blob: 5a1c7cc4209ad016ff801dc324935e90fcc387b0 [file] [log] [blame]
use either::{Left, Right};
use rustc_hir::def::DefKind;
use rustc_middle::mir::interpret::{AllocId, ErrorHandled, InterpErrorInfo};
use rustc_middle::mir::{self, ConstAlloc, ConstValue};
use rustc_middle::query::TyCtxtAt;
use rustc_middle::traits::Reveal;
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::def_id::LocalDefId;
use rustc_span::Span;
use rustc_target::abi::{self, Abi};
use super::{CanAccessMutGlobal, CompileTimeEvalContext, CompileTimeInterpreter};
use crate::const_eval::CheckAlignment;
use crate::errors;
use crate::errors::ConstEvalError;
use crate::interpret::eval_nullary_intrinsic;
use crate::interpret::{
create_static_alloc, intern_const_alloc_recursive, CtfeValidationMode, GlobalId, Immediate,
InternKind, InterpCx, InterpError, InterpResult, MPlaceTy, MemoryKind, OpTy, RefTracking,
StackPopCleanup,
};
// Returns a pointer to where the result lives
#[instrument(level = "trace", skip(ecx, body))]
fn eval_body_using_ecx<'mir, 'tcx, R: InterpretationResult<'tcx>>(
ecx: &mut CompileTimeEvalContext<'mir, 'tcx>,
cid: GlobalId<'tcx>,
body: &'mir mir::Body<'tcx>,
) -> InterpResult<'tcx, R> {
trace!(?ecx.param_env);
let tcx = *ecx.tcx;
assert!(
cid.promoted.is_some()
|| matches!(
ecx.tcx.def_kind(cid.instance.def_id()),
DefKind::Const
| DefKind::Static { .. }
| DefKind::ConstParam
| DefKind::AnonConst
| DefKind::InlineConst
| DefKind::AssocConst
),
"Unexpected DefKind: {:?}",
ecx.tcx.def_kind(cid.instance.def_id())
);
let layout = ecx.layout_of(body.bound_return_ty().instantiate(tcx, cid.instance.args))?;
assert!(layout.is_sized());
let intern_kind = if cid.promoted.is_some() {
InternKind::Promoted
} else {
match tcx.static_mutability(cid.instance.def_id()) {
Some(m) => InternKind::Static(m),
None => InternKind::Constant,
}
};
let ret = if let InternKind::Static(_) = intern_kind {
create_static_alloc(ecx, cid.instance.def_id().expect_local(), layout)?
} else {
ecx.allocate(layout, MemoryKind::Stack)?
};
trace!(
"eval_body_using_ecx: pushing stack frame for global: {}{}",
with_no_trimmed_paths!(ecx.tcx.def_path_str(cid.instance.def_id())),
cid.promoted.map_or_else(String::new, |p| format!("::{p:?}"))
);
ecx.push_stack_frame(
cid.instance,
body,
&ret.clone().into(),
StackPopCleanup::Root { cleanup: false },
)?;
ecx.storage_live_for_always_live_locals()?;
// The main interpreter loop.
while ecx.step()? {}
// Intern the result
intern_const_alloc_recursive(ecx, intern_kind, &ret)?;
// Since evaluation had no errors, validate the resulting constant.
const_validate_mplace(&ecx, &ret, cid)?;
Ok(R::make_result(ret, ecx))
}
/// The `InterpCx` is only meant to be used to do field and index projections into constants for
/// `simd_shuffle` and const patterns in match arms.
///
/// This should *not* be used to do any actual interpretation. In particular, alignment checks are
/// turned off!
///
/// The function containing the `match` that is currently being analyzed may have generic bounds
/// that inform us about the generic bounds of the constant. E.g., using an associated constant
/// of a function's generic parameter will require knowledge about the bounds on the generic
/// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument.
pub(crate) fn mk_eval_cx_to_read_const_val<'mir, 'tcx>(
tcx: TyCtxt<'tcx>,
root_span: Span,
param_env: ty::ParamEnv<'tcx>,
can_access_mut_global: CanAccessMutGlobal,
) -> CompileTimeEvalContext<'mir, 'tcx> {
debug!("mk_eval_cx: {:?}", param_env);
InterpCx::new(
tcx,
root_span,
param_env,
CompileTimeInterpreter::new(can_access_mut_global, CheckAlignment::No),
)
}
/// Create an interpreter context to inspect the given `ConstValue`.
/// Returns both the context and an `OpTy` that represents the constant.
pub fn mk_eval_cx_for_const_val<'mir, 'tcx>(
tcx: TyCtxtAt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
val: mir::ConstValue<'tcx>,
ty: Ty<'tcx>,
) -> Option<(CompileTimeEvalContext<'mir, 'tcx>, OpTy<'tcx>)> {
let ecx = mk_eval_cx_to_read_const_val(tcx.tcx, tcx.span, param_env, CanAccessMutGlobal::No);
let op = ecx.const_val_to_op(val, ty, None).ok()?;
Some((ecx, op))
}
/// This function converts an interpreter value into a MIR constant.
///
/// The `for_diagnostics` flag turns the usual rules for returning `ConstValue::Scalar` into a
/// best-effort attempt. This is not okay for use in const-eval sine it breaks invariants rustc
/// relies on, but it is okay for diagnostics which will just give up gracefully when they
/// encounter an `Indirect` they cannot handle.
#[instrument(skip(ecx), level = "debug")]
pub(super) fn op_to_const<'tcx>(
ecx: &CompileTimeEvalContext<'_, 'tcx>,
op: &OpTy<'tcx>,
for_diagnostics: bool,
) -> ConstValue<'tcx> {
// Handle ZST consistently and early.
if op.layout.is_zst() {
return ConstValue::ZeroSized;
}
// All scalar types should be stored as `ConstValue::Scalar`. This is needed to make
// `ConstValue::try_to_scalar` efficient; we want that to work for *all* constants of scalar
// type (it's used throughout the compiler and having it work just on literals is not enough)
// and we want it to be fast (i.e., don't go to an `Allocation` and reconstruct the `Scalar`
// from its byte-serialized form).
let force_as_immediate = match op.layout.abi {
Abi::Scalar(abi::Scalar::Initialized { .. }) => true,
// We don't *force* `ConstValue::Slice` for `ScalarPair`. This has the advantage that if the
// input `op` is a place, then turning it into a `ConstValue` and back into a `OpTy` will
// not have to generate any duplicate allocations (we preserve the original `AllocId` in
// `ConstValue::Indirect`). It means accessing the contents of a slice can be slow (since
// they can be stored as `ConstValue::Indirect`), but that's not relevant since we barely
// ever have to do this. (`try_get_slice_bytes_for_diagnostics` exists to provide this
// functionality.)
_ => false,
};
let immediate = if force_as_immediate {
match ecx.read_immediate(op) {
Ok(imm) => Right(imm),
Err(err) if !for_diagnostics => {
panic!("normalization works on validated constants: {err:?}")
}
_ => op.as_mplace_or_imm(),
}
} else {
op.as_mplace_or_imm()
};
debug!(?immediate);
match immediate {
Left(ref mplace) => {
// We know `offset` is relative to the allocation, so we can use `into_parts`.
let (prov, offset) = mplace.ptr().into_parts();
let alloc_id = prov.expect("cannot have `fake` place for non-ZST type").alloc_id();
ConstValue::Indirect { alloc_id, offset }
}
// see comment on `let force_as_immediate` above
Right(imm) => match *imm {
Immediate::Scalar(x) => ConstValue::Scalar(x),
Immediate::ScalarPair(a, b) => {
debug!("ScalarPair(a: {:?}, b: {:?})", a, b);
// This codepath solely exists for `valtree_to_const_value` to not need to generate
// a `ConstValue::Indirect` for wide references, so it is tightly restricted to just
// that case.
let pointee_ty = imm.layout.ty.builtin_deref(false).unwrap().ty; // `false` = no raw ptrs
debug_assert!(
matches!(
ecx.tcx.struct_tail_without_normalization(pointee_ty).kind(),
ty::Str | ty::Slice(..),
),
"`ConstValue::Slice` is for slice-tailed types only, but got {}",
imm.layout.ty,
);
let msg = "`op_to_const` on an immediate scalar pair must only be used on slice references to the beginning of an actual allocation";
// We know `offset` is relative to the allocation, so we can use `into_parts`.
let (prov, offset) = a.to_pointer(ecx).expect(msg).into_parts();
let alloc_id = prov.expect(msg).alloc_id();
let data = ecx.tcx.global_alloc(alloc_id).unwrap_memory();
assert!(offset == abi::Size::ZERO, "{}", msg);
let meta = b.to_target_usize(ecx).expect(msg);
ConstValue::Slice { data, meta }
}
Immediate::Uninit => bug!("`Uninit` is not a valid value for {}", op.layout.ty),
},
}
}
#[instrument(skip(tcx), level = "debug", ret)]
pub(crate) fn turn_into_const_value<'tcx>(
tcx: TyCtxt<'tcx>,
constant: ConstAlloc<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ConstValue<'tcx> {
let cid = key.value;
let def_id = cid.instance.def.def_id();
let is_static = tcx.is_static(def_id);
// This is just accessing an already computed constant, so no need to check alignment here.
let ecx = mk_eval_cx_to_read_const_val(
tcx,
tcx.def_span(key.value.instance.def_id()),
key.param_env,
CanAccessMutGlobal::from(is_static),
);
let mplace = ecx.raw_const_to_mplace(constant).expect(
"can only fail if layout computation failed, \
which should have given a good error before ever invoking this function",
);
assert!(
!is_static || cid.promoted.is_some(),
"the `eval_to_const_value_raw` query should not be used for statics, use `eval_to_allocation` instead"
);
// Turn this into a proper constant.
op_to_const(&ecx, &mplace.into(), /* for diagnostics */ false)
}
#[instrument(skip(tcx), level = "debug")]
pub fn eval_to_const_value_raw_provider<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc_middle::mir::interpret::EvalToConstValueResult<'tcx> {
// Const eval always happens in Reveal::All mode in order to be able to use the hidden types of
// opaque types. This is needed for trivial things like `size_of`, but also for using associated
// types that are not specified in the opaque type.
assert_eq!(key.param_env.reveal(), Reveal::All);
// We call `const_eval` for zero arg intrinsics, too, in order to cache their value.
// Catch such calls and evaluate them instead of trying to load a constant's MIR.
if let ty::InstanceDef::Intrinsic(def_id) = key.value.instance.def {
let ty = key.value.instance.ty(tcx, key.param_env);
let ty::FnDef(_, args) = ty.kind() else {
bug!("intrinsic with type {:?}", ty);
};
return eval_nullary_intrinsic(tcx, key.param_env, def_id, args).map_err(|error| {
let span = tcx.def_span(def_id);
super::report(
tcx,
error.into_kind(),
Some(span),
|| (span, vec![]),
|span, _| errors::NullaryIntrinsicError { span },
)
});
}
tcx.eval_to_allocation_raw(key).map(|val| turn_into_const_value(tcx, val, key))
}
#[instrument(skip(tcx), level = "debug")]
pub fn eval_static_initializer_provider<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
) -> ::rustc_middle::mir::interpret::EvalStaticInitializerRawResult<'tcx> {
assert!(tcx.is_static(def_id.to_def_id()));
let instance = ty::Instance::mono(tcx, def_id.to_def_id());
let cid = rustc_middle::mir::interpret::GlobalId { instance, promoted: None };
eval_in_interpreter(tcx, cid, ty::ParamEnv::reveal_all())
}
pub trait InterpretationResult<'tcx> {
/// This function takes the place where the result of the evaluation is stored
/// and prepares it for returning it in the appropriate format needed by the specific
/// evaluation query.
fn make_result<'mir>(
mplace: MPlaceTy<'tcx>,
ecx: &mut InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>,
) -> Self;
}
impl<'tcx> InterpretationResult<'tcx> for ConstAlloc<'tcx> {
fn make_result<'mir>(
mplace: MPlaceTy<'tcx>,
_ecx: &mut InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>,
) -> Self {
ConstAlloc { alloc_id: mplace.ptr().provenance.unwrap().alloc_id(), ty: mplace.layout.ty }
}
}
#[instrument(skip(tcx), level = "debug")]
pub fn eval_to_allocation_raw_provider<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc_middle::mir::interpret::EvalToAllocationRawResult<'tcx> {
// This shouldn't be used for statics, since statics are conceptually places,
// not values -- so what we do here could break pointer identity.
assert!(key.value.promoted.is_some() || !tcx.is_static(key.value.instance.def_id()));
// Const eval always happens in Reveal::All mode in order to be able to use the hidden types of
// opaque types. This is needed for trivial things like `size_of`, but also for using associated
// types that are not specified in the opaque type.
assert_eq!(key.param_env.reveal(), Reveal::All);
if cfg!(debug_assertions) {
// Make sure we format the instance even if we do not print it.
// This serves as a regression test against an ICE on printing.
// The next two lines concatenated contain some discussion:
// https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/
// subject/anon_const_instance_printing/near/135980032
let instance = with_no_trimmed_paths!(key.value.instance.to_string());
trace!("const eval: {:?} ({})", key, instance);
}
eval_in_interpreter(tcx, key.value, key.param_env)
}
fn eval_in_interpreter<'tcx, R: InterpretationResult<'tcx>>(
tcx: TyCtxt<'tcx>,
cid: GlobalId<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Result<R, ErrorHandled> {
let def = cid.instance.def.def_id();
let is_static = tcx.is_static(def);
let mut ecx = InterpCx::new(
tcx,
tcx.def_span(def),
param_env,
// Statics (and promoteds inside statics) may access mutable global memory, because unlike consts
// they do not have to behave "as if" they were evaluated at runtime.
// For consts however we want to ensure they behave "as if" they were evaluated at runtime,
// so we have to reject reading mutable global memory.
CompileTimeInterpreter::new(CanAccessMutGlobal::from(is_static), CheckAlignment::Error),
);
let res = ecx.load_mir(cid.instance.def, cid.promoted);
res.and_then(|body| eval_body_using_ecx(&mut ecx, cid, body)).map_err(|error| {
let (error, backtrace) = error.into_parts();
backtrace.print_backtrace();
let (kind, instance) = if ecx.tcx.is_static(cid.instance.def_id()) {
("static", String::new())
} else {
// If the current item has generics, we'd like to enrich the message with the
// instance and its args: to show the actual compile-time values, in addition to
// the expression, leading to the const eval error.
let instance = &cid.instance;
if !instance.args.is_empty() {
let instance = with_no_trimmed_paths!(instance.to_string());
("const_with_path", instance)
} else {
("const", String::new())
}
};
super::report(
*ecx.tcx,
error,
None,
|| super::get_span_and_frames(ecx.tcx, ecx.stack()),
|span, frames| ConstEvalError { span, error_kind: kind, instance, frame_notes: frames },
)
})
}
#[inline(always)]
fn const_validate_mplace<'mir, 'tcx>(
ecx: &InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>,
mplace: &MPlaceTy<'tcx>,
cid: GlobalId<'tcx>,
) -> Result<(), ErrorHandled> {
let alloc_id = mplace.ptr().provenance.unwrap().alloc_id();
let mut ref_tracking = RefTracking::new(mplace.clone());
let mut inner = false;
while let Some((mplace, path)) = ref_tracking.todo.pop() {
let mode = match ecx.tcx.static_mutability(cid.instance.def_id()) {
_ if cid.promoted.is_some() => CtfeValidationMode::Promoted,
Some(mutbl) => CtfeValidationMode::Static { mutbl }, // a `static`
None => {
// This is a normal `const` (not promoted).
// The outermost allocation is always only copied, so having `UnsafeCell` in there
// is okay despite them being in immutable memory.
CtfeValidationMode::Const { allow_immutable_unsafe_cell: !inner }
}
};
ecx.const_validate_operand(&mplace.into(), path, &mut ref_tracking, mode)
// Instead of just reporting the `InterpError` via the usual machinery, we give a more targetted
// error about the validation failure.
.map_err(|error| report_validation_error(&ecx, error, alloc_id))?;
inner = true;
}
Ok(())
}
#[inline(always)]
fn report_validation_error<'mir, 'tcx>(
ecx: &InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>,
error: InterpErrorInfo<'tcx>,
alloc_id: AllocId,
) -> ErrorHandled {
let (error, backtrace) = error.into_parts();
backtrace.print_backtrace();
let ub_note = matches!(error, InterpError::UndefinedBehavior(_)).then(|| {});
let bytes = ecx.print_alloc_bytes_for_diagnostics(alloc_id);
let (size, align, _) = ecx.get_alloc_info(alloc_id);
let raw_bytes = errors::RawBytesNote { size: size.bytes(), align: align.bytes(), bytes };
crate::const_eval::report(
*ecx.tcx,
error,
None,
|| crate::const_eval::get_span_and_frames(ecx.tcx, ecx.stack()),
move |span, frames| errors::ValidationFailure { span, ub_note, frames, raw_bytes },
)
}