blob: 574d065ab01bb2cca29f74d60842d9858e9603c2 [file] [log] [blame]
//=== lib/CodeGen/GlobalISel/AArch64PreLegalizerCombiner.cpp --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass does combining of machine instructions at the generic MI level,
// before the legalizer.
//
//===----------------------------------------------------------------------===//
#include "AArch64GlobalISelUtils.h"
#include "AArch64TargetMachine.h"
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
#include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
#define GET_GICOMBINER_DEPS
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef GET_GICOMBINER_DEPS
#define DEBUG_TYPE "aarch64-prelegalizer-combiner"
using namespace llvm;
using namespace MIPatternMatch;
namespace {
#define GET_GICOMBINER_TYPES
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef GET_GICOMBINER_TYPES
/// Return true if a G_FCONSTANT instruction is known to be better-represented
/// as a G_CONSTANT.
bool matchFConstantToConstant(MachineInstr &MI, MachineRegisterInfo &MRI) {
assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT);
Register DstReg = MI.getOperand(0).getReg();
const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
if (DstSize != 32 && DstSize != 64)
return false;
// When we're storing a value, it doesn't matter what register bank it's on.
// Since not all floating point constants can be materialized using a fmov,
// it makes more sense to just use a GPR.
return all_of(MRI.use_nodbg_instructions(DstReg),
[](const MachineInstr &Use) { return Use.mayStore(); });
}
/// Change a G_FCONSTANT into a G_CONSTANT.
void applyFConstantToConstant(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT);
MachineIRBuilder MIB(MI);
const APFloat &ImmValAPF = MI.getOperand(1).getFPImm()->getValueAPF();
MIB.buildConstant(MI.getOperand(0).getReg(), ImmValAPF.bitcastToAPInt());
MI.eraseFromParent();
}
/// Try to match a G_ICMP of a G_TRUNC with zero, in which the truncated bits
/// are sign bits. In this case, we can transform the G_ICMP to directly compare
/// the wide value with a zero.
bool matchICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI,
GISelKnownBits *KB, Register &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_ICMP && KB);
auto Pred = (CmpInst::Predicate)MI.getOperand(1).getPredicate();
if (!ICmpInst::isEquality(Pred))
return false;
Register LHS = MI.getOperand(2).getReg();
LLT LHSTy = MRI.getType(LHS);
if (!LHSTy.isScalar())
return false;
Register RHS = MI.getOperand(3).getReg();
Register WideReg;
if (!mi_match(LHS, MRI, m_GTrunc(m_Reg(WideReg))) ||
!mi_match(RHS, MRI, m_SpecificICst(0)))
return false;
LLT WideTy = MRI.getType(WideReg);
if (KB->computeNumSignBits(WideReg) <=
WideTy.getSizeInBits() - LHSTy.getSizeInBits())
return false;
MatchInfo = WideReg;
return true;
}
void applyICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &Builder,
GISelChangeObserver &Observer, Register &WideReg) {
assert(MI.getOpcode() == TargetOpcode::G_ICMP);
LLT WideTy = MRI.getType(WideReg);
// We're going to directly use the wide register as the LHS, and then use an
// equivalent size zero for RHS.
Builder.setInstrAndDebugLoc(MI);
auto WideZero = Builder.buildConstant(WideTy, 0);
Observer.changingInstr(MI);
MI.getOperand(2).setReg(WideReg);
MI.getOperand(3).setReg(WideZero.getReg(0));
Observer.changedInstr(MI);
}
/// \returns true if it is possible to fold a constant into a G_GLOBAL_VALUE.
///
/// e.g.
///
/// %g = G_GLOBAL_VALUE @x -> %g = G_GLOBAL_VALUE @x + cst
bool matchFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI,
std::pair<uint64_t, uint64_t> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
MachineFunction &MF = *MI.getMF();
auto &GlobalOp = MI.getOperand(1);
auto *GV = GlobalOp.getGlobal();
if (GV->isThreadLocal())
return false;
// Don't allow anything that could represent offsets etc.
if (MF.getSubtarget<AArch64Subtarget>().ClassifyGlobalReference(
GV, MF.getTarget()) != AArch64II::MO_NO_FLAG)
return false;
// Look for a G_GLOBAL_VALUE only used by G_PTR_ADDs against constants:
//
// %g = G_GLOBAL_VALUE @x
// %ptr1 = G_PTR_ADD %g, cst1
// %ptr2 = G_PTR_ADD %g, cst2
// ...
// %ptrN = G_PTR_ADD %g, cstN
//
// Identify the *smallest* constant. We want to be able to form this:
//
// %offset_g = G_GLOBAL_VALUE @x + min_cst
// %g = G_PTR_ADD %offset_g, -min_cst
// %ptr1 = G_PTR_ADD %g, cst1
// ...
Register Dst = MI.getOperand(0).getReg();
uint64_t MinOffset = -1ull;
for (auto &UseInstr : MRI.use_nodbg_instructions(Dst)) {
if (UseInstr.getOpcode() != TargetOpcode::G_PTR_ADD)
return false;
auto Cst = getIConstantVRegValWithLookThrough(
UseInstr.getOperand(2).getReg(), MRI);
if (!Cst)
return false;
MinOffset = std::min(MinOffset, Cst->Value.getZExtValue());
}
// Require that the new offset is larger than the existing one to avoid
// infinite loops.
uint64_t CurrOffset = GlobalOp.getOffset();
uint64_t NewOffset = MinOffset + CurrOffset;
if (NewOffset <= CurrOffset)
return false;
// Check whether folding this offset is legal. It must not go out of bounds of
// the referenced object to avoid violating the code model, and must be
// smaller than 2^20 because this is the largest offset expressible in all
// object formats. (The IMAGE_REL_ARM64_PAGEBASE_REL21 relocation in COFF
// stores an immediate signed 21 bit offset.)
//
// This check also prevents us from folding negative offsets, which will end
// up being treated in the same way as large positive ones. They could also
// cause code model violations, and aren't really common enough to matter.
if (NewOffset >= (1 << 20))
return false;
Type *T = GV->getValueType();
if (!T->isSized() ||
NewOffset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
return false;
MatchInfo = std::make_pair(NewOffset, MinOffset);
return true;
}
void applyFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B, GISelChangeObserver &Observer,
std::pair<uint64_t, uint64_t> &MatchInfo) {
// Change:
//
// %g = G_GLOBAL_VALUE @x
// %ptr1 = G_PTR_ADD %g, cst1
// %ptr2 = G_PTR_ADD %g, cst2
// ...
// %ptrN = G_PTR_ADD %g, cstN
//
// To:
//
// %offset_g = G_GLOBAL_VALUE @x + min_cst
// %g = G_PTR_ADD %offset_g, -min_cst
// %ptr1 = G_PTR_ADD %g, cst1
// ...
// %ptrN = G_PTR_ADD %g, cstN
//
// Then, the original G_PTR_ADDs should be folded later on so that they look
// like this:
//
// %ptrN = G_PTR_ADD %offset_g, cstN - min_cst
uint64_t Offset, MinOffset;
std::tie(Offset, MinOffset) = MatchInfo;
B.setInstrAndDebugLoc(*std::next(MI.getIterator()));
Observer.changingInstr(MI);
auto &GlobalOp = MI.getOperand(1);
auto *GV = GlobalOp.getGlobal();
GlobalOp.ChangeToGA(GV, Offset, GlobalOp.getTargetFlags());
Register Dst = MI.getOperand(0).getReg();
Register NewGVDst = MRI.cloneVirtualRegister(Dst);
MI.getOperand(0).setReg(NewGVDst);
Observer.changedInstr(MI);
B.buildPtrAdd(
Dst, NewGVDst,
B.buildConstant(LLT::scalar(64), -static_cast<int64_t>(MinOffset)));
}
// Combines vecreduce_add(mul(ext(x), ext(y))) -> vecreduce_add(udot(x, y))
// Or vecreduce_add(ext(x)) -> vecreduce_add(udot(x, 1))
// Similar to performVecReduceAddCombine in SelectionDAG
bool matchExtAddvToUdotAddv(MachineInstr &MI, MachineRegisterInfo &MRI,
const AArch64Subtarget &STI,
std::tuple<Register, Register, bool> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_VECREDUCE_ADD &&
"Expected a G_VECREDUCE_ADD instruction");
assert(STI.hasDotProd() && "Target should have Dot Product feature");
MachineInstr *I1 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
Register DstReg = MI.getOperand(0).getReg();
Register MidReg = I1->getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
LLT MidTy = MRI.getType(MidReg);
if (DstTy.getScalarSizeInBits() != 32 || MidTy.getScalarSizeInBits() != 32)
return false;
LLT SrcTy;
auto I1Opc = I1->getOpcode();
if (I1Opc == TargetOpcode::G_MUL) {
// If result of this has more than 1 use, then there is no point in creating
// udot instruction
if (!MRI.hasOneNonDBGUse(MidReg))
return false;
MachineInstr *ExtMI1 =
getDefIgnoringCopies(I1->getOperand(1).getReg(), MRI);
MachineInstr *ExtMI2 =
getDefIgnoringCopies(I1->getOperand(2).getReg(), MRI);
LLT Ext1DstTy = MRI.getType(ExtMI1->getOperand(0).getReg());
LLT Ext2DstTy = MRI.getType(ExtMI2->getOperand(0).getReg());
if (ExtMI1->getOpcode() != ExtMI2->getOpcode() || Ext1DstTy != Ext2DstTy)
return false;
I1Opc = ExtMI1->getOpcode();
SrcTy = MRI.getType(ExtMI1->getOperand(1).getReg());
std::get<0>(MatchInfo) = ExtMI1->getOperand(1).getReg();
std::get<1>(MatchInfo) = ExtMI2->getOperand(1).getReg();
} else {
SrcTy = MRI.getType(I1->getOperand(1).getReg());
std::get<0>(MatchInfo) = I1->getOperand(1).getReg();
std::get<1>(MatchInfo) = 0;
}
if (I1Opc == TargetOpcode::G_ZEXT)
std::get<2>(MatchInfo) = 0;
else if (I1Opc == TargetOpcode::G_SEXT)
std::get<2>(MatchInfo) = 1;
else
return false;
if (SrcTy.getScalarSizeInBits() != 8 || SrcTy.getNumElements() % 8 != 0)
return false;
return true;
}
void applyExtAddvToUdotAddv(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &Builder,
GISelChangeObserver &Observer,
const AArch64Subtarget &STI,
std::tuple<Register, Register, bool> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_VECREDUCE_ADD &&
"Expected a G_VECREDUCE_ADD instruction");
assert(STI.hasDotProd() && "Target should have Dot Product feature");
// Initialise the variables
unsigned DotOpcode =
std::get<2>(MatchInfo) ? AArch64::G_SDOT : AArch64::G_UDOT;
Register Ext1SrcReg = std::get<0>(MatchInfo);
// If there is one source register, create a vector of 0s as the second
// source register
Register Ext2SrcReg;
if (std::get<1>(MatchInfo) == 0)
Ext2SrcReg = Builder.buildConstant(MRI.getType(Ext1SrcReg), 1)
->getOperand(0)
.getReg();
else
Ext2SrcReg = std::get<1>(MatchInfo);
// Find out how many DOT instructions are needed
LLT SrcTy = MRI.getType(Ext1SrcReg);
LLT MidTy;
unsigned NumOfDotMI;
if (SrcTy.getNumElements() % 16 == 0) {
NumOfDotMI = SrcTy.getNumElements() / 16;
MidTy = LLT::fixed_vector(4, 32);
} else if (SrcTy.getNumElements() % 8 == 0) {
NumOfDotMI = SrcTy.getNumElements() / 8;
MidTy = LLT::fixed_vector(2, 32);
} else {
llvm_unreachable("Source type number of elements is not multiple of 8");
}
// Handle case where one DOT instruction is needed
if (NumOfDotMI == 1) {
auto Zeroes = Builder.buildConstant(MidTy, 0)->getOperand(0).getReg();
auto Dot = Builder.buildInstr(DotOpcode, {MidTy},
{Zeroes, Ext1SrcReg, Ext2SrcReg});
Builder.buildVecReduceAdd(MI.getOperand(0), Dot->getOperand(0));
} else {
// If not pad the last v8 element with 0s to a v16
SmallVector<Register, 4> Ext1UnmergeReg;
SmallVector<Register, 4> Ext2UnmergeReg;
if (SrcTy.getNumElements() % 16 != 0) {
SmallVector<Register> Leftover1;
SmallVector<Register> Leftover2;
// Split the elements into v16i8 and v8i8
LLT MainTy = LLT::fixed_vector(16, 8);
LLT LeftoverTy1, LeftoverTy2;
if ((!extractParts(Ext1SrcReg, MRI.getType(Ext1SrcReg), MainTy,
LeftoverTy1, Ext1UnmergeReg, Leftover1, Builder,
MRI)) ||
(!extractParts(Ext2SrcReg, MRI.getType(Ext2SrcReg), MainTy,
LeftoverTy2, Ext2UnmergeReg, Leftover2, Builder,
MRI))) {
llvm_unreachable("Unable to split this vector properly");
}
// Pad the leftover v8i8 vector with register of 0s of type v8i8
Register v8Zeroes = Builder.buildConstant(LLT::fixed_vector(8, 8), 0)
->getOperand(0)
.getReg();
Ext1UnmergeReg.push_back(
Builder
.buildMergeLikeInstr(LLT::fixed_vector(16, 8),
{Leftover1[0], v8Zeroes})
.getReg(0));
Ext2UnmergeReg.push_back(
Builder
.buildMergeLikeInstr(LLT::fixed_vector(16, 8),
{Leftover2[0], v8Zeroes})
.getReg(0));
} else {
// Unmerge the source vectors to v16i8
unsigned SrcNumElts = SrcTy.getNumElements();
extractParts(Ext1SrcReg, LLT::fixed_vector(16, 8), SrcNumElts / 16,
Ext1UnmergeReg, Builder, MRI);
extractParts(Ext2SrcReg, LLT::fixed_vector(16, 8), SrcNumElts / 16,
Ext2UnmergeReg, Builder, MRI);
}
// Build the UDOT instructions
SmallVector<Register, 2> DotReg;
unsigned NumElements = 0;
for (unsigned i = 0; i < Ext1UnmergeReg.size(); i++) {
LLT ZeroesLLT;
// Check if it is 16 or 8 elements. Set Zeroes to the according size
if (MRI.getType(Ext1UnmergeReg[i]).getNumElements() == 16) {
ZeroesLLT = LLT::fixed_vector(4, 32);
NumElements += 4;
} else {
ZeroesLLT = LLT::fixed_vector(2, 32);
NumElements += 2;
}
auto Zeroes = Builder.buildConstant(ZeroesLLT, 0)->getOperand(0).getReg();
DotReg.push_back(
Builder
.buildInstr(DotOpcode, {MRI.getType(Zeroes)},
{Zeroes, Ext1UnmergeReg[i], Ext2UnmergeReg[i]})
.getReg(0));
}
// Merge the output
auto ConcatMI =
Builder.buildConcatVectors(LLT::fixed_vector(NumElements, 32), DotReg);
// Put it through a vector reduction
Builder.buildVecReduceAdd(MI.getOperand(0).getReg(),
ConcatMI->getOperand(0).getReg());
}
// Erase the dead instructions
MI.eraseFromParent();
}
// Matches {U/S}ADDV(ext(x)) => {U/S}ADDLV(x)
// Ensure that the type coming from the extend instruction is the right size
bool matchExtUaddvToUaddlv(MachineInstr &MI, MachineRegisterInfo &MRI,
std::pair<Register, bool> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_VECREDUCE_ADD &&
"Expected G_VECREDUCE_ADD Opcode");
// Check if the last instruction is an extend
MachineInstr *ExtMI = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
auto ExtOpc = ExtMI->getOpcode();
if (ExtOpc == TargetOpcode::G_ZEXT)
std::get<1>(MatchInfo) = 0;
else if (ExtOpc == TargetOpcode::G_SEXT)
std::get<1>(MatchInfo) = 1;
else
return false;
// Check if the source register is a valid type
Register ExtSrcReg = ExtMI->getOperand(1).getReg();
LLT ExtSrcTy = MRI.getType(ExtSrcReg);
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
if ((DstTy.getScalarSizeInBits() == 16 &&
ExtSrcTy.getNumElements() % 8 == 0 && ExtSrcTy.getNumElements() < 256) ||
(DstTy.getScalarSizeInBits() == 32 &&
ExtSrcTy.getNumElements() % 4 == 0) ||
(DstTy.getScalarSizeInBits() == 64 &&
ExtSrcTy.getNumElements() % 4 == 0)) {
std::get<0>(MatchInfo) = ExtSrcReg;
return true;
}
return false;
}
void applyExtUaddvToUaddlv(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B, GISelChangeObserver &Observer,
std::pair<Register, bool> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_VECREDUCE_ADD &&
"Expected G_VECREDUCE_ADD Opcode");
unsigned Opc = std::get<1>(MatchInfo) ? AArch64::G_SADDLV : AArch64::G_UADDLV;
Register SrcReg = std::get<0>(MatchInfo);
Register DstReg = MI.getOperand(0).getReg();
LLT SrcTy = MRI.getType(SrcReg);
LLT DstTy = MRI.getType(DstReg);
// If SrcTy has more elements than expected, split them into multiple
// insructions and sum the results
LLT MainTy;
SmallVector<Register, 1> WorkingRegisters;
unsigned SrcScalSize = SrcTy.getScalarSizeInBits();
unsigned SrcNumElem = SrcTy.getNumElements();
if ((SrcScalSize == 8 && SrcNumElem > 16) ||
(SrcScalSize == 16 && SrcNumElem > 8) ||
(SrcScalSize == 32 && SrcNumElem > 4)) {
LLT LeftoverTy;
SmallVector<Register, 4> LeftoverRegs;
if (SrcScalSize == 8)
MainTy = LLT::fixed_vector(16, 8);
else if (SrcScalSize == 16)
MainTy = LLT::fixed_vector(8, 16);
else if (SrcScalSize == 32)
MainTy = LLT::fixed_vector(4, 32);
else
llvm_unreachable("Source's Scalar Size not supported");
// Extract the parts and put each extracted sources through U/SADDLV and put
// the values inside a small vec
extractParts(SrcReg, SrcTy, MainTy, LeftoverTy, WorkingRegisters,
LeftoverRegs, B, MRI);
for (unsigned I = 0; I < LeftoverRegs.size(); I++) {
WorkingRegisters.push_back(LeftoverRegs[I]);
}
} else {
WorkingRegisters.push_back(SrcReg);
MainTy = SrcTy;
}
unsigned MidScalarSize = MainTy.getScalarSizeInBits() * 2;
LLT MidScalarLLT = LLT::scalar(MidScalarSize);
Register zeroReg = B.buildConstant(LLT::scalar(64), 0).getReg(0);
for (unsigned I = 0; I < WorkingRegisters.size(); I++) {
// If the number of elements is too small to build an instruction, extend
// its size before applying addlv
LLT WorkingRegTy = MRI.getType(WorkingRegisters[I]);
if ((WorkingRegTy.getScalarSizeInBits() == 8) &&
(WorkingRegTy.getNumElements() == 4)) {
WorkingRegisters[I] =
B.buildInstr(std::get<1>(MatchInfo) ? TargetOpcode::G_SEXT
: TargetOpcode::G_ZEXT,
{LLT::fixed_vector(4, 16)}, {WorkingRegisters[I]})
.getReg(0);
}
// Generate the {U/S}ADDLV instruction, whose output is always double of the
// Src's Scalar size
LLT addlvTy = MidScalarSize <= 32 ? LLT::fixed_vector(4, 32)
: LLT::fixed_vector(2, 64);
Register addlvReg =
B.buildInstr(Opc, {addlvTy}, {WorkingRegisters[I]}).getReg(0);
// The output from {U/S}ADDLV gets placed in the lowest lane of a v4i32 or
// v2i64 register.
// i16, i32 results uses v4i32 registers
// i64 results uses v2i64 registers
// Therefore we have to extract/truncate the the value to the right type
if (MidScalarSize == 32 || MidScalarSize == 64) {
WorkingRegisters[I] = B.buildInstr(AArch64::G_EXTRACT_VECTOR_ELT,
{MidScalarLLT}, {addlvReg, zeroReg})
.getReg(0);
} else {
Register extractReg = B.buildInstr(AArch64::G_EXTRACT_VECTOR_ELT,
{LLT::scalar(32)}, {addlvReg, zeroReg})
.getReg(0);
WorkingRegisters[I] =
B.buildTrunc({MidScalarLLT}, {extractReg}).getReg(0);
}
}
Register outReg;
if (WorkingRegisters.size() > 1) {
outReg = B.buildAdd(MidScalarLLT, WorkingRegisters[0], WorkingRegisters[1])
.getReg(0);
for (unsigned I = 2; I < WorkingRegisters.size(); I++) {
outReg = B.buildAdd(MidScalarLLT, outReg, WorkingRegisters[I]).getReg(0);
}
} else {
outReg = WorkingRegisters[0];
}
if (DstTy.getScalarSizeInBits() > MidScalarSize) {
// Handle the scalar value if the DstTy's Scalar Size is more than double
// Src's ScalarType
B.buildInstr(std::get<1>(MatchInfo) ? TargetOpcode::G_SEXT
: TargetOpcode::G_ZEXT,
{DstReg}, {outReg});
} else {
B.buildCopy(DstReg, outReg);
}
MI.eraseFromParent();
}
bool tryToSimplifyUADDO(MachineInstr &MI, MachineIRBuilder &B,
CombinerHelper &Helper, GISelChangeObserver &Observer) {
// Try simplify G_UADDO with 8 or 16 bit operands to wide G_ADD and TBNZ if
// result is only used in the no-overflow case. It is restricted to cases
// where we know that the high-bits of the operands are 0. If there's an
// overflow, then the 9th or 17th bit must be set, which can be checked
// using TBNZ.
//
// Change (for UADDOs on 8 and 16 bits):
//
// %z0 = G_ASSERT_ZEXT _
// %op0 = G_TRUNC %z0
// %z1 = G_ASSERT_ZEXT _
// %op1 = G_TRUNC %z1
// %val, %cond = G_UADDO %op0, %op1
// G_BRCOND %cond, %error.bb
//
// error.bb:
// (no successors and no uses of %val)
//
// To:
//
// %z0 = G_ASSERT_ZEXT _
// %z1 = G_ASSERT_ZEXT _
// %add = G_ADD %z0, %z1
// %val = G_TRUNC %add
// %bit = G_AND %add, 1 << scalar-size-in-bits(%op1)
// %cond = G_ICMP NE, %bit, 0
// G_BRCOND %cond, %error.bb
auto &MRI = *B.getMRI();
MachineOperand *DefOp0 = MRI.getOneDef(MI.getOperand(2).getReg());
MachineOperand *DefOp1 = MRI.getOneDef(MI.getOperand(3).getReg());
Register Op0Wide;
Register Op1Wide;
if (!mi_match(DefOp0->getParent(), MRI, m_GTrunc(m_Reg(Op0Wide))) ||
!mi_match(DefOp1->getParent(), MRI, m_GTrunc(m_Reg(Op1Wide))))
return false;
LLT WideTy0 = MRI.getType(Op0Wide);
LLT WideTy1 = MRI.getType(Op1Wide);
Register ResVal = MI.getOperand(0).getReg();
LLT OpTy = MRI.getType(ResVal);
MachineInstr *Op0WideDef = MRI.getVRegDef(Op0Wide);
MachineInstr *Op1WideDef = MRI.getVRegDef(Op1Wide);
unsigned OpTySize = OpTy.getScalarSizeInBits();
// First check that the G_TRUNC feeding the G_UADDO are no-ops, because the
// inputs have been zero-extended.
if (Op0WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT ||
Op1WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT ||
OpTySize != Op0WideDef->getOperand(2).getImm() ||
OpTySize != Op1WideDef->getOperand(2).getImm())
return false;
// Only scalar UADDO with either 8 or 16 bit operands are handled.
if (!WideTy0.isScalar() || !WideTy1.isScalar() || WideTy0 != WideTy1 ||
OpTySize >= WideTy0.getScalarSizeInBits() ||
(OpTySize != 8 && OpTySize != 16))
return false;
// The overflow-status result must be used by a branch only.
Register ResStatus = MI.getOperand(1).getReg();
if (!MRI.hasOneNonDBGUse(ResStatus))
return false;
MachineInstr *CondUser = &*MRI.use_instr_nodbg_begin(ResStatus);
if (CondUser->getOpcode() != TargetOpcode::G_BRCOND)
return false;
// Make sure the computed result is only used in the no-overflow blocks.
MachineBasicBlock *CurrentMBB = MI.getParent();
MachineBasicBlock *FailMBB = CondUser->getOperand(1).getMBB();
if (!FailMBB->succ_empty() || CondUser->getParent() != CurrentMBB)
return false;
if (any_of(MRI.use_nodbg_instructions(ResVal),
[&MI, FailMBB, CurrentMBB](MachineInstr &I) {
return &MI != &I &&
(I.getParent() == FailMBB || I.getParent() == CurrentMBB);
}))
return false;
// Remove G_ADDO.
B.setInstrAndDebugLoc(*MI.getNextNode());
MI.eraseFromParent();
// Emit wide add.
Register AddDst = MRI.cloneVirtualRegister(Op0Wide);
B.buildInstr(TargetOpcode::G_ADD, {AddDst}, {Op0Wide, Op1Wide});
// Emit check of the 9th or 17th bit and update users (the branch). This will
// later be folded to TBNZ.
Register CondBit = MRI.cloneVirtualRegister(Op0Wide);
B.buildAnd(
CondBit, AddDst,
B.buildConstant(LLT::scalar(32), OpTySize == 8 ? 1 << 8 : 1 << 16));
B.buildICmp(CmpInst::ICMP_NE, ResStatus, CondBit,
B.buildConstant(LLT::scalar(32), 0));
// Update ZEXts users of the result value. Because all uses are in the
// no-overflow case, we know that the top bits are 0 and we can ignore ZExts.
B.buildZExtOrTrunc(ResVal, AddDst);
for (MachineOperand &U : make_early_inc_range(MRI.use_operands(ResVal))) {
Register WideReg;
if (mi_match(U.getParent(), MRI, m_GZExt(m_Reg(WideReg)))) {
auto OldR = U.getParent()->getOperand(0).getReg();
Observer.erasingInstr(*U.getParent());
U.getParent()->eraseFromParent();
Helper.replaceRegWith(MRI, OldR, AddDst);
}
}
return true;
}
class AArch64PreLegalizerCombinerImpl : public Combiner {
protected:
// TODO: Make CombinerHelper methods const.
mutable CombinerHelper Helper;
const AArch64PreLegalizerCombinerImplRuleConfig &RuleConfig;
const AArch64Subtarget &STI;
public:
AArch64PreLegalizerCombinerImpl(
MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
GISelKnownBits &KB, GISelCSEInfo *CSEInfo,
const AArch64PreLegalizerCombinerImplRuleConfig &RuleConfig,
const AArch64Subtarget &STI, MachineDominatorTree *MDT,
const LegalizerInfo *LI);
static const char *getName() { return "AArch6400PreLegalizerCombiner"; }
bool tryCombineAll(MachineInstr &I) const override;
bool tryCombineAllImpl(MachineInstr &I) const;
private:
#define GET_GICOMBINER_CLASS_MEMBERS
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef GET_GICOMBINER_CLASS_MEMBERS
};
#define GET_GICOMBINER_IMPL
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef GET_GICOMBINER_IMPL
AArch64PreLegalizerCombinerImpl::AArch64PreLegalizerCombinerImpl(
MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
GISelKnownBits &KB, GISelCSEInfo *CSEInfo,
const AArch64PreLegalizerCombinerImplRuleConfig &RuleConfig,
const AArch64Subtarget &STI, MachineDominatorTree *MDT,
const LegalizerInfo *LI)
: Combiner(MF, CInfo, TPC, &KB, CSEInfo),
Helper(Observer, B, /*IsPreLegalize*/ true, &KB, MDT, LI),
RuleConfig(RuleConfig), STI(STI),
#define GET_GICOMBINER_CONSTRUCTOR_INITS
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef GET_GICOMBINER_CONSTRUCTOR_INITS
{
}
bool AArch64PreLegalizerCombinerImpl::tryCombineAll(MachineInstr &MI) const {
if (tryCombineAllImpl(MI))
return true;
unsigned Opc = MI.getOpcode();
switch (Opc) {
case TargetOpcode::G_CONCAT_VECTORS:
return Helper.tryCombineConcatVectors(MI);
case TargetOpcode::G_SHUFFLE_VECTOR:
return Helper.tryCombineShuffleVector(MI);
case TargetOpcode::G_UADDO:
return tryToSimplifyUADDO(MI, B, Helper, Observer);
case TargetOpcode::G_MEMCPY_INLINE:
return Helper.tryEmitMemcpyInline(MI);
case TargetOpcode::G_MEMCPY:
case TargetOpcode::G_MEMMOVE:
case TargetOpcode::G_MEMSET: {
// If we're at -O0 set a maxlen of 32 to inline, otherwise let the other
// heuristics decide.
unsigned MaxLen = CInfo.EnableOpt ? 0 : 32;
// Try to inline memcpy type calls if optimizations are enabled.
if (Helper.tryCombineMemCpyFamily(MI, MaxLen))
return true;
if (Opc == TargetOpcode::G_MEMSET)
return llvm::AArch64GISelUtils::tryEmitBZero(MI, B, CInfo.EnableMinSize);
return false;
}
}
return false;
}
// Pass boilerplate
// ================
class AArch64PreLegalizerCombiner : public MachineFunctionPass {
public:
static char ID;
AArch64PreLegalizerCombiner();
StringRef getPassName() const override {
return "AArch64PreLegalizerCombiner";
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
AArch64PreLegalizerCombinerImplRuleConfig RuleConfig;
};
} // end anonymous namespace
void AArch64PreLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.setPreservesCFG();
getSelectionDAGFallbackAnalysisUsage(AU);
AU.addRequired<GISelKnownBitsAnalysis>();
AU.addPreserved<GISelKnownBitsAnalysis>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<GISelCSEAnalysisWrapperPass>();
AU.addPreserved<GISelCSEAnalysisWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
AArch64PreLegalizerCombiner::AArch64PreLegalizerCombiner()
: MachineFunctionPass(ID) {
initializeAArch64PreLegalizerCombinerPass(*PassRegistry::getPassRegistry());
if (!RuleConfig.parseCommandLineOption())
report_fatal_error("Invalid rule identifier");
}
bool AArch64PreLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) {
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
auto &TPC = getAnalysis<TargetPassConfig>();
// Enable CSE.
GISelCSEAnalysisWrapper &Wrapper =
getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
auto *CSEInfo = &Wrapper.get(TPC.getCSEConfig());
const AArch64Subtarget &ST = MF.getSubtarget<AArch64Subtarget>();
const auto *LI = ST.getLegalizerInfo();
const Function &F = MF.getFunction();
bool EnableOpt =
MF.getTarget().getOptLevel() != CodeGenOptLevel::None && !skipFunction(F);
GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
CombinerInfo CInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
/*LegalizerInfo*/ nullptr, EnableOpt, F.hasOptSize(),
F.hasMinSize());
AArch64PreLegalizerCombinerImpl Impl(MF, CInfo, &TPC, *KB, CSEInfo,
RuleConfig, ST, MDT, LI);
return Impl.combineMachineInstrs();
}
char AArch64PreLegalizerCombiner::ID = 0;
INITIALIZE_PASS_BEGIN(AArch64PreLegalizerCombiner, DEBUG_TYPE,
"Combine AArch64 machine instrs before legalization",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
INITIALIZE_PASS_END(AArch64PreLegalizerCombiner, DEBUG_TYPE,
"Combine AArch64 machine instrs before legalization", false,
false)
namespace llvm {
FunctionPass *createAArch64PreLegalizerCombiner() {
return new AArch64PreLegalizerCombiner();
}
} // end namespace llvm