blob: 6b33d81c1c412108ee7645d2c8eea726930e35c8 [file] [log] [blame]
//! Performs various peephole optimizations.
use crate::simplify::simplify_duplicate_switch_targets;
use rustc_middle::mir::*;
use rustc_middle::ty::layout;
use rustc_middle::ty::layout::ValidityRequirement;
use rustc_middle::ty::{self, GenericArgsRef, ParamEnv, Ty, TyCtxt};
use rustc_span::symbol::Symbol;
use rustc_target::abi::FieldIdx;
use rustc_target::spec::abi::Abi;
pub struct InstSimplify;
impl<'tcx> MirPass<'tcx> for InstSimplify {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
sess.mir_opt_level() > 0
}
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
let ctx = InstSimplifyContext {
tcx,
local_decls: &body.local_decls,
param_env: tcx.param_env_reveal_all_normalized(body.source.def_id()),
};
for block in body.basic_blocks.as_mut() {
for statement in block.statements.iter_mut() {
match statement.kind {
StatementKind::Assign(box (_place, ref mut rvalue)) => {
ctx.simplify_bool_cmp(&statement.source_info, rvalue);
ctx.simplify_ref_deref(&statement.source_info, rvalue);
ctx.simplify_len(&statement.source_info, rvalue);
ctx.simplify_cast(rvalue);
}
_ => {}
}
}
ctx.simplify_primitive_clone(block.terminator.as_mut().unwrap(), &mut block.statements);
ctx.simplify_intrinsic_assert(block.terminator.as_mut().unwrap());
ctx.simplify_nounwind_call(block.terminator.as_mut().unwrap());
simplify_duplicate_switch_targets(block.terminator.as_mut().unwrap());
}
}
}
struct InstSimplifyContext<'tcx, 'a> {
tcx: TyCtxt<'tcx>,
local_decls: &'a LocalDecls<'tcx>,
param_env: ParamEnv<'tcx>,
}
impl<'tcx> InstSimplifyContext<'tcx, '_> {
fn should_simplify(&self, source_info: &SourceInfo, rvalue: &Rvalue<'tcx>) -> bool {
self.tcx.consider_optimizing(|| {
format!("InstSimplify - Rvalue: {rvalue:?} SourceInfo: {source_info:?}")
})
}
/// Transform boolean comparisons into logical operations.
fn simplify_bool_cmp(&self, source_info: &SourceInfo, rvalue: &mut Rvalue<'tcx>) {
match rvalue {
Rvalue::BinaryOp(op @ (BinOp::Eq | BinOp::Ne), box (a, b)) => {
let new = match (op, self.try_eval_bool(a), self.try_eval_bool(b)) {
// Transform "Eq(a, true)" ==> "a"
(BinOp::Eq, _, Some(true)) => Some(Rvalue::Use(a.clone())),
// Transform "Ne(a, false)" ==> "a"
(BinOp::Ne, _, Some(false)) => Some(Rvalue::Use(a.clone())),
// Transform "Eq(true, b)" ==> "b"
(BinOp::Eq, Some(true), _) => Some(Rvalue::Use(b.clone())),
// Transform "Ne(false, b)" ==> "b"
(BinOp::Ne, Some(false), _) => Some(Rvalue::Use(b.clone())),
// Transform "Eq(false, b)" ==> "Not(b)"
(BinOp::Eq, Some(false), _) => Some(Rvalue::UnaryOp(UnOp::Not, b.clone())),
// Transform "Ne(true, b)" ==> "Not(b)"
(BinOp::Ne, Some(true), _) => Some(Rvalue::UnaryOp(UnOp::Not, b.clone())),
// Transform "Eq(a, false)" ==> "Not(a)"
(BinOp::Eq, _, Some(false)) => Some(Rvalue::UnaryOp(UnOp::Not, a.clone())),
// Transform "Ne(a, true)" ==> "Not(a)"
(BinOp::Ne, _, Some(true)) => Some(Rvalue::UnaryOp(UnOp::Not, a.clone())),
_ => None,
};
if let Some(new) = new
&& self.should_simplify(source_info, rvalue)
{
*rvalue = new;
}
}
_ => {}
}
}
fn try_eval_bool(&self, a: &Operand<'_>) -> Option<bool> {
let a = a.constant()?;
if a.const_.ty().is_bool() { a.const_.try_to_bool() } else { None }
}
/// Transform "&(*a)" ==> "a".
fn simplify_ref_deref(&self, source_info: &SourceInfo, rvalue: &mut Rvalue<'tcx>) {
if let Rvalue::Ref(_, _, place) = rvalue {
if let Some((base, ProjectionElem::Deref)) = place.as_ref().last_projection() {
if rvalue.ty(self.local_decls, self.tcx) != base.ty(self.local_decls, self.tcx).ty {
return;
}
if !self.should_simplify(source_info, rvalue) {
return;
}
*rvalue = Rvalue::Use(Operand::Copy(Place {
local: base.local,
projection: self.tcx.mk_place_elems(base.projection),
}));
}
}
}
/// Transform "Len([_; N])" ==> "N".
fn simplify_len(&self, source_info: &SourceInfo, rvalue: &mut Rvalue<'tcx>) {
if let Rvalue::Len(ref place) = *rvalue {
let place_ty = place.ty(self.local_decls, self.tcx).ty;
if let ty::Array(_, len) = *place_ty.kind() {
if !self.should_simplify(source_info, rvalue) {
return;
}
let const_ = Const::from_ty_const(len, self.tcx);
let constant = ConstOperand { span: source_info.span, const_, user_ty: None };
*rvalue = Rvalue::Use(Operand::Constant(Box::new(constant)));
}
}
}
fn simplify_cast(&self, rvalue: &mut Rvalue<'tcx>) {
if let Rvalue::Cast(kind, operand, cast_ty) = rvalue {
let operand_ty = operand.ty(self.local_decls, self.tcx);
if operand_ty == *cast_ty {
*rvalue = Rvalue::Use(operand.clone());
} else if *kind == CastKind::Transmute {
// Transmuting an integer to another integer is just a signedness cast
if let (ty::Int(int), ty::Uint(uint)) | (ty::Uint(uint), ty::Int(int)) =
(operand_ty.kind(), cast_ty.kind())
&& int.bit_width() == uint.bit_width()
{
// The width check isn't strictly necessary, as different widths
// are UB and thus we'd be allowed to turn it into a cast anyway.
// But let's keep the UB around for codegen to exploit later.
// (If `CastKind::Transmute` ever becomes *not* UB for mismatched sizes,
// then the width check is necessary for big-endian correctness.)
*kind = CastKind::IntToInt;
return;
}
// Transmuting a transparent struct/union to a field's type is a projection
if let ty::Adt(adt_def, args) = operand_ty.kind()
&& adt_def.repr().transparent()
&& (adt_def.is_struct() || adt_def.is_union())
&& let Some(place) = operand.place()
{
let variant = adt_def.non_enum_variant();
for (i, field) in variant.fields.iter().enumerate() {
let field_ty = field.ty(self.tcx, args);
if field_ty == *cast_ty {
let place = place.project_deeper(
&[ProjectionElem::Field(FieldIdx::from_usize(i), *cast_ty)],
self.tcx,
);
let operand = if operand.is_move() {
Operand::Move(place)
} else {
Operand::Copy(place)
};
*rvalue = Rvalue::Use(operand);
return;
}
}
}
}
}
}
fn simplify_primitive_clone(
&self,
terminator: &mut Terminator<'tcx>,
statements: &mut Vec<Statement<'tcx>>,
) {
let TerminatorKind::Call { func, args, destination, target, .. } = &mut terminator.kind
else {
return;
};
// It's definitely not a clone if there are multiple arguments
if args.len() != 1 {
return;
}
let Some(destination_block) = *target else { return };
// Only bother looking more if it's easy to know what we're calling
let Some((fn_def_id, fn_args)) = func.const_fn_def() else { return };
// Clone needs one arg, so we can cheaply rule out other stuff
if fn_args.len() != 1 {
return;
}
// These types are easily available from locals, so check that before
// doing DefId lookups to figure out what we're actually calling.
let arg_ty = args[0].node.ty(self.local_decls, self.tcx);
let ty::Ref(_region, inner_ty, Mutability::Not) = *arg_ty.kind() else { return };
if !inner_ty.is_trivially_pure_clone_copy() {
return;
}
let trait_def_id = self.tcx.trait_of_item(fn_def_id);
if trait_def_id.is_none() || trait_def_id != self.tcx.lang_items().clone_trait() {
return;
}
if !self.tcx.consider_optimizing(|| {
format!(
"InstSimplify - Call: {:?} SourceInfo: {:?}",
(fn_def_id, fn_args),
terminator.source_info
)
}) {
return;
}
let Some(arg_place) = args.pop().unwrap().node.place() else { return };
statements.push(Statement {
source_info: terminator.source_info,
kind: StatementKind::Assign(Box::new((
*destination,
Rvalue::Use(Operand::Copy(
arg_place.project_deeper(&[ProjectionElem::Deref], self.tcx),
)),
))),
});
terminator.kind = TerminatorKind::Goto { target: destination_block };
}
fn simplify_nounwind_call(&self, terminator: &mut Terminator<'tcx>) {
let TerminatorKind::Call { func, unwind, .. } = &mut terminator.kind else {
return;
};
let Some((def_id, _)) = func.const_fn_def() else {
return;
};
let body_ty = self.tcx.type_of(def_id).skip_binder();
let body_abi = match body_ty.kind() {
ty::FnDef(..) => body_ty.fn_sig(self.tcx).abi(),
ty::Closure(..) => Abi::RustCall,
ty::Coroutine(..) => Abi::Rust,
_ => bug!("unexpected body ty: {:?}", body_ty),
};
if !layout::fn_can_unwind(self.tcx, Some(def_id), body_abi) {
*unwind = UnwindAction::Unreachable;
}
}
fn simplify_intrinsic_assert(&self, terminator: &mut Terminator<'tcx>) {
let TerminatorKind::Call { func, target, .. } = &mut terminator.kind else {
return;
};
let Some(target_block) = target else {
return;
};
let func_ty = func.ty(self.local_decls, self.tcx);
let Some((intrinsic_name, args)) = resolve_rust_intrinsic(self.tcx, func_ty) else {
return;
};
// The intrinsics we are interested in have one generic parameter
if args.is_empty() {
return;
}
let known_is_valid =
intrinsic_assert_panics(self.tcx, self.param_env, args[0], intrinsic_name);
match known_is_valid {
// We don't know the layout or it's not validity assertion at all, don't touch it
None => {}
Some(true) => {
// If we know the assert panics, indicate to later opts that the call diverges
*target = None;
}
Some(false) => {
// If we know the assert does not panic, turn the call into a Goto
terminator.kind = TerminatorKind::Goto { target: *target_block };
}
}
}
}
fn intrinsic_assert_panics<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
arg: ty::GenericArg<'tcx>,
intrinsic_name: Symbol,
) -> Option<bool> {
let requirement = ValidityRequirement::from_intrinsic(intrinsic_name)?;
let ty = arg.expect_ty();
Some(!tcx.check_validity_requirement((requirement, param_env.and(ty))).ok()?)
}
fn resolve_rust_intrinsic<'tcx>(
tcx: TyCtxt<'tcx>,
func_ty: Ty<'tcx>,
) -> Option<(Symbol, GenericArgsRef<'tcx>)> {
if let ty::FnDef(def_id, args) = *func_ty.kind() {
let intrinsic = tcx.intrinsic(def_id)?;
return Some((intrinsic.name, args));
}
None
}