blob: c8626111145ded0fa6ea75071049fda8b2282e47 [file] [log] [blame]
mod atom;
use crate::grammar::attributes::ATTRIBUTE_FIRST;
use super::*;
pub(crate) use atom::{block_expr, match_arm_list};
pub(super) use atom::{literal, LITERAL_FIRST};
#[derive(PartialEq, Eq)]
pub(super) enum Semicolon {
Required,
Optional,
Forbidden,
}
const EXPR_FIRST: TokenSet = LHS_FIRST;
pub(super) fn expr(p: &mut Parser<'_>) -> Option<CompletedMarker> {
let r = Restrictions { forbid_structs: false, prefer_stmt: false };
expr_bp(p, None, r, 1).map(|(m, _)| m)
}
pub(super) fn expr_stmt(
p: &mut Parser<'_>,
m: Option<Marker>,
) -> Option<(CompletedMarker, BlockLike)> {
let r = Restrictions { forbid_structs: false, prefer_stmt: true };
expr_bp(p, m, r, 1)
}
fn expr_no_struct(p: &mut Parser<'_>) {
let r = Restrictions { forbid_structs: true, prefer_stmt: false };
expr_bp(p, None, r, 1);
}
/// Parses the expression in `let pattern = expression`.
/// It needs to be parsed with lower precedence than `&&`, so that
/// `if let true = true && false` is parsed as `if (let true = true) && (true)`
/// and not `if let true = (true && true)`.
fn expr_let(p: &mut Parser<'_>) {
let r = Restrictions { forbid_structs: true, prefer_stmt: false };
expr_bp(p, None, r, 5);
}
pub(super) fn stmt(p: &mut Parser<'_>, semicolon: Semicolon) {
if p.eat(T![;]) {
return;
}
let m = p.start();
// test attr_on_expr_stmt
// fn foo() {
// #[A] foo();
// #[B] bar!{}
// #[C] #[D] {}
// #[D] return ();
// }
attributes::outer_attrs(p);
if p.at(T![let]) {
let_stmt(p, semicolon);
m.complete(p, LET_STMT);
return;
}
// test block_items
// fn a() { fn b() {} }
let m = match items::opt_item(p, m) {
Ok(()) => return,
Err(m) => m,
};
if !p.at_ts(EXPR_FIRST) {
p.err_and_bump("expected expression, item or let statement");
m.abandon(p);
return;
}
if let Some((cm, blocklike)) = expr_stmt(p, Some(m)) {
if !(p.at(T!['}']) || (semicolon != Semicolon::Required && p.at(EOF))) {
// test no_semi_after_block
// fn foo() {
// if true {}
// loop {}
// match () {}
// while true {}
// for _ in () {}
// {}
// {}
// macro_rules! test {
// () => {}
// }
// test!{}
// }
let m = cm.precede(p);
match semicolon {
Semicolon::Required => {
if blocklike.is_block() {
p.eat(T![;]);
} else {
p.expect(T![;]);
}
}
Semicolon::Optional => {
p.eat(T![;]);
}
Semicolon::Forbidden => (),
}
m.complete(p, EXPR_STMT);
}
}
}
// test let_stmt
// fn f() { let x: i32 = 92; }
pub(super) fn let_stmt(p: &mut Parser<'_>, with_semi: Semicolon) {
p.bump(T![let]);
patterns::pattern(p);
if p.at(T![:]) {
// test let_stmt_ascription
// fn f() { let x: i32; }
types::ascription(p);
}
let mut expr_after_eq: Option<CompletedMarker> = None;
if p.eat(T![=]) {
// test let_stmt_init
// fn f() { let x = 92; }
expr_after_eq = expressions::expr(p);
}
if p.at(T![else]) {
// test_err let_else_right_curly_brace
// fn func() { let Some(_) = {Some(1)} else { panic!("h") };}
if let Some(expr) = expr_after_eq {
if BlockLike::is_blocklike(expr.kind()) {
p.error(
"right curly brace `}` before `else` in a `let...else` statement not allowed",
)
}
}
// test let_else
// fn f() { let Some(x) = opt else { return }; }
let m = p.start();
p.bump(T![else]);
block_expr(p);
m.complete(p, LET_ELSE);
}
match with_semi {
Semicolon::Forbidden => (),
Semicolon::Optional => {
p.eat(T![;]);
}
Semicolon::Required => {
p.expect(T![;]);
}
}
}
pub(super) fn expr_block_contents(p: &mut Parser<'_>) {
attributes::inner_attrs(p);
while !p.at(EOF) && !p.at(T!['}']) {
// test nocontentexpr
// fn foo(){
// ;;;some_expr();;;;{;;;};;;;Ok(())
// }
// test nocontentexpr_after_item
// fn simple_function() {
// enum LocalEnum {
// One,
// Two,
// };
// fn f() {};
// struct S {};
// }
stmt(p, Semicolon::Required);
}
}
#[derive(Clone, Copy)]
struct Restrictions {
forbid_structs: bool,
prefer_stmt: bool,
}
enum Associativity {
Left,
Right,
}
/// Binding powers of operators for a Pratt parser.
///
/// See <https://matklad.github.io/2020/04/13/simple-but-powerful-pratt-parsing.html>
///
/// Note that Rust doesn't define associativity for some infix operators (e.g. `==` and `..`) and
/// requires parentheses to disambiguate. We just treat them as left associative.
#[rustfmt::skip]
fn current_op(p: &Parser<'_>) -> (u8, SyntaxKind, Associativity) {
use Associativity::*;
const NOT_AN_OP: (u8, SyntaxKind, Associativity) = (0, T![@], Left);
match p.current() {
T![|] if p.at(T![||]) => (3, T![||], Left),
T![|] if p.at(T![|=]) => (1, T![|=], Right),
T![|] => (6, T![|], Left),
T![>] if p.at(T![>>=]) => (1, T![>>=], Right),
T![>] if p.at(T![>>]) => (9, T![>>], Left),
T![>] if p.at(T![>=]) => (5, T![>=], Left),
T![>] => (5, T![>], Left),
T![=] if p.at(T![=>]) => NOT_AN_OP,
T![=] if p.at(T![==]) => (5, T![==], Left),
T![=] => (1, T![=], Right),
T![<] if p.at(T![<=]) => (5, T![<=], Left),
T![<] if p.at(T![<<=]) => (1, T![<<=], Right),
T![<] if p.at(T![<<]) => (9, T![<<], Left),
T![<] => (5, T![<], Left),
T![+] if p.at(T![+=]) => (1, T![+=], Right),
T![+] => (10, T![+], Left),
T![^] if p.at(T![^=]) => (1, T![^=], Right),
T![^] => (7, T![^], Left),
T![%] if p.at(T![%=]) => (1, T![%=], Right),
T![%] => (11, T![%], Left),
T![&] if p.at(T![&=]) => (1, T![&=], Right),
// If you update this, remember to update `expr_let()` too.
T![&] if p.at(T![&&]) => (4, T![&&], Left),
T![&] => (8, T![&], Left),
T![/] if p.at(T![/=]) => (1, T![/=], Right),
T![/] => (11, T![/], Left),
T![*] if p.at(T![*=]) => (1, T![*=], Right),
T![*] => (11, T![*], Left),
T![.] if p.at(T![..=]) => (2, T![..=], Left),
T![.] if p.at(T![..]) => (2, T![..], Left),
T![!] if p.at(T![!=]) => (5, T![!=], Left),
T![-] if p.at(T![-=]) => (1, T![-=], Right),
T![-] => (10, T![-], Left),
T![as] => (12, T![as], Left),
_ => NOT_AN_OP
}
}
// Parses expression with binding power of at least bp.
fn expr_bp(
p: &mut Parser<'_>,
m: Option<Marker>,
mut r: Restrictions,
bp: u8,
) -> Option<(CompletedMarker, BlockLike)> {
let m = m.unwrap_or_else(|| {
let m = p.start();
attributes::outer_attrs(p);
m
});
if !p.at_ts(EXPR_FIRST) {
p.err_recover("expected expression", atom::EXPR_RECOVERY_SET);
m.abandon(p);
return None;
}
let mut lhs = match lhs(p, r) {
Some((lhs, blocklike)) => {
let lhs = lhs.extend_to(p, m);
if r.prefer_stmt && blocklike.is_block() {
// test stmt_bin_expr_ambiguity
// fn f() {
// let _ = {1} & 2;
// {1} &2;
// }
return Some((lhs, BlockLike::Block));
}
lhs
}
None => {
m.abandon(p);
return None;
}
};
loop {
let is_range = p.at(T![..]) || p.at(T![..=]);
let (op_bp, op, associativity) = current_op(p);
if op_bp < bp {
break;
}
// test as_precedence
// fn f() { let _ = &1 as *const i32; }
if p.at(T![as]) {
lhs = cast_expr(p, lhs);
continue;
}
let m = lhs.precede(p);
p.bump(op);
// test binop_resets_statementness
// fn f() { v = {1}&2; }
r = Restrictions { prefer_stmt: false, ..r };
if is_range {
// test postfix_range
// fn foo() {
// let x = 1..;
// match 1.. { _ => () };
// match a.b()..S { _ => () };
// }
let has_trailing_expression =
p.at_ts(EXPR_FIRST) && !(r.forbid_structs && p.at(T!['{']));
if !has_trailing_expression {
// no RHS
lhs = m.complete(p, RANGE_EXPR);
break;
}
}
let op_bp = match associativity {
Associativity::Left => op_bp + 1,
Associativity::Right => op_bp,
};
expr_bp(p, None, Restrictions { prefer_stmt: false, ..r }, op_bp);
lhs = m.complete(p, if is_range { RANGE_EXPR } else { BIN_EXPR });
}
Some((lhs, BlockLike::NotBlock))
}
const LHS_FIRST: TokenSet =
atom::ATOM_EXPR_FIRST.union(TokenSet::new(&[T![&], T![*], T![!], T![.], T![-], T![_]]));
fn lhs(p: &mut Parser<'_>, r: Restrictions) -> Option<(CompletedMarker, BlockLike)> {
let m;
let kind = match p.current() {
// test ref_expr
// fn foo() {
// // reference operator
// let _ = &1;
// let _ = &mut &f();
// let _ = &raw;
// let _ = &raw.0;
// // raw reference operator
// let _ = &raw mut foo;
// let _ = &raw const foo;
// }
T![&] => {
m = p.start();
p.bump(T![&]);
if p.at_contextual_kw(T![raw]) && (p.nth_at(1, T![mut]) || p.nth_at(1, T![const])) {
p.bump_remap(T![raw]);
p.bump_any();
} else {
p.eat(T![mut]);
}
REF_EXPR
}
// test unary_expr
// fn foo() {
// **&1;
// !!true;
// --1;
// }
T![*] | T![!] | T![-] => {
m = p.start();
p.bump_any();
PREFIX_EXPR
}
_ => {
// test full_range_expr
// fn foo() { xs[..]; }
for op in [T![..=], T![..]] {
if p.at(op) {
m = p.start();
p.bump(op);
// test closure_range_method_call
// fn foo() {
// || .. .method();
// || .. .field;
// }
let has_access_after = p.at(T![.]) && p.nth_at(1, SyntaxKind::IDENT);
let struct_forbidden = r.forbid_structs && p.at(T!['{']);
if p.at_ts(EXPR_FIRST) && !has_access_after && !struct_forbidden {
expr_bp(p, None, r, 2);
}
let cm = m.complete(p, RANGE_EXPR);
return Some((cm, BlockLike::NotBlock));
}
}
// test expression_after_block
// fn foo() {
// let mut p = F{x: 5};
// {p}.x = 10;
// }
let (lhs, blocklike) = atom::atom_expr(p, r)?;
let (cm, block_like) =
postfix_expr(p, lhs, blocklike, !(r.prefer_stmt && blocklike.is_block()));
return Some((cm, block_like));
}
};
// parse the interior of the unary expression
expr_bp(p, None, r, 255);
let cm = m.complete(p, kind);
Some((cm, BlockLike::NotBlock))
}
fn postfix_expr(
p: &mut Parser<'_>,
mut lhs: CompletedMarker,
// Calls are disallowed if the type is a block and we prefer statements because the call cannot be disambiguated from a tuple
// E.g. `while true {break}();` is parsed as
// `while true {break}; ();`
mut block_like: BlockLike,
mut allow_calls: bool,
) -> (CompletedMarker, BlockLike) {
loop {
lhs = match p.current() {
// test stmt_postfix_expr_ambiguity
// fn foo() {
// match () {
// _ => {}
// () => {}
// [] => {}
// }
// }
T!['('] if allow_calls => call_expr(p, lhs),
T!['['] if allow_calls => index_expr(p, lhs),
T![.] => match postfix_dot_expr::<false>(p, lhs) {
Ok(it) => it,
Err(it) => {
lhs = it;
break;
}
},
T![?] => try_expr(p, lhs),
_ => break,
};
allow_calls = true;
block_like = BlockLike::NotBlock;
}
(lhs, block_like)
}
fn postfix_dot_expr<const FLOAT_RECOVERY: bool>(
p: &mut Parser<'_>,
lhs: CompletedMarker,
) -> Result<CompletedMarker, CompletedMarker> {
if !FLOAT_RECOVERY {
assert!(p.at(T![.]));
}
let nth1 = if FLOAT_RECOVERY { 0 } else { 1 };
let nth2 = if FLOAT_RECOVERY { 1 } else { 2 };
if p.nth(nth1) == IDENT && (p.nth(nth2) == T!['('] || p.nth_at(nth2, T![::])) {
return Ok(method_call_expr::<FLOAT_RECOVERY>(p, lhs));
}
// test await_expr
// fn foo() {
// x.await;
// x.0.await;
// x.0().await?.hello();
// x.0.0.await;
// x.0. await;
// }
if p.nth(nth1) == T![await] {
let m = lhs.precede(p);
if !FLOAT_RECOVERY {
p.bump(T![.]);
}
p.bump(T![await]);
return Ok(m.complete(p, AWAIT_EXPR));
}
if p.at(T![..=]) || p.at(T![..]) {
return Err(lhs);
}
field_expr::<FLOAT_RECOVERY>(p, lhs)
}
// test call_expr
// fn foo() {
// let _ = f();
// let _ = f()(1)(1, 2,);
// let _ = f(<Foo>::func());
// f(<Foo as Trait>::func());
// }
fn call_expr(p: &mut Parser<'_>, lhs: CompletedMarker) -> CompletedMarker {
assert!(p.at(T!['(']));
let m = lhs.precede(p);
arg_list(p);
m.complete(p, CALL_EXPR)
}
// test index_expr
// fn foo() {
// x[1][2];
// }
fn index_expr(p: &mut Parser<'_>, lhs: CompletedMarker) -> CompletedMarker {
assert!(p.at(T!['[']));
let m = lhs.precede(p);
p.bump(T!['[']);
expr(p);
p.expect(T![']']);
m.complete(p, INDEX_EXPR)
}
// test method_call_expr
// fn foo() {
// x.foo();
// y.bar::<T>(1, 2,);
// x.0.0.call();
// x.0. call();
// }
fn method_call_expr<const FLOAT_RECOVERY: bool>(
p: &mut Parser<'_>,
lhs: CompletedMarker,
) -> CompletedMarker {
if FLOAT_RECOVERY {
assert!(p.nth(0) == IDENT && (p.nth(1) == T!['('] || p.nth_at(1, T![::])));
} else {
assert!(p.at(T![.]) && p.nth(1) == IDENT && (p.nth(2) == T!['('] || p.nth_at(2, T![::])));
}
let m = lhs.precede(p);
if !FLOAT_RECOVERY {
p.bump(T![.]);
}
name_ref(p);
generic_args::opt_generic_arg_list(p, true);
if p.at(T!['(']) {
arg_list(p);
}
m.complete(p, METHOD_CALL_EXPR)
}
// test field_expr
// fn foo() {
// x.foo;
// x.0.bar;
// x.0.1;
// x.0. bar;
// x.0();
// }
fn field_expr<const FLOAT_RECOVERY: bool>(
p: &mut Parser<'_>,
lhs: CompletedMarker,
) -> Result<CompletedMarker, CompletedMarker> {
if !FLOAT_RECOVERY {
assert!(p.at(T![.]));
}
let m = lhs.precede(p);
if !FLOAT_RECOVERY {
p.bump(T![.]);
}
if p.at(IDENT) || p.at(INT_NUMBER) {
name_ref_or_index(p);
} else if p.at(FLOAT_NUMBER) {
return match p.split_float(m) {
(true, m) => {
let lhs = m.complete(p, FIELD_EXPR);
postfix_dot_expr::<true>(p, lhs)
}
(false, m) => Ok(m.complete(p, FIELD_EXPR)),
};
} else {
p.error("expected field name or number");
}
Ok(m.complete(p, FIELD_EXPR))
}
// test try_expr
// fn foo() {
// x?;
// }
fn try_expr(p: &mut Parser<'_>, lhs: CompletedMarker) -> CompletedMarker {
assert!(p.at(T![?]));
let m = lhs.precede(p);
p.bump(T![?]);
m.complete(p, TRY_EXPR)
}
// test cast_expr
// fn foo() {
// 82 as i32;
// 81 as i8 + 1;
// 79 as i16 - 1;
// 0x36 as u8 <= 0x37;
// }
fn cast_expr(p: &mut Parser<'_>, lhs: CompletedMarker) -> CompletedMarker {
assert!(p.at(T![as]));
let m = lhs.precede(p);
p.bump(T![as]);
// Use type_no_bounds(), because cast expressions are not
// allowed to have bounds.
types::type_no_bounds(p);
m.complete(p, CAST_EXPR)
}
// test_err arg_list_recovery
// fn main() {
// foo(bar::);
// foo(bar:);
// foo(bar+);
// }
fn arg_list(p: &mut Parser<'_>) {
assert!(p.at(T!['(']));
let m = p.start();
// test arg_with_attr
// fn main() {
// foo(#[attr] 92)
// }
delimited(
p,
T!['('],
T![')'],
T![,],
EXPR_FIRST.union(ATTRIBUTE_FIRST),
|p: &mut Parser<'_>| expr(p).is_some(),
);
m.complete(p, ARG_LIST);
}
// test path_expr
// fn foo() {
// let _ = a;
// let _ = a::b;
// let _ = ::a::<b>;
// let _ = format!();
// }
fn path_expr(p: &mut Parser<'_>, r: Restrictions) -> (CompletedMarker, BlockLike) {
assert!(paths::is_path_start(p));
let m = p.start();
paths::expr_path(p);
match p.current() {
T!['{'] if !r.forbid_structs => {
record_expr_field_list(p);
(m.complete(p, RECORD_EXPR), BlockLike::NotBlock)
}
T![!] if !p.at(T![!=]) => {
let block_like = items::macro_call_after_excl(p);
(m.complete(p, MACRO_CALL).precede(p).complete(p, MACRO_EXPR), block_like)
}
_ => (m.complete(p, PATH_EXPR), BlockLike::NotBlock),
}
}
// test record_lit
// fn foo() {
// S {};
// S { x };
// S { x, y: 32, };
// S { x, y: 32, ..Default::default() };
// S { x: ::default() };
// TupleStruct { 0: 1 };
// }
pub(crate) fn record_expr_field_list(p: &mut Parser<'_>) {
assert!(p.at(T!['{']));
let m = p.start();
p.bump(T!['{']);
while !p.at(EOF) && !p.at(T!['}']) {
let m = p.start();
// test record_literal_field_with_attr
// fn main() {
// S { #[cfg(test)] field: 1 }
// }
attributes::outer_attrs(p);
match p.current() {
IDENT | INT_NUMBER => {
// test_err record_literal_missing_ellipsis_recovery
// fn main() {
// S { S::default() }
// }
if p.nth_at(1, T![::]) {
m.abandon(p);
p.expect(T![..]);
expr(p);
} else {
// test_err record_literal_before_ellipsis_recovery
// fn main() {
// S { field ..S::default() }
// }
if p.nth_at(1, T![:]) || p.nth_at(1, T![..]) {
name_ref_or_index(p);
p.expect(T![:]);
}
expr(p);
m.complete(p, RECORD_EXPR_FIELD);
}
}
T![.] if p.at(T![..]) => {
m.abandon(p);
p.bump(T![..]);
// test destructuring_assignment_struct_rest_pattern
// fn foo() {
// S { .. } = S {};
// }
// We permit `.. }` on the left-hand side of a destructuring assignment.
if !p.at(T!['}']) {
expr(p);
if p.at(T![,]) {
// test_err comma_after_functional_update_syntax
// fn foo() {
// S { ..x, };
// S { ..x, a: 0 }
// }
// Do not bump, so we can support additional fields after this comma.
p.error("cannot use a comma after the base struct");
}
}
}
T!['{'] => {
error_block(p, "expected a field");
m.abandon(p);
}
_ => {
p.err_and_bump("expected identifier");
m.abandon(p);
}
}
if !p.at(T!['}']) {
p.expect(T![,]);
}
}
p.expect(T!['}']);
m.complete(p, RECORD_EXPR_FIELD_LIST);
}