blob: 5af1d6d52e93e846a22e1ff8ecb648354b9d37f9 [file] [log] [blame]
//===--- Pointer.cpp - Types for the constexpr VM ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Pointer.h"
#include "Boolean.h"
#include "Context.h"
#include "Floating.h"
#include "Function.h"
#include "Integral.h"
#include "InterpBlock.h"
#include "PrimType.h"
#include "Record.h"
using namespace clang;
using namespace clang::interp;
Pointer::Pointer(Block *Pointee) : Pointer(Pointee, 0, 0) {}
Pointer::Pointer(Block *Pointee, unsigned BaseAndOffset)
: Pointer(Pointee, BaseAndOffset, BaseAndOffset) {}
Pointer::Pointer(const Pointer &P) : Pointer(P.Pointee, P.Base, P.Offset) {}
Pointer::Pointer(Pointer &&P)
: Pointee(P.Pointee), Base(P.Base), Offset(P.Offset) {
if (Pointee)
Pointee->replacePointer(&P, this);
}
Pointer::Pointer(Block *Pointee, unsigned Base, unsigned Offset)
: Pointee(Pointee), Base(Base), Offset(Offset) {
assert((Base == RootPtrMark || Base % alignof(void *) == 0) && "wrong base");
if (Pointee)
Pointee->addPointer(this);
}
Pointer::~Pointer() {
if (Pointee) {
Pointee->removePointer(this);
Pointee->cleanup();
}
}
void Pointer::operator=(const Pointer &P) {
Block *Old = Pointee;
if (Pointee)
Pointee->removePointer(this);
Offset = P.Offset;
Base = P.Base;
Pointee = P.Pointee;
if (Pointee)
Pointee->addPointer(this);
if (Old)
Old->cleanup();
}
void Pointer::operator=(Pointer &&P) {
Block *Old = Pointee;
if (Pointee)
Pointee->removePointer(this);
Offset = P.Offset;
Base = P.Base;
Pointee = P.Pointee;
if (Pointee)
Pointee->replacePointer(&P, this);
if (Old)
Old->cleanup();
}
APValue Pointer::toAPValue() const {
APValue::LValueBase Base;
llvm::SmallVector<APValue::LValuePathEntry, 5> Path;
CharUnits Offset;
bool IsNullPtr;
bool IsOnePastEnd;
if (isZero()) {
Base = static_cast<const Expr *>(nullptr);
IsNullPtr = true;
IsOnePastEnd = false;
Offset = CharUnits::Zero();
} else {
// Build the lvalue base from the block.
const Descriptor *Desc = getDeclDesc();
if (auto *VD = Desc->asValueDecl())
Base = VD;
else if (auto *E = Desc->asExpr())
Base = E;
else
llvm_unreachable("Invalid allocation type");
// Not a null pointer.
IsNullPtr = false;
if (isUnknownSizeArray()) {
IsOnePastEnd = false;
Offset = CharUnits::Zero();
} else if (Desc->asExpr()) {
// Pointer pointing to a an expression.
IsOnePastEnd = false;
Offset = CharUnits::Zero();
} else {
// TODO: compute the offset into the object.
Offset = CharUnits::Zero();
// Build the path into the object.
Pointer Ptr = *this;
while (Ptr.isField() || Ptr.isArrayElement()) {
if (Ptr.isArrayElement()) {
Path.push_back(APValue::LValuePathEntry::ArrayIndex(Ptr.getIndex()));
Ptr = Ptr.getArray();
} else {
// TODO: figure out if base is virtual
bool IsVirtual = false;
// Create a path entry for the field.
const Descriptor *Desc = Ptr.getFieldDesc();
if (const auto *BaseOrMember = Desc->asDecl()) {
Path.push_back(APValue::LValuePathEntry({BaseOrMember, IsVirtual}));
Ptr = Ptr.getBase();
continue;
}
llvm_unreachable("Invalid field type");
}
}
IsOnePastEnd = isOnePastEnd();
}
}
// We assemble the LValuePath starting from the innermost pointer to the
// outermost one. SO in a.b.c, the first element in Path will refer to
// the field 'c', while later code expects it to refer to 'a'.
// Just invert the order of the elements.
std::reverse(Path.begin(), Path.end());
return APValue(Base, Offset, Path, IsOnePastEnd, IsNullPtr);
}
std::string Pointer::toDiagnosticString(const ASTContext &Ctx) const {
if (!Pointee)
return "nullptr";
return toAPValue().getAsString(Ctx, getType());
}
bool Pointer::isInitialized() const {
assert(Pointee && "Cannot check if null pointer was initialized");
const Descriptor *Desc = getFieldDesc();
assert(Desc);
if (Desc->isPrimitiveArray()) {
if (isStatic() && Base == 0)
return true;
InitMapPtr &IM = getInitMap();
if (!IM)
return false;
if (IM->first)
return true;
return IM->second->isElementInitialized(getIndex());
}
// Field has its bit in an inline descriptor.
return Base == 0 || getInlineDesc()->IsInitialized;
}
void Pointer::initialize() const {
assert(Pointee && "Cannot initialize null pointer");
const Descriptor *Desc = getFieldDesc();
assert(Desc);
if (Desc->isPrimitiveArray()) {
// Primitive global arrays don't have an initmap.
if (isStatic() && Base == 0)
return;
InitMapPtr &IM = getInitMap();
if (!IM)
IM =
std::make_pair(false, std::make_shared<InitMap>(Desc->getNumElems()));
assert(IM);
// All initialized.
if (IM->first)
return;
if (IM->second->initializeElement(getIndex())) {
IM->first = true;
IM->second.reset();
}
return;
}
// Field has its bit in an inline descriptor.
assert(Base != 0 && "Only composite fields can be initialised");
getInlineDesc()->IsInitialized = true;
}
void Pointer::activate() const {
// Field has its bit in an inline descriptor.
assert(Base != 0 && "Only composite fields can be initialised");
getInlineDesc()->IsActive = true;
}
void Pointer::deactivate() const {
// TODO: this only appears in constructors, so nothing to deactivate.
}
bool Pointer::hasSameBase(const Pointer &A, const Pointer &B) {
return A.Pointee == B.Pointee;
}
bool Pointer::hasSameArray(const Pointer &A, const Pointer &B) {
return hasSameBase(A, B) && A.Base == B.Base && A.getFieldDesc()->IsArray;
}
std::optional<APValue> Pointer::toRValue(const Context &Ctx) const {
// Method to recursively traverse composites.
std::function<bool(QualType, const Pointer &, APValue &)> Composite;
Composite = [&Composite, &Ctx](QualType Ty, const Pointer &Ptr, APValue &R) {
if (const auto *AT = Ty->getAs<AtomicType>())
Ty = AT->getValueType();
// Invalid pointers.
if (Ptr.isDummy() || !Ptr.isLive() ||
(!Ptr.isUnknownSizeArray() && Ptr.isOnePastEnd()))
return false;
// Primitive values.
if (std::optional<PrimType> T = Ctx.classify(Ty)) {
if (T == PT_Ptr || T == PT_FnPtr) {
R = Ptr.toAPValue();
} else {
TYPE_SWITCH(*T, R = Ptr.deref<T>().toAPValue());
}
return true;
}
if (const auto *RT = Ty->getAs<RecordType>()) {
const auto *Record = Ptr.getRecord();
assert(Record && "Missing record descriptor");
bool Ok = true;
if (RT->getDecl()->isUnion()) {
const FieldDecl *ActiveField = nullptr;
APValue Value;
for (const auto &F : Record->fields()) {
const Pointer &FP = Ptr.atField(F.Offset);
QualType FieldTy = F.Decl->getType();
if (FP.isActive()) {
if (std::optional<PrimType> T = Ctx.classify(FieldTy)) {
TYPE_SWITCH(*T, Value = FP.deref<T>().toAPValue());
} else {
Ok &= Composite(FieldTy, FP, Value);
}
break;
}
}
R = APValue(ActiveField, Value);
} else {
unsigned NF = Record->getNumFields();
unsigned NB = Record->getNumBases();
unsigned NV = Ptr.isBaseClass() ? 0 : Record->getNumVirtualBases();
R = APValue(APValue::UninitStruct(), NB, NF);
for (unsigned I = 0; I < NF; ++I) {
const Record::Field *FD = Record->getField(I);
QualType FieldTy = FD->Decl->getType();
const Pointer &FP = Ptr.atField(FD->Offset);
APValue &Value = R.getStructField(I);
if (std::optional<PrimType> T = Ctx.classify(FieldTy)) {
TYPE_SWITCH(*T, Value = FP.deref<T>().toAPValue());
} else {
Ok &= Composite(FieldTy, FP, Value);
}
}
for (unsigned I = 0; I < NB; ++I) {
const Record::Base *BD = Record->getBase(I);
QualType BaseTy = Ctx.getASTContext().getRecordType(BD->Decl);
const Pointer &BP = Ptr.atField(BD->Offset);
Ok &= Composite(BaseTy, BP, R.getStructBase(I));
}
for (unsigned I = 0; I < NV; ++I) {
const Record::Base *VD = Record->getVirtualBase(I);
QualType VirtBaseTy = Ctx.getASTContext().getRecordType(VD->Decl);
const Pointer &VP = Ptr.atField(VD->Offset);
Ok &= Composite(VirtBaseTy, VP, R.getStructBase(NB + I));
}
}
return Ok;
}
if (Ty->isIncompleteArrayType()) {
R = APValue(APValue::UninitArray(), 0, 0);
return true;
}
if (const auto *AT = Ty->getAsArrayTypeUnsafe()) {
const size_t NumElems = Ptr.getNumElems();
QualType ElemTy = AT->getElementType();
R = APValue(APValue::UninitArray{}, NumElems, NumElems);
bool Ok = true;
for (unsigned I = 0; I < NumElems; ++I) {
APValue &Slot = R.getArrayInitializedElt(I);
const Pointer &EP = Ptr.atIndex(I);
if (std::optional<PrimType> T = Ctx.classify(ElemTy)) {
TYPE_SWITCH(*T, Slot = EP.deref<T>().toAPValue());
} else {
Ok &= Composite(ElemTy, EP.narrow(), Slot);
}
}
return Ok;
}
// Complex types.
if (const auto *CT = Ty->getAs<ComplexType>()) {
QualType ElemTy = CT->getElementType();
std::optional<PrimType> ElemT = Ctx.classify(ElemTy);
assert(ElemT);
if (ElemTy->isIntegerType()) {
INT_TYPE_SWITCH(*ElemT, {
auto V1 = Ptr.atIndex(0).deref<T>();
auto V2 = Ptr.atIndex(1).deref<T>();
R = APValue(V1.toAPSInt(), V2.toAPSInt());
return true;
});
} else if (ElemTy->isFloatingType()) {
R = APValue(Ptr.atIndex(0).deref<Floating>().getAPFloat(),
Ptr.atIndex(1).deref<Floating>().getAPFloat());
return true;
}
return false;
}
llvm_unreachable("invalid value to return");
};
if (isZero())
return APValue(static_cast<Expr *>(nullptr), CharUnits::Zero(), {}, false,
true);
if (isDummy() || !isLive())
return std::nullopt;
// Return the composite type.
APValue Result;
if (!Composite(getType(), *this, Result))
return std::nullopt;
return Result;
}