(U))
return Call->getArgOperand(1) == I;
return false;
}
static bool isInlineableCall(User *U) {
if (auto *Call = dyn_cast<CallInst>(U))
return Call->hasFnAttr(Attribute::InlineHint);
return false;
}
static void rewriteAccessChain(Instruction *Insn,
SmallVector<GetElementPtrInst *> &GEPs,
SmallVector<Instruction *> &Visited,
bool AllowPatial, bool &StillUsed);
static void rewriteUses(Instruction *Insn,
SmallVector<GetElementPtrInst *> &GEPs,
SmallVector<Instruction *> &Visited, bool AllowPatial,
bool &StillUsed) {
for (User *U : Insn->users()) {
auto *UI = dyn_cast<Instruction>(U);
if (UI && (isPointerOperand(Insn, UI) || isPreserveStaticOffsetCall(UI) ||
isInlineableCall(UI)))
rewriteAccessChain(UI, GEPs, Visited, AllowPatial, StillUsed);
else
LLVM_DEBUG({
llvm::dbgs() << "unsupported usage in BPFPreserveStaticOffsetPass:\n";
llvm::dbgs() << " Insn: " << *Insn << "\n";
llvm::dbgs() << " User: " << *U << "\n";
});
}
}
// A DFS traversal of GEP chain trees starting from Root.
//
// Recursion descends through GEP instructions and
// llvm.preserve.static.offset calls. Recursion stops at any other
// instruction. If load or store instruction is reached it is replaced
// by a call to `llvm.bpf.getelementptr.and.load` or
// `llvm.bpf.getelementptr.and.store` intrinsic.
// If `llvm.bpf.getelementptr.and.load/store` is reached the accumulated
// GEPs are merged into the intrinsic call.
// If nested calls to `llvm.preserve.static.offset` are encountered these
// calls are marked for deletion.
//
// Parameters description:
// - Insn - current position in the tree
// - GEPs - GEP instructions for the current branch
// - Visited - a list of visited instructions in DFS order,
// order is important for unused instruction deletion.
// - AllowPartial - when true GEP chains that can't be folded are
// not reported, otherwise diagnostic message is show for such chains.
// - StillUsed - set to true if one of the GEP chains could not be
// folded, makes sense when AllowPartial is false, means that root
// preserve.static.offset call is still in use and should remain
// until the next run of this pass.
static void rewriteAccessChain(Instruction *Insn,
SmallVector<GetElementPtrInst *> &GEPs,
SmallVector<Instruction *> &Visited,
bool AllowPatial, bool &StillUsed) {
auto MarkAndTraverseUses = [&]() {
Visited.push_back(Insn);
rewriteUses(Insn, GEPs, Visited, AllowPatial, StillUsed);
};
auto TryToReplace = [&](Instruction *LoadOrStore) {
// Do nothing for (preserve.static.offset (load/store ..)) or for
// GEPs with zero indices. Such constructs lead to zero offset and
// are simplified by other passes.
if (allZeroIndices(GEPs))
return;
if (tryToReplaceWithGEPBuiltin(LoadOrStore, GEPs, Insn)) {
Visited.push_back(Insn);
return;
}
if (!AllowPatial)
reportNonStaticGEPChain(Insn);
StillUsed = true;
};
if (isa<LoadInst>(Insn) || isa<StoreInst>(Insn)) {
TryToReplace(Insn);
} else if (isGEPAndLoad(Insn)) {
auto [GEP, Load] =
BPFPreserveStaticOffsetPass::reconstructLoad(cast<CallInst>(Insn));
GEPs.push_back(GEP);
TryToReplace(Load);
GEPs.pop_back();
delete Load;
delete GEP;
} else if (isGEPAndStore(Insn)) {
// This case can't be merged with the above because
// `delete Load` / `delete Store` wants a concrete type,
// destructor of Instruction is protected.
auto [GEP, Store] =
BPFPreserveStaticOffsetPass::reconstructStore(cast<CallInst>(Insn));
GEPs.push_back(GEP);
TryToReplace(Store);
GEPs.pop_back();
delete Store;
delete GEP;
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(Insn)) {
GEPs.push_back(GEP);
MarkAndTraverseUses();
GEPs.pop_back();
} else if (isPreserveStaticOffsetCall(Insn)) {
MarkAndTraverseUses();
} else if (isInlineableCall(Insn)) {
// Preserve preserve.static.offset call for parameters of
// functions that might be inlined. These would be removed on a
// second pass after inlining.
// Might happen when a pointer to a preserve_static_offset
// structure is passed as parameter of a function that would be
// inlined inside a loop that would be unrolled.
if (AllowPatial)
StillUsed = true;
} else {
SmallString<128> Buf;
raw_svector_ostream BufStream(Buf);
BufStream << *Insn;
report_fatal_error(
Twine("Unexpected rewriteAccessChain Insn = ").concat(Buf));
}
}
static void removeMarkerCall(Instruction *Marker) {
Marker->replaceAllUsesWith(Marker->getOperand(0));
Marker->eraseFromParent();
}
static bool rewriteAccessChain(Instruction *Marker, bool AllowPatial,
SmallPtrSetImpl<Instruction *> &RemovedMarkers) {
SmallVector<GetElementPtrInst *> GEPs;
SmallVector<Instruction *> Visited;
bool StillUsed = false;
rewriteUses(Marker, GEPs, Visited, AllowPatial, StillUsed);
// Check if Visited instructions could be removed, iterate in
// reverse to unblock instructions higher in the chain.
for (auto V = Visited.rbegin(); V != Visited.rend(); ++V) {
if (isPreserveStaticOffsetCall(*V)) {
removeMarkerCall(*V);
RemovedMarkers.insert(*V);
} else if ((*V)->use_empty()) {
(*V)->eraseFromParent();
}
}
return StillUsed;
}
static std::vector<Instruction *>
collectPreserveStaticOffsetCalls(Function &F) {
std::vector<Instruction *> Calls;
for (Instruction &Insn : instructions(F))
if (isPreserveStaticOffsetCall(&Insn))
Calls.push_back(&Insn);
return Calls;
}
bool isPreserveArrayIndex(Value *V) {
return isIntrinsicCall(V, Intrinsic::preserve_array_access_index);
}
bool isPreserveStructIndex(Value *V) {
return isIntrinsicCall(V, Intrinsic::preserve_struct_access_index);
}
bool isPreserveUnionIndex(Value *V) {
return isIntrinsicCall(V, Intrinsic::preserve_union_access_index);
}
static void removePAICalls(Instruction *Marker) {
auto IsPointerOperand = [](Value *Op, User *U) {
if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
return GEP->getPointerOperand() == Op;
if (isPreserveStaticOffsetCall(U) || isPreserveArrayIndex(U) ||
isPreserveStructIndex(U) || isPreserveUnionIndex(U))
return cast<CallInst>(U)->getArgOperand(0) == Op;
return false;
};
SmallVector<Value *, 32> WorkList;
WorkList.push_back(Marker);
do {
Value *V = WorkList.pop_back_val();
for (User *U : V->users())
if (IsPointerOperand(V, U))
WorkList.push_back(U);
auto *Call = dyn_cast<CallInst>(V);
if (!Call)
continue;
if (isPreserveArrayIndex(V))
BPFCoreSharedInfo::removeArrayAccessCall(Call);
else if (isPreserveStructIndex(V))
BPFCoreSharedInfo::removeStructAccessCall(Call);
else if (isPreserveUnionIndex(V))
BPFCoreSharedInfo::removeUnionAccessCall(Call);
} while (!WorkList.empty());
}
// Look for sequences:
// - llvm.preserve.static.offset -> getelementptr... -> load
// - llvm.preserve.static.offset -> getelementptr... -> store
// And replace those with calls to intrinsics:
// - llvm.bpf.getelementptr.and.load
// - llvm.bpf.getelementptr.and.store
static bool rewriteFunction(Function &F, bool AllowPartial) {
LLVM_DEBUG(dbgs() << "********** BPFPreserveStaticOffsetPass (AllowPartial="
<< AllowPartial << ") ************\n");
auto MarkerCalls = collectPreserveStaticOffsetCalls(F);
SmallPtrSet<Instruction *, 16> RemovedMarkers;
LLVM_DEBUG(dbgs() << "There are " << MarkerCalls.size()
<< " preserve.static.offset calls\n");
if (MarkerCalls.empty())
return false;
for (auto *Call : MarkerCalls)
removePAICalls(Call);
for (auto *Call : MarkerCalls) {
if (RemovedMarkers.contains(Call))
continue;
bool StillUsed = rewriteAccessChain(Call, AllowPartial, RemovedMarkers);
if (!StillUsed || !AllowPartial)
removeMarkerCall(Call);
}
return true;
}
PreservedAnalyses
llvm::BPFPreserveStaticOffsetPass::run(Function &F,
FunctionAnalysisManager &AM) {
return rewriteFunction(F, AllowPartial) ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}