blob: a17c7708e4a082488a143e5e4b3488051f752623 [file] [log] [blame]
//! Code related to parsing literals.
use crate::ast::{self, LitKind, MetaItemLit, StrStyle};
use crate::token::{self, Token};
use rustc_lexer::unescape::{
byte_from_char, unescape_byte, unescape_char, unescape_mixed, unescape_unicode, MixedUnit, Mode,
};
use rustc_span::symbol::{kw, sym, Symbol};
use rustc_span::Span;
use std::{ascii, fmt, str};
// Escapes a string, represented as a symbol. Reuses the original symbol,
// avoiding interning, if no changes are required.
pub fn escape_string_symbol(symbol: Symbol) -> Symbol {
let s = symbol.as_str();
let escaped = s.escape_default().to_string();
if s == escaped { symbol } else { Symbol::intern(&escaped) }
}
// Escapes a char.
pub fn escape_char_symbol(ch: char) -> Symbol {
let s: String = ch.escape_default().map(Into::<char>::into).collect();
Symbol::intern(&s)
}
// Escapes a byte string.
pub fn escape_byte_str_symbol(bytes: &[u8]) -> Symbol {
let s = bytes.escape_ascii().to_string();
Symbol::intern(&s)
}
#[derive(Debug)]
pub enum LitError {
InvalidSuffix(Symbol),
InvalidIntSuffix(Symbol),
InvalidFloatSuffix(Symbol),
NonDecimalFloat(u32), // u32 is the base
IntTooLarge(u32), // u32 is the base
}
impl LitKind {
/// Converts literal token into a semantic literal.
pub fn from_token_lit(lit: token::Lit) -> Result<LitKind, LitError> {
let token::Lit { kind, symbol, suffix } = lit;
if let Some(suffix) = suffix
&& !kind.may_have_suffix()
{
return Err(LitError::InvalidSuffix(suffix));
}
// For byte/char/string literals, chars and escapes have already been
// checked in the lexer (in `cook_lexer_literal`). So we can assume all
// chars and escapes are valid here.
Ok(match kind {
token::Bool => {
assert!(symbol.is_bool_lit());
LitKind::Bool(symbol == kw::True)
}
token::Byte => {
return unescape_byte(symbol.as_str())
.map(LitKind::Byte)
.map_err(|_| panic!("failed to unescape byte literal"));
}
token::Char => {
return unescape_char(symbol.as_str())
.map(LitKind::Char)
.map_err(|_| panic!("failed to unescape char literal"));
}
// There are some valid suffixes for integer and float literals,
// so all the handling is done internally.
token::Integer => return integer_lit(symbol, suffix),
token::Float => return float_lit(symbol, suffix),
token::Str => {
// If there are no characters requiring special treatment we can
// reuse the symbol from the token. Otherwise, we must generate a
// new symbol because the string in the LitKind is different to the
// string in the token.
let s = symbol.as_str();
// Vanilla strings are so common we optimize for the common case where no chars
// requiring special behaviour are present.
let symbol = if s.contains('\\') {
let mut buf = String::with_capacity(s.len());
// Force-inlining here is aggressive but the closure is
// called on every char in the string, so it can be hot in
// programs with many long strings containing escapes.
unescape_unicode(
s,
Mode::Str,
&mut #[inline(always)]
|_, c| match c {
Ok(c) => buf.push(c),
Err(err) => {
assert!(!err.is_fatal(), "failed to unescape string literal")
}
},
);
Symbol::intern(&buf)
} else {
symbol
};
LitKind::Str(symbol, ast::StrStyle::Cooked)
}
token::StrRaw(n) => {
// Raw strings have no escapes so no work is needed here.
LitKind::Str(symbol, ast::StrStyle::Raw(n))
}
token::ByteStr => {
let s = symbol.as_str();
let mut buf = Vec::with_capacity(s.len());
unescape_unicode(s, Mode::ByteStr, &mut |_, c| match c {
Ok(c) => buf.push(byte_from_char(c)),
Err(err) => {
assert!(!err.is_fatal(), "failed to unescape string literal")
}
});
LitKind::ByteStr(buf.into(), StrStyle::Cooked)
}
token::ByteStrRaw(n) => {
// Raw strings have no escapes so we can convert the symbol
// directly to a `Lrc<u8>`.
let buf = symbol.as_str().to_owned().into_bytes();
LitKind::ByteStr(buf.into(), StrStyle::Raw(n))
}
token::CStr => {
let s = symbol.as_str();
let mut buf = Vec::with_capacity(s.len());
unescape_mixed(s, Mode::CStr, &mut |_span, c| match c {
Ok(MixedUnit::Char(c)) => {
buf.extend_from_slice(c.encode_utf8(&mut [0; 4]).as_bytes())
}
Ok(MixedUnit::HighByte(b)) => buf.push(b),
Err(err) => {
assert!(!err.is_fatal(), "failed to unescape C string literal")
}
});
buf.push(0);
LitKind::CStr(buf.into(), StrStyle::Cooked)
}
token::CStrRaw(n) => {
// Raw strings have no escapes so we can convert the symbol
// directly to a `Lrc<u8>` after appending the terminating NUL
// char.
let mut buf = symbol.as_str().to_owned().into_bytes();
buf.push(0);
LitKind::CStr(buf.into(), StrStyle::Raw(n))
}
token::Err(guar) => LitKind::Err(guar),
})
}
}
impl fmt::Display for LitKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
LitKind::Byte(b) => {
let b: String = ascii::escape_default(b).map(Into::<char>::into).collect();
write!(f, "b'{b}'")?;
}
LitKind::Char(ch) => write!(f, "'{}'", escape_char_symbol(ch))?,
LitKind::Str(sym, StrStyle::Cooked) => write!(f, "\"{}\"", escape_string_symbol(sym))?,
LitKind::Str(sym, StrStyle::Raw(n)) => write!(
f,
"r{delim}\"{string}\"{delim}",
delim = "#".repeat(n as usize),
string = sym
)?,
LitKind::ByteStr(ref bytes, StrStyle::Cooked) => {
write!(f, "b\"{}\"", escape_byte_str_symbol(bytes))?
}
LitKind::ByteStr(ref bytes, StrStyle::Raw(n)) => {
// Unwrap because raw byte string literals can only contain ASCII.
let symbol = str::from_utf8(bytes).unwrap();
write!(
f,
"br{delim}\"{string}\"{delim}",
delim = "#".repeat(n as usize),
string = symbol
)?;
}
LitKind::CStr(ref bytes, StrStyle::Cooked) => {
write!(f, "c\"{}\"", escape_byte_str_symbol(bytes))?
}
LitKind::CStr(ref bytes, StrStyle::Raw(n)) => {
// This can only be valid UTF-8.
let symbol = str::from_utf8(bytes).unwrap();
write!(f, "cr{delim}\"{symbol}\"{delim}", delim = "#".repeat(n as usize),)?;
}
LitKind::Int(n, ty) => {
write!(f, "{n}")?;
match ty {
ast::LitIntType::Unsigned(ty) => write!(f, "{}", ty.name())?,
ast::LitIntType::Signed(ty) => write!(f, "{}", ty.name())?,
ast::LitIntType::Unsuffixed => {}
}
}
LitKind::Float(symbol, ty) => {
write!(f, "{symbol}")?;
match ty {
ast::LitFloatType::Suffixed(ty) => write!(f, "{}", ty.name())?,
ast::LitFloatType::Unsuffixed => {}
}
}
LitKind::Bool(b) => write!(f, "{}", if b { "true" } else { "false" })?,
LitKind::Err(_) => {
// This only shows up in places like `-Zunpretty=hir` output, so we
// don't bother to produce something useful.
write!(f, "<bad-literal>")?;
}
}
Ok(())
}
}
impl MetaItemLit {
/// Converts a token literal into a meta item literal.
pub fn from_token_lit(token_lit: token::Lit, span: Span) -> Result<MetaItemLit, LitError> {
Ok(MetaItemLit {
symbol: token_lit.symbol,
suffix: token_lit.suffix,
kind: LitKind::from_token_lit(token_lit)?,
span,
})
}
/// Cheaply converts a meta item literal into a token literal.
pub fn as_token_lit(&self) -> token::Lit {
let kind = match self.kind {
LitKind::Bool(_) => token::Bool,
LitKind::Str(_, ast::StrStyle::Cooked) => token::Str,
LitKind::Str(_, ast::StrStyle::Raw(n)) => token::StrRaw(n),
LitKind::ByteStr(_, ast::StrStyle::Cooked) => token::ByteStr,
LitKind::ByteStr(_, ast::StrStyle::Raw(n)) => token::ByteStrRaw(n),
LitKind::CStr(_, ast::StrStyle::Cooked) => token::CStr,
LitKind::CStr(_, ast::StrStyle::Raw(n)) => token::CStrRaw(n),
LitKind::Byte(_) => token::Byte,
LitKind::Char(_) => token::Char,
LitKind::Int(..) => token::Integer,
LitKind::Float(..) => token::Float,
LitKind::Err(guar) => token::Err(guar),
};
token::Lit::new(kind, self.symbol, self.suffix)
}
/// Converts an arbitrary token into meta item literal.
pub fn from_token(token: &Token) -> Option<MetaItemLit> {
token::Lit::from_token(token)
.and_then(|token_lit| MetaItemLit::from_token_lit(token_lit, token.span).ok())
}
}
fn strip_underscores(symbol: Symbol) -> Symbol {
// Do not allocate a new string unless necessary.
let s = symbol.as_str();
if s.contains('_') {
let mut s = s.to_string();
s.retain(|c| c != '_');
return Symbol::intern(&s);
}
symbol
}
fn filtered_float_lit(
symbol: Symbol,
suffix: Option<Symbol>,
base: u32,
) -> Result<LitKind, LitError> {
debug!("filtered_float_lit: {:?}, {:?}, {:?}", symbol, suffix, base);
if base != 10 {
return Err(LitError::NonDecimalFloat(base));
}
Ok(match suffix {
Some(suffix) => LitKind::Float(
symbol,
ast::LitFloatType::Suffixed(match suffix {
sym::f16 => ast::FloatTy::F16,
sym::f32 => ast::FloatTy::F32,
sym::f64 => ast::FloatTy::F64,
sym::f128 => ast::FloatTy::F128,
_ => return Err(LitError::InvalidFloatSuffix(suffix)),
}),
),
None => LitKind::Float(symbol, ast::LitFloatType::Unsuffixed),
})
}
fn float_lit(symbol: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
debug!("float_lit: {:?}, {:?}", symbol, suffix);
filtered_float_lit(strip_underscores(symbol), suffix, 10)
}
fn integer_lit(symbol: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
debug!("integer_lit: {:?}, {:?}", symbol, suffix);
let symbol = strip_underscores(symbol);
let s = symbol.as_str();
let base = match s.as_bytes() {
[b'0', b'x', ..] => 16,
[b'0', b'o', ..] => 8,
[b'0', b'b', ..] => 2,
_ => 10,
};
let ty = match suffix {
Some(suf) => match suf {
sym::isize => ast::LitIntType::Signed(ast::IntTy::Isize),
sym::i8 => ast::LitIntType::Signed(ast::IntTy::I8),
sym::i16 => ast::LitIntType::Signed(ast::IntTy::I16),
sym::i32 => ast::LitIntType::Signed(ast::IntTy::I32),
sym::i64 => ast::LitIntType::Signed(ast::IntTy::I64),
sym::i128 => ast::LitIntType::Signed(ast::IntTy::I128),
sym::usize => ast::LitIntType::Unsigned(ast::UintTy::Usize),
sym::u8 => ast::LitIntType::Unsigned(ast::UintTy::U8),
sym::u16 => ast::LitIntType::Unsigned(ast::UintTy::U16),
sym::u32 => ast::LitIntType::Unsigned(ast::UintTy::U32),
sym::u64 => ast::LitIntType::Unsigned(ast::UintTy::U64),
sym::u128 => ast::LitIntType::Unsigned(ast::UintTy::U128),
// `1f64` and `2f32` etc. are valid float literals, and
// `fxxx` looks more like an invalid float literal than invalid integer literal.
_ if suf.as_str().starts_with('f') => return filtered_float_lit(symbol, suffix, base),
_ => return Err(LitError::InvalidIntSuffix(suf)),
},
_ => ast::LitIntType::Unsuffixed,
};
let s = &s[if base != 10 { 2 } else { 0 }..];
u128::from_str_radix(s, base)
.map(|i| LitKind::Int(i.into(), ty))
.map_err(|_| LitError::IntTooLarge(base))
}