blob: 8143dc05c38d41282367571ff7f30141f2cd0a02 [file] [log] [blame]
//! This module provides a MIR interpreter, which is used in const eval.
use std::{borrow::Cow, cell::RefCell, fmt::Write, iter, mem, ops::Range};
use base_db::{CrateId, FileId};
use chalk_ir::{cast::Cast, Mutability};
use either::Either;
use hir_def::{
builtin_type::BuiltinType,
data::adt::{StructFlags, VariantData},
lang_item::LangItem,
layout::{TagEncoding, Variants},
resolver::{HasResolver, TypeNs, ValueNs},
AdtId, ConstId, DefWithBodyId, EnumVariantId, FunctionId, HasModule, ItemContainerId, Lookup,
StaticId, VariantId,
};
use hir_expand::{mod_path::ModPath, HirFileIdExt, InFile};
use intern::Interned;
use la_arena::ArenaMap;
use rustc_hash::{FxHashMap, FxHashSet};
use stdx::never;
use syntax::{SyntaxNodePtr, TextRange};
use triomphe::Arc;
use crate::{
consteval::{intern_const_scalar, try_const_usize, ConstEvalError},
db::HirDatabase,
display::{ClosureStyle, HirDisplay},
infer::PointerCast,
layout::{Layout, LayoutError, RustcEnumVariantIdx},
mapping::from_chalk,
method_resolution::{is_dyn_method, lookup_impl_const},
name, static_lifetime,
traits::FnTrait,
utils::{detect_variant_from_bytes, ClosureSubst},
CallableDefId, ClosureId, ComplexMemoryMap, Const, ConstScalar, FnDefId, Interner, MemoryMap,
Substitution, TraitEnvironment, Ty, TyBuilder, TyExt, TyKind,
};
use super::{
return_slot, AggregateKind, BasicBlockId, BinOp, CastKind, LocalId, MirBody, MirLowerError,
MirSpan, Operand, Place, PlaceElem, ProjectionElem, ProjectionStore, Rvalue, StatementKind,
TerminatorKind, UnOp,
};
mod shim;
#[cfg(test)]
mod tests;
macro_rules! from_bytes {
($ty:tt, $value:expr) => {
($ty::from_le_bytes(match ($value).try_into() {
Ok(it) => it,
Err(_) => return Err(MirEvalError::TypeError(stringify!(mismatched size in constructing $ty))),
}))
};
}
macro_rules! not_supported {
($it: expr) => {
return Err(MirEvalError::NotSupported(format!($it)))
};
}
#[derive(Debug, Default, Clone, PartialEq, Eq)]
pub struct VTableMap {
ty_to_id: FxHashMap<Ty, usize>,
id_to_ty: Vec<Ty>,
}
impl VTableMap {
const OFFSET: usize = 1000; // We should add some offset to ids to make 0 (null) an invalid id.
fn id(&mut self, ty: Ty) -> usize {
if let Some(it) = self.ty_to_id.get(&ty) {
return *it;
}
let id = self.id_to_ty.len() + VTableMap::OFFSET;
self.id_to_ty.push(ty.clone());
self.ty_to_id.insert(ty, id);
id
}
pub(crate) fn ty(&self, id: usize) -> Result<&Ty> {
id.checked_sub(VTableMap::OFFSET)
.and_then(|id| self.id_to_ty.get(id))
.ok_or(MirEvalError::InvalidVTableId(id))
}
fn ty_of_bytes(&self, bytes: &[u8]) -> Result<&Ty> {
let id = from_bytes!(usize, bytes);
self.ty(id)
}
pub fn shrink_to_fit(&mut self) {
self.id_to_ty.shrink_to_fit();
self.ty_to_id.shrink_to_fit();
}
fn is_empty(&self) -> bool {
self.id_to_ty.is_empty() && self.ty_to_id.is_empty()
}
}
#[derive(Debug, Default, Clone, PartialEq, Eq)]
struct TlsData {
keys: Vec<u128>,
}
impl TlsData {
fn create_key(&mut self) -> usize {
self.keys.push(0);
self.keys.len() - 1
}
fn get_key(&mut self, key: usize) -> Result<u128> {
let r = self.keys.get(key).ok_or_else(|| {
MirEvalError::UndefinedBehavior(format!("Getting invalid tls key {key}"))
})?;
Ok(*r)
}
fn set_key(&mut self, key: usize, value: u128) -> Result<()> {
let r = self.keys.get_mut(key).ok_or_else(|| {
MirEvalError::UndefinedBehavior(format!("Setting invalid tls key {key}"))
})?;
*r = value;
Ok(())
}
}
struct StackFrame {
locals: Locals,
destination: Option<BasicBlockId>,
prev_stack_ptr: usize,
span: (MirSpan, DefWithBodyId),
}
#[derive(Clone)]
enum MirOrDynIndex {
Mir(Arc<MirBody>),
Dyn(usize),
}
pub struct Evaluator<'a> {
db: &'a dyn HirDatabase,
trait_env: Arc<TraitEnvironment>,
stack: Vec<u8>,
heap: Vec<u8>,
code_stack: Vec<StackFrame>,
/// Stores the global location of the statics. We const evaluate every static first time we need it
/// and see it's missing, then we add it to this to reuse.
static_locations: FxHashMap<StaticId, Address>,
/// We don't really have function pointers, i.e. pointers to some assembly instructions that we can run. Instead, we
/// store the type as an interned id in place of function and vtable pointers, and we recover back the type at the
/// time of use.
vtable_map: VTableMap,
thread_local_storage: TlsData,
random_state: oorandom::Rand64,
stdout: Vec<u8>,
stderr: Vec<u8>,
layout_cache: RefCell<FxHashMap<Ty, Arc<Layout>>>,
projected_ty_cache: RefCell<FxHashMap<(Ty, PlaceElem), Ty>>,
not_special_fn_cache: RefCell<FxHashSet<FunctionId>>,
mir_or_dyn_index_cache: RefCell<FxHashMap<(FunctionId, Substitution), MirOrDynIndex>>,
/// Constantly dropping and creating `Locals` is very costly. We store
/// old locals that we normally want to drop here, to reuse their allocations
/// later.
unused_locals_store: RefCell<FxHashMap<DefWithBodyId, Vec<Locals>>>,
cached_ptr_size: usize,
cached_fn_trait_func: Option<FunctionId>,
cached_fn_mut_trait_func: Option<FunctionId>,
cached_fn_once_trait_func: Option<FunctionId>,
crate_id: CrateId,
// FIXME: This is a workaround, see the comment on `interpret_mir`
assert_placeholder_ty_is_unused: bool,
/// A general limit on execution, to prevent non terminating programs from breaking r-a main process
execution_limit: usize,
/// An additional limit on stack depth, to prevent stack overflow
stack_depth_limit: usize,
/// Maximum count of bytes that heap and stack can grow
memory_limit: usize,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
enum Address {
Stack(usize),
Heap(usize),
Invalid(usize),
}
use Address::*;
#[derive(Debug, Clone, Copy)]
struct Interval {
addr: Address,
size: usize,
}
#[derive(Debug, Clone)]
struct IntervalAndTy {
interval: Interval,
ty: Ty,
}
impl Interval {
fn new(addr: Address, size: usize) -> Self {
Self { addr, size }
}
fn get<'a>(&self, memory: &'a Evaluator<'a>) -> Result<&'a [u8]> {
memory.read_memory(self.addr, self.size)
}
fn write_from_bytes(&self, memory: &mut Evaluator<'_>, bytes: &[u8]) -> Result<()> {
memory.write_memory(self.addr, bytes)
}
fn write_from_interval(&self, memory: &mut Evaluator<'_>, interval: Interval) -> Result<()> {
memory.copy_from_interval(self.addr, interval)
}
fn slice(self, range: Range<usize>) -> Interval {
Interval { addr: self.addr.offset(range.start), size: range.len() }
}
}
impl IntervalAndTy {
fn get<'a>(&self, memory: &'a Evaluator<'a>) -> Result<&'a [u8]> {
memory.read_memory(self.interval.addr, self.interval.size)
}
fn new(
addr: Address,
ty: Ty,
evaluator: &Evaluator<'_>,
locals: &Locals,
) -> Result<IntervalAndTy> {
let size = evaluator.size_of_sized(&ty, locals, "type of interval")?;
Ok(IntervalAndTy { interval: Interval { addr, size }, ty })
}
}
enum IntervalOrOwned {
Owned(Vec<u8>),
Borrowed(Interval),
}
impl From<Interval> for IntervalOrOwned {
fn from(it: Interval) -> IntervalOrOwned {
IntervalOrOwned::Borrowed(it)
}
}
impl IntervalOrOwned {
fn get<'a>(&'a self, memory: &'a Evaluator<'a>) -> Result<&'a [u8]> {
Ok(match self {
IntervalOrOwned::Owned(o) => o,
IntervalOrOwned::Borrowed(b) => b.get(memory)?,
})
}
}
#[cfg(target_pointer_width = "64")]
const STACK_OFFSET: usize = 1 << 60;
#[cfg(target_pointer_width = "64")]
const HEAP_OFFSET: usize = 1 << 59;
#[cfg(target_pointer_width = "32")]
const STACK_OFFSET: usize = 1 << 30;
#[cfg(target_pointer_width = "32")]
const HEAP_OFFSET: usize = 1 << 29;
impl Address {
#[allow(clippy::double_parens)]
fn from_bytes(it: &[u8]) -> Result<Self> {
Ok(Address::from_usize(from_bytes!(usize, it)))
}
fn from_usize(it: usize) -> Self {
if it > STACK_OFFSET {
Stack(it - STACK_OFFSET)
} else if it > HEAP_OFFSET {
Heap(it - HEAP_OFFSET)
} else {
Invalid(it)
}
}
fn to_bytes(&self) -> [u8; mem::size_of::<usize>()] {
usize::to_le_bytes(self.to_usize())
}
fn to_usize(&self) -> usize {
match self {
Stack(it) => *it + STACK_OFFSET,
Heap(it) => *it + HEAP_OFFSET,
Invalid(it) => *it,
}
}
fn map(&self, f: impl FnOnce(usize) -> usize) -> Address {
match self {
Stack(it) => Stack(f(*it)),
Heap(it) => Heap(f(*it)),
Invalid(it) => Invalid(f(*it)),
}
}
fn offset(&self, offset: usize) -> Address {
self.map(|it| it + offset)
}
}
#[derive(Clone, PartialEq, Eq)]
pub enum MirEvalError {
ConstEvalError(String, Box<ConstEvalError>),
LayoutError(LayoutError, Ty),
/// Means that code had type errors (or mismatched args) and we shouldn't generate mir in first place.
TypeError(&'static str),
/// Means that code had undefined behavior. We don't try to actively detect UB, but if it was detected
/// then use this type of error.
UndefinedBehavior(String),
Panic(String),
MirLowerError(FunctionId, MirLowerError),
MirLowerErrorForClosure(ClosureId, MirLowerError),
TypeIsUnsized(Ty, &'static str),
NotSupported(String),
InvalidConst(Const),
InFunction(Box<MirEvalError>, Vec<(Either<FunctionId, ClosureId>, MirSpan, DefWithBodyId)>),
ExecutionLimitExceeded,
StackOverflow,
TargetDataLayoutNotAvailable,
InvalidVTableId(usize),
CoerceUnsizedError(Ty),
LangItemNotFound(LangItem),
BrokenLayout(Box<Layout>),
}
impl MirEvalError {
pub fn pretty_print(
&self,
f: &mut String,
db: &dyn HirDatabase,
span_formatter: impl Fn(FileId, TextRange) -> String,
) -> std::result::Result<(), std::fmt::Error> {
writeln!(f, "Mir eval error:")?;
let mut err = self;
while let MirEvalError::InFunction(e, stack) = err {
err = e;
for (func, span, def) in stack.iter().take(30).rev() {
match func {
Either::Left(func) => {
let function_name = db.function_data(*func);
writeln!(
f,
"In function {} ({:?})",
function_name.name.display(db.upcast()),
func
)?;
}
Either::Right(clos) => {
writeln!(f, "In {:?}", clos)?;
}
}
let source_map = db.body_with_source_map(*def).1;
let span: InFile<SyntaxNodePtr> = match span {
MirSpan::ExprId(e) => match source_map.expr_syntax(*e) {
Ok(s) => s.map(|it| it.into()),
Err(_) => continue,
},
MirSpan::PatId(p) => match source_map.pat_syntax(*p) {
Ok(s) => s.map(|it| it.syntax_node_ptr()),
Err(_) => continue,
},
MirSpan::Unknown => continue,
};
let file_id = span.file_id.original_file(db.upcast());
let text_range = span.value.text_range();
writeln!(f, "{}", span_formatter(file_id, text_range))?;
}
}
match err {
MirEvalError::InFunction(..) => unreachable!(),
MirEvalError::LayoutError(err, ty) => {
write!(
f,
"Layout for type `{}` is not available due {err:?}",
ty.display(db).with_closure_style(ClosureStyle::ClosureWithId)
)?;
}
MirEvalError::MirLowerError(func, err) => {
let function_name = db.function_data(*func);
writeln!(
f,
"MIR lowering for function `{}` ({:?}) failed due:",
function_name.name.display(db.upcast()),
func
)?;
err.pretty_print(f, db, span_formatter)?;
}
MirEvalError::ConstEvalError(name, err) => {
MirLowerError::ConstEvalError((**name).into(), err.clone()).pretty_print(
f,
db,
span_formatter,
)?;
}
MirEvalError::TypeError(_)
| MirEvalError::UndefinedBehavior(_)
| MirEvalError::Panic(_)
| MirEvalError::MirLowerErrorForClosure(_, _)
| MirEvalError::TypeIsUnsized(_, _)
| MirEvalError::NotSupported(_)
| MirEvalError::InvalidConst(_)
| MirEvalError::ExecutionLimitExceeded
| MirEvalError::StackOverflow
| MirEvalError::TargetDataLayoutNotAvailable
| MirEvalError::CoerceUnsizedError(_)
| MirEvalError::LangItemNotFound(_)
| MirEvalError::BrokenLayout(_)
| MirEvalError::InvalidVTableId(_) => writeln!(f, "{:?}", err)?,
}
Ok(())
}
}
impl std::fmt::Debug for MirEvalError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::ConstEvalError(arg0, arg1) => {
f.debug_tuple("ConstEvalError").field(arg0).field(arg1).finish()
}
Self::LangItemNotFound(arg0) => f.debug_tuple("LangItemNotFound").field(arg0).finish(),
Self::LayoutError(arg0, arg1) => {
f.debug_tuple("LayoutError").field(arg0).field(arg1).finish()
}
Self::TypeError(arg0) => f.debug_tuple("TypeError").field(arg0).finish(),
Self::UndefinedBehavior(arg0) => {
f.debug_tuple("UndefinedBehavior").field(arg0).finish()
}
Self::Panic(msg) => write!(f, "Panic with message:\n{msg:?}"),
Self::TargetDataLayoutNotAvailable => write!(f, "TargetDataLayoutNotAvailable"),
Self::TypeIsUnsized(ty, it) => write!(f, "{ty:?} is unsized. {it} should be sized."),
Self::ExecutionLimitExceeded => write!(f, "execution limit exceeded"),
Self::StackOverflow => write!(f, "stack overflow"),
Self::MirLowerError(arg0, arg1) => {
f.debug_tuple("MirLowerError").field(arg0).field(arg1).finish()
}
Self::MirLowerErrorForClosure(arg0, arg1) => {
f.debug_tuple("MirLowerError").field(arg0).field(arg1).finish()
}
Self::CoerceUnsizedError(arg0) => {
f.debug_tuple("CoerceUnsizedError").field(arg0).finish()
}
Self::BrokenLayout(arg0) => f.debug_tuple("BrokenLayout").field(arg0).finish(),
Self::InvalidVTableId(arg0) => f.debug_tuple("InvalidVTableId").field(arg0).finish(),
Self::NotSupported(arg0) => f.debug_tuple("NotSupported").field(arg0).finish(),
Self::InvalidConst(arg0) => {
let data = &arg0.data(Interner);
f.debug_struct("InvalidConst").field("ty", &data.ty).field("value", &arg0).finish()
}
Self::InFunction(e, stack) => {
f.debug_struct("WithStack").field("error", e).field("stack", &stack).finish()
}
}
}
}
type Result<T> = std::result::Result<T, MirEvalError>;
#[derive(Debug, Default)]
struct DropFlags {
need_drop: FxHashSet<Place>,
}
impl DropFlags {
fn add_place(&mut self, p: Place, store: &ProjectionStore) {
if p.iterate_over_parents(store).any(|it| self.need_drop.contains(&it)) {
return;
}
self.need_drop.retain(|it| !p.is_parent(it, store));
self.need_drop.insert(p);
}
fn remove_place(&mut self, p: &Place, store: &ProjectionStore) -> bool {
// FIXME: replace parents with parts
if let Some(parent) = p.iterate_over_parents(store).find(|it| self.need_drop.contains(it)) {
self.need_drop.remove(&parent);
return true;
}
self.need_drop.remove(p)
}
fn clear(&mut self) {
self.need_drop.clear();
}
}
#[derive(Debug)]
struct Locals {
ptr: ArenaMap<LocalId, Interval>,
body: Arc<MirBody>,
drop_flags: DropFlags,
}
pub struct MirOutput {
stdout: Vec<u8>,
stderr: Vec<u8>,
}
impl MirOutput {
pub fn stdout(&self) -> Cow<'_, str> {
String::from_utf8_lossy(&self.stdout)
}
pub fn stderr(&self) -> Cow<'_, str> {
String::from_utf8_lossy(&self.stderr)
}
}
pub fn interpret_mir(
db: &dyn HirDatabase,
body: Arc<MirBody>,
// FIXME: This is workaround. Ideally, const generics should have a separate body (issue #7434), but now
// they share their body with their parent, so in MIR lowering we have locals of the parent body, which
// might have placeholders. With this argument, we (wrongly) assume that every placeholder type has
// a zero size, hoping that they are all outside of our current body. Even without a fix for #7434, we can
// (and probably should) do better here, for example by excluding bindings outside of the target expression.
assert_placeholder_ty_is_unused: bool,
trait_env: Option<Arc<TraitEnvironment>>,
) -> (Result<Const>, MirOutput) {
let ty = body.locals[return_slot()].ty.clone();
let mut evaluator = Evaluator::new(db, body.owner, assert_placeholder_ty_is_unused, trait_env);
let it: Result<Const> = (|| {
if evaluator.ptr_size() != std::mem::size_of::<usize>() {
not_supported!("targets with different pointer size from host");
}
let interval = evaluator.interpret_mir(body.clone(), None.into_iter())?;
let bytes = interval.get(&evaluator)?;
let mut memory_map = evaluator.create_memory_map(
bytes,
&ty,
&Locals { ptr: ArenaMap::new(), body, drop_flags: DropFlags::default() },
)?;
let bytes = bytes.into();
let memory_map = if memory_map.memory.is_empty() && evaluator.vtable_map.is_empty() {
MemoryMap::Empty
} else {
memory_map.vtable = mem::take(&mut evaluator.vtable_map);
memory_map.vtable.shrink_to_fit();
MemoryMap::Complex(Box::new(memory_map))
};
Ok(intern_const_scalar(ConstScalar::Bytes(bytes, memory_map), ty))
})();
(it, MirOutput { stdout: evaluator.stdout, stderr: evaluator.stderr })
}
#[cfg(test)]
const EXECUTION_LIMIT: usize = 100_000;
#[cfg(not(test))]
const EXECUTION_LIMIT: usize = 10_000_000;
impl Evaluator<'_> {
pub fn new(
db: &dyn HirDatabase,
owner: DefWithBodyId,
assert_placeholder_ty_is_unused: bool,
trait_env: Option<Arc<TraitEnvironment>>,
) -> Evaluator<'_> {
let crate_id = owner.module(db.upcast()).krate();
Evaluator {
stack: vec![0],
heap: vec![0],
code_stack: vec![],
vtable_map: VTableMap::default(),
thread_local_storage: TlsData::default(),
static_locations: Default::default(),
db,
random_state: oorandom::Rand64::new(0),
trait_env: trait_env.unwrap_or_else(|| db.trait_environment_for_body(owner)),
crate_id,
stdout: vec![],
stderr: vec![],
assert_placeholder_ty_is_unused,
stack_depth_limit: 100,
execution_limit: EXECUTION_LIMIT,
memory_limit: 1_000_000_000, // 2GB, 1GB for stack and 1GB for heap
layout_cache: RefCell::new(Default::default()),
projected_ty_cache: RefCell::new(Default::default()),
not_special_fn_cache: RefCell::new(Default::default()),
mir_or_dyn_index_cache: RefCell::new(Default::default()),
unused_locals_store: RefCell::new(Default::default()),
cached_ptr_size: match db.target_data_layout(crate_id) {
Some(it) => it.pointer_size.bytes_usize(),
None => 8,
},
cached_fn_trait_func: db
.lang_item(crate_id, LangItem::Fn)
.and_then(|x| x.as_trait())
.and_then(|x| db.trait_data(x).method_by_name(&name![call])),
cached_fn_mut_trait_func: db
.lang_item(crate_id, LangItem::FnMut)
.and_then(|x| x.as_trait())
.and_then(|x| db.trait_data(x).method_by_name(&name![call_mut])),
cached_fn_once_trait_func: db
.lang_item(crate_id, LangItem::FnOnce)
.and_then(|x| x.as_trait())
.and_then(|x| db.trait_data(x).method_by_name(&name![call_once])),
}
}
fn place_addr(&self, p: &Place, locals: &Locals) -> Result<Address> {
Ok(self.place_addr_and_ty_and_metadata(p, locals)?.0)
}
fn place_interval(&self, p: &Place, locals: &Locals) -> Result<Interval> {
let place_addr_and_ty = self.place_addr_and_ty_and_metadata(p, locals)?;
Ok(Interval {
addr: place_addr_and_ty.0,
size: self.size_of_sized(
&place_addr_and_ty.1,
locals,
"Type of place that we need its interval",
)?,
})
}
fn ptr_size(&self) -> usize {
self.cached_ptr_size
}
fn projected_ty(&self, ty: Ty, proj: PlaceElem) -> Ty {
let pair = (ty, proj);
if let Some(r) = self.projected_ty_cache.borrow().get(&pair) {
return r.clone();
}
let (ty, proj) = pair;
let r = proj.projected_ty(
ty.clone(),
self.db,
|c, subst, f| {
let (def, _) = self.db.lookup_intern_closure(c.into());
let infer = self.db.infer(def);
let (captures, _) = infer.closure_info(&c);
let parent_subst = ClosureSubst(subst).parent_subst();
captures
.get(f)
.expect("broken closure field")
.ty
.clone()
.substitute(Interner, parent_subst)
},
self.crate_id,
);
self.projected_ty_cache.borrow_mut().insert((ty, proj), r.clone());
r
}
fn place_addr_and_ty_and_metadata<'a>(
&'a self,
p: &Place,
locals: &'a Locals,
) -> Result<(Address, Ty, Option<IntervalOrOwned>)> {
let mut addr = locals.ptr[p.local].addr;
let mut ty: Ty = locals.body.locals[p.local].ty.clone();
let mut metadata: Option<IntervalOrOwned> = None; // locals are always sized
for proj in p.projection.lookup(&locals.body.projection_store) {
let prev_ty = ty.clone();
ty = self.projected_ty(ty, proj.clone());
match proj {
ProjectionElem::Deref => {
metadata = if self.size_align_of(&ty, locals)?.is_none() {
Some(
Interval { addr: addr.offset(self.ptr_size()), size: self.ptr_size() }
.into(),
)
} else {
None
};
let it = from_bytes!(usize, self.read_memory(addr, self.ptr_size())?);
addr = Address::from_usize(it);
}
ProjectionElem::Index(op) => {
let offset = from_bytes!(
usize,
self.read_memory(locals.ptr[*op].addr, self.ptr_size())?
);
metadata = None; // Result of index is always sized
let ty_size =
self.size_of_sized(&ty, locals, "array inner type should be sized")?;
addr = addr.offset(ty_size * offset);
}
&ProjectionElem::ConstantIndex { from_end, offset } => {
let offset = if from_end {
let len = match prev_ty.kind(Interner) {
TyKind::Array(_, c) => match try_const_usize(self.db, c) {
Some(it) => it as u64,
None => {
not_supported!("indexing array with unknown const from end")
}
},
TyKind::Slice(_) => match metadata {
Some(it) => from_bytes!(u64, it.get(self)?),
None => not_supported!("slice place without metadata"),
},
_ => not_supported!("bad type for const index"),
};
(len - offset - 1) as usize
} else {
offset as usize
};
metadata = None; // Result of index is always sized
let ty_size =
self.size_of_sized(&ty, locals, "array inner type should be sized")?;
addr = addr.offset(ty_size * offset);
}
&ProjectionElem::Subslice { from, to } => {
let inner_ty = match &ty.kind(Interner) {
TyKind::Array(inner, _) | TyKind::Slice(inner) => inner.clone(),
_ => TyKind::Error.intern(Interner),
};
metadata = match metadata {
Some(it) => {
let prev_len = from_bytes!(u64, it.get(self)?);
Some(IntervalOrOwned::Owned(
(prev_len - from - to).to_le_bytes().to_vec(),
))
}
None => None,
};
let ty_size =
self.size_of_sized(&inner_ty, locals, "array inner type should be sized")?;
addr = addr.offset(ty_size * (from as usize));
}
&ProjectionElem::ClosureField(f) => {
let layout = self.layout(&prev_ty)?;
let offset = layout.fields.offset(f).bytes_usize();
addr = addr.offset(offset);
metadata = None;
}
ProjectionElem::Field(Either::Right(f)) => {
let layout = self.layout(&prev_ty)?;
let offset = layout.fields.offset(f.index as usize).bytes_usize();
addr = addr.offset(offset);
metadata = None; // tuple field is always sized FIXME: This is wrong, the tail can be unsized
}
ProjectionElem::Field(Either::Left(f)) => {
let layout = self.layout(&prev_ty)?;
let variant_layout = match &layout.variants {
Variants::Single { .. } => &layout,
Variants::Multiple { variants, .. } => {
&variants[match f.parent {
hir_def::VariantId::EnumVariantId(it) => {
RustcEnumVariantIdx(it.lookup(self.db.upcast()).index as usize)
}
_ => {
return Err(MirEvalError::TypeError(
"Multivariant layout only happens for enums",
))
}
}]
}
};
let offset = variant_layout
.fields
.offset(u32::from(f.local_id.into_raw()) as usize)
.bytes_usize();
addr = addr.offset(offset);
// Unsized field metadata is equal to the metadata of the struct
if self.size_align_of(&ty, locals)?.is_some() {
metadata = None;
}
}
ProjectionElem::OpaqueCast(_) => not_supported!("opaque cast"),
}
}
Ok((addr, ty, metadata))
}
fn layout(&self, ty: &Ty) -> Result<Arc<Layout>> {
if let Some(x) = self.layout_cache.borrow().get(ty) {
return Ok(x.clone());
}
let r = self
.db
.layout_of_ty(ty.clone(), self.trait_env.clone())
.map_err(|e| MirEvalError::LayoutError(e, ty.clone()))?;
self.layout_cache.borrow_mut().insert(ty.clone(), r.clone());
Ok(r)
}
fn layout_adt(&self, adt: AdtId, subst: Substitution) -> Result<Arc<Layout>> {
self.layout(&TyKind::Adt(chalk_ir::AdtId(adt), subst).intern(Interner))
}
fn place_ty<'a>(&'a self, p: &Place, locals: &'a Locals) -> Result<Ty> {
Ok(self.place_addr_and_ty_and_metadata(p, locals)?.1)
}
fn operand_ty(&self, o: &Operand, locals: &Locals) -> Result<Ty> {
Ok(match o {
Operand::Copy(p) | Operand::Move(p) => self.place_ty(p, locals)?,
Operand::Constant(c) => c.data(Interner).ty.clone(),
&Operand::Static(s) => {
let ty = self.db.infer(s.into())[self.db.body(s.into()).body_expr].clone();
TyKind::Ref(Mutability::Not, static_lifetime(), ty).intern(Interner)
}
})
}
fn operand_ty_and_eval(&mut self, o: &Operand, locals: &mut Locals) -> Result<IntervalAndTy> {
Ok(IntervalAndTy {
interval: self.eval_operand(o, locals)?,
ty: self.operand_ty(o, locals)?,
})
}
fn interpret_mir(
&mut self,
body: Arc<MirBody>,
args: impl Iterator<Item = IntervalOrOwned>,
) -> Result<Interval> {
if let Some(it) = self.stack_depth_limit.checked_sub(1) {
self.stack_depth_limit = it;
} else {
return Err(MirEvalError::StackOverflow);
}
let mut current_block_idx = body.start_block;
let (mut locals, prev_stack_ptr) = self.create_locals_for_body(&body, None)?;
self.fill_locals_for_body(&body, &mut locals, args)?;
let prev_code_stack = mem::take(&mut self.code_stack);
let span = (MirSpan::Unknown, body.owner);
self.code_stack.push(StackFrame { locals, destination: None, prev_stack_ptr, span });
'stack: loop {
let Some(mut my_stack_frame) = self.code_stack.pop() else {
not_supported!("missing stack frame");
};
let e = (|| {
let locals = &mut my_stack_frame.locals;
let body = locals.body.clone();
loop {
let current_block = &body.basic_blocks[current_block_idx];
if let Some(it) = self.execution_limit.checked_sub(1) {
self.execution_limit = it;
} else {
return Err(MirEvalError::ExecutionLimitExceeded);
}
for statement in &current_block.statements {
match &statement.kind {
StatementKind::Assign(l, r) => {
let addr = self.place_addr(l, locals)?;
let result = self.eval_rvalue(r, locals)?;
self.copy_from_interval_or_owned(addr, result)?;
locals.drop_flags.add_place(*l, &locals.body.projection_store);
}
StatementKind::Deinit(_) => not_supported!("de-init statement"),
StatementKind::StorageLive(_)
| StatementKind::FakeRead(_)
| StatementKind::StorageDead(_)
| StatementKind::Nop => (),
}
}
let Some(terminator) = current_block.terminator.as_ref() else {
not_supported!("block without terminator");
};
match &terminator.kind {
TerminatorKind::Goto { target } => {
current_block_idx = *target;
}
TerminatorKind::Call {
func,
args,
destination,
target,
cleanup: _,
from_hir_call: _,
} => {
let destination_interval = self.place_interval(destination, locals)?;
let fn_ty = self.operand_ty(func, locals)?;
let args = args
.iter()
.map(|it| self.operand_ty_and_eval(it, locals))
.collect::<Result<Vec<_>>>()?;
let stack_frame = match &fn_ty.kind(Interner) {
TyKind::Function(_) => {
let bytes = self.eval_operand(func, locals)?;
self.exec_fn_pointer(
bytes,
destination_interval,
&args,
locals,
*target,
terminator.span,
)?
}
TyKind::FnDef(def, generic_args) => self.exec_fn_def(
*def,
generic_args,
destination_interval,
&args,
locals,
*target,
terminator.span,
)?,
it => not_supported!("unknown function type {it:?}"),
};
locals
.drop_flags
.add_place(*destination, &locals.body.projection_store);
if let Some(stack_frame) = stack_frame {
self.code_stack.push(my_stack_frame);
current_block_idx = stack_frame.locals.body.start_block;
self.code_stack.push(stack_frame);
return Ok(None);
} else {
current_block_idx =
target.ok_or(MirEvalError::UndefinedBehavior(
"Diverging function returned".to_owned(),
))?;
}
}
TerminatorKind::SwitchInt { discr, targets } => {
let val = u128::from_le_bytes(pad16(
self.eval_operand(discr, locals)?.get(self)?,
false,
));
current_block_idx = targets.target_for_value(val);
}
TerminatorKind::Return => {
break;
}
TerminatorKind::Unreachable => {
return Err(MirEvalError::UndefinedBehavior(
"unreachable executed".to_owned(),
));
}
TerminatorKind::Drop { place, target, unwind: _ } => {
self.drop_place(place, locals, terminator.span)?;
current_block_idx = *target;
}
_ => not_supported!("unknown terminator"),
}
}
Ok(Some(my_stack_frame))
})();
let my_stack_frame = match e {
Ok(None) => continue 'stack,
Ok(Some(x)) => x,
Err(e) => {
let my_code_stack = mem::replace(&mut self.code_stack, prev_code_stack);
let mut error_stack = vec![];
for frame in my_code_stack.into_iter().rev() {
if let DefWithBodyId::FunctionId(f) = frame.locals.body.owner {
error_stack.push((Either::Left(f), frame.span.0, frame.span.1));
}
}
return Err(MirEvalError::InFunction(Box::new(e), error_stack));
}
};
let return_interval = my_stack_frame.locals.ptr[return_slot()];
self.unused_locals_store
.borrow_mut()
.entry(my_stack_frame.locals.body.owner)
.or_default()
.push(my_stack_frame.locals);
match my_stack_frame.destination {
None => {
self.code_stack = prev_code_stack;
self.stack_depth_limit += 1;
return Ok(return_interval);
}
Some(bb) => {
// We don't support const promotion, so we can't truncate the stack yet.
let _ = my_stack_frame.prev_stack_ptr;
// self.stack.truncate(my_stack_frame.prev_stack_ptr);
current_block_idx = bb;
}
}
}
}
fn fill_locals_for_body(
&mut self,
body: &MirBody,
locals: &mut Locals,
args: impl Iterator<Item = IntervalOrOwned>,
) -> Result<()> {
let mut remain_args = body.param_locals.len();
for ((l, interval), value) in locals.ptr.iter().skip(1).zip(args) {
locals.drop_flags.add_place(l.into(), &locals.body.projection_store);
match value {
IntervalOrOwned::Owned(value) => interval.write_from_bytes(self, &value)?,
IntervalOrOwned::Borrowed(value) => interval.write_from_interval(self, value)?,
}
if remain_args == 0 {
return Err(MirEvalError::TypeError("more arguments provided"));
}
remain_args -= 1;
}
if remain_args > 0 {
return Err(MirEvalError::TypeError("not enough arguments provided"));
}
Ok(())
}
fn create_locals_for_body(
&mut self,
body: &Arc<MirBody>,
destination: Option<Interval>,
) -> Result<(Locals, usize)> {
let mut locals =
match self.unused_locals_store.borrow_mut().entry(body.owner).or_default().pop() {
None => Locals {
ptr: ArenaMap::new(),
body: body.clone(),
drop_flags: DropFlags::default(),
},
Some(mut l) => {
l.drop_flags.clear();
l.body = body.clone();
l
}
};
let stack_size = {
let mut stack_ptr = self.stack.len();
for (id, it) in body.locals.iter() {
if id == return_slot() {
if let Some(destination) = destination {
locals.ptr.insert(id, destination);
continue;
}
}
let (size, align) = self.size_align_of_sized(
&it.ty,
&locals,
"no unsized local in extending stack",
)?;
while stack_ptr % align != 0 {
stack_ptr += 1;
}
let my_ptr = stack_ptr;
stack_ptr += size;
locals.ptr.insert(id, Interval { addr: Stack(my_ptr), size });
}
stack_ptr - self.stack.len()
};
let prev_stack_pointer = self.stack.len();
if stack_size > self.memory_limit {
return Err(MirEvalError::Panic(format!(
"Stack overflow. Tried to grow stack to {stack_size} bytes"
)));
}
self.stack.extend(iter::repeat(0).take(stack_size));
Ok((locals, prev_stack_pointer))
}
fn eval_rvalue(&mut self, r: &Rvalue, locals: &mut Locals) -> Result<IntervalOrOwned> {
use IntervalOrOwned::*;
Ok(match r {
Rvalue::Use(it) => Borrowed(self.eval_operand(it, locals)?),
Rvalue::Ref(_, p) => {
let (addr, _, metadata) = self.place_addr_and_ty_and_metadata(p, locals)?;
let mut r = addr.to_bytes().to_vec();
if let Some(metadata) = metadata {
r.extend(metadata.get(self)?);
}
Owned(r)
}
Rvalue::Len(p) => {
let (_, _, metadata) = self.place_addr_and_ty_and_metadata(p, locals)?;
match metadata {
Some(m) => m,
None => {
return Err(MirEvalError::TypeError(
"type without metadata is used for Rvalue::Len",
));
}
}
}
Rvalue::UnaryOp(op, val) => {
let mut c = self.eval_operand(val, locals)?.get(self)?;
let mut ty = self.operand_ty(val, locals)?;
while let TyKind::Ref(_, _, z) = ty.kind(Interner) {
ty = z.clone();
let size = self.size_of_sized(&ty, locals, "operand of unary op")?;
c = self.read_memory(Address::from_bytes(c)?, size)?;
}
if let TyKind::Scalar(chalk_ir::Scalar::Float(f)) = ty.kind(Interner) {
match f {
chalk_ir::FloatTy::F32 => {
let c = -from_bytes!(f32, c);
Owned(c.to_le_bytes().into())
}
chalk_ir::FloatTy::F64 => {
let c = -from_bytes!(f64, c);
Owned(c.to_le_bytes().into())
}
}
} else {
let mut c = c.to_vec();
if ty.as_builtin() == Some(BuiltinType::Bool) {
c[0] = 1 - c[0];
} else {
match op {
UnOp::Not => c.iter_mut().for_each(|it| *it = !*it),
UnOp::Neg => {
c.iter_mut().for_each(|it| *it = !*it);
for k in c.iter_mut() {
let o;
(*k, o) = k.overflowing_add(1);
if !o {
break;
}
}
}
}
}
Owned(c)
}
}
Rvalue::CheckedBinaryOp(op, lhs, rhs) => 'binary_op: {
let lc = self.eval_operand(lhs, locals)?;
let rc = self.eval_operand(rhs, locals)?;
let mut lc = lc.get(self)?;
let mut rc = rc.get(self)?;
let mut ty = self.operand_ty(lhs, locals)?;
while let TyKind::Ref(_, _, z) = ty.kind(Interner) {
ty = z.clone();
let size = if ty.kind(Interner) == &TyKind::Str {
if *op != BinOp::Eq {
never!("Only eq is builtin for `str`");
}
let ls = from_bytes!(usize, &lc[self.ptr_size()..self.ptr_size() * 2]);
let rs = from_bytes!(usize, &rc[self.ptr_size()..self.ptr_size() * 2]);
if ls != rs {
break 'binary_op Owned(vec![0]);
}
lc = &lc[..self.ptr_size()];
rc = &rc[..self.ptr_size()];
ls
} else {
self.size_of_sized(&ty, locals, "operand of binary op")?
};
lc = self.read_memory(Address::from_bytes(lc)?, size)?;
rc = self.read_memory(Address::from_bytes(rc)?, size)?;
}
if let TyKind::Scalar(chalk_ir::Scalar::Float(f)) = ty.kind(Interner) {
match f {
chalk_ir::FloatTy::F32 => {
let l = from_bytes!(f32, lc);
let r = from_bytes!(f32, rc);
match op {
BinOp::Ge
| BinOp::Gt
| BinOp::Le
| BinOp::Lt
| BinOp::Eq
| BinOp::Ne => {
let r = op.run_compare(l, r) as u8;
Owned(vec![r])
}
BinOp::Add | BinOp::Sub | BinOp::Mul | BinOp::Div => {
let r = match op {
BinOp::Add => l + r,
BinOp::Sub => l - r,
BinOp::Mul => l * r,
BinOp::Div => l / r,
_ => unreachable!(),
};
Owned(r.to_le_bytes().into())
}
it => not_supported!(
"invalid binop {it:?} on floating point operators"
),
}
}
chalk_ir::FloatTy::F64 => {
let l = from_bytes!(f64, lc);
let r = from_bytes!(f64, rc);
match op {
BinOp::Ge
| BinOp::Gt
| BinOp::Le
| BinOp::Lt
| BinOp::Eq
| BinOp::Ne => {
let r = op.run_compare(l, r) as u8;
Owned(vec![r])
}
BinOp::Add | BinOp::Sub | BinOp::Mul | BinOp::Div => {
let r = match op {
BinOp::Add => l + r,
BinOp::Sub => l - r,
BinOp::Mul => l * r,
BinOp::Div => l / r,
_ => unreachable!(),
};
Owned(r.to_le_bytes().into())
}
it => not_supported!(
"invalid binop {it:?} on floating point operators"
),
}
}
}
} else {
let is_signed = matches!(ty.as_builtin(), Some(BuiltinType::Int(_)));
let l128 = i128::from_le_bytes(pad16(lc, is_signed));
let r128 = i128::from_le_bytes(pad16(rc, is_signed));
let check_overflow = |r: i128| {
// FIXME: this is not very correct, and only catches the basic cases.
let r = r.to_le_bytes();
for &k in &r[lc.len()..] {
if k != 0 && (k != 255 || !is_signed) {
return Err(MirEvalError::Panic(format!("Overflow in {op:?}")));
}
}
Ok(Owned(r[0..lc.len()].into()))
};
match op {
BinOp::Ge | BinOp::Gt | BinOp::Le | BinOp::Lt | BinOp::Eq | BinOp::Ne => {
let r = op.run_compare(l128, r128) as u8;
Owned(vec![r])
}
BinOp::BitAnd
| BinOp::BitOr
| BinOp::BitXor
| BinOp::Add
| BinOp::Mul
| BinOp::Div
| BinOp::Rem
| BinOp::Sub => {
let r = match op {
BinOp::Add => l128.overflowing_add(r128).0,
BinOp::Mul => l128.overflowing_mul(r128).0,
BinOp::Div => l128.checked_div(r128).ok_or_else(|| {
MirEvalError::Panic(format!("Overflow in {op:?}"))
})?,
BinOp::Rem => l128.checked_rem(r128).ok_or_else(|| {
MirEvalError::Panic(format!("Overflow in {op:?}"))
})?,
BinOp::Sub => l128.overflowing_sub(r128).0,
BinOp::BitAnd => l128 & r128,
BinOp::BitOr => l128 | r128,
BinOp::BitXor => l128 ^ r128,
_ => unreachable!(),
};
check_overflow(r)?
}
BinOp::Shl | BinOp::Shr => {
let r = 'b: {
if let Ok(shift_amount) = u32::try_from(r128) {
let r = match op {
BinOp::Shl => l128.checked_shl(shift_amount),
BinOp::Shr => l128.checked_shr(shift_amount),
_ => unreachable!(),
};
if shift_amount as usize >= lc.len() * 8 {
return Err(MirEvalError::Panic(format!(
"Overflow in {op:?}"
)));
}
if let Some(r) = r {
break 'b r;
}
};
return Err(MirEvalError::Panic(format!("Overflow in {op:?}")));
};
Owned(r.to_le_bytes()[..lc.len()].to_vec())
}
BinOp::Offset => not_supported!("offset binop"),
}
}
}
Rvalue::Discriminant(p) => {
let ty = self.place_ty(p, locals)?;
let bytes = self.eval_place(p, locals)?.get(self)?;
let result = self.compute_discriminant(ty, bytes)?;
Owned(result.to_le_bytes().to_vec())
}
Rvalue::Repeat(it, len) => {
let len = match try_const_usize(self.db, len) {
Some(it) => it as usize,
None => not_supported!("non evaluatable array len in repeat Rvalue"),
};
let val = self.eval_operand(it, locals)?.get(self)?;
let size = len * val.len();
Owned(val.iter().copied().cycle().take(size).collect())
}
Rvalue::ShallowInitBox(_, _) => not_supported!("shallow init box"),
Rvalue::ShallowInitBoxWithAlloc(ty) => {
let Some((size, align)) = self.size_align_of(ty, locals)? else {
not_supported!("unsized box initialization");
};
let addr = self.heap_allocate(size, align)?;
Owned(addr.to_bytes().to_vec())
}
Rvalue::CopyForDeref(_) => not_supported!("copy for deref"),
Rvalue::Aggregate(kind, values) => {
let values = values
.iter()
.map(|it| self.eval_operand(it, locals))
.collect::<Result<Vec<_>>>()?;
match kind {
AggregateKind::Array(_) => {
let mut r = vec![];
for it in values {
let value = it.get(self)?;
r.extend(value);
}
Owned(r)
}
AggregateKind::Tuple(ty) => {
let layout = self.layout(ty)?;
Owned(self.make_by_layout(
layout.size.bytes_usize(),
&layout,
None,
values.iter().map(|&it| it.into()),
)?)
}
AggregateKind::Union(it, f) => {
let layout =
self.layout_adt((*it).into(), Substitution::empty(Interner))?;
let offset = layout
.fields
.offset(u32::from(f.local_id.into_raw()) as usize)
.bytes_usize();
let op = values[0].get(self)?;
let mut result = vec![0; layout.size.bytes_usize()];
result[offset..offset + op.len()].copy_from_slice(op);
Owned(result)
}
AggregateKind::Adt(it, subst) => {
let (size, variant_layout, tag) =
self.layout_of_variant(*it, subst.clone(), locals)?;
Owned(self.make_by_layout(
size,
&variant_layout,
tag,
values.iter().map(|&it| it.into()),
)?)
}
AggregateKind::Closure(ty) => {
let layout = self.layout(ty)?;
Owned(self.make_by_layout(
layout.size.bytes_usize(),
&layout,
None,
values.iter().map(|&it| it.into()),
)?)
}
}
}
Rvalue::Cast(kind, operand, target_ty) => match kind {
CastKind::Pointer(cast) => match cast {
PointerCast::ReifyFnPointer | PointerCast::ClosureFnPointer(_) => {
let current_ty = self.operand_ty(operand, locals)?;
if let TyKind::FnDef(_, _) | TyKind::Closure(_, _) =
&current_ty.kind(Interner)
{
let id = self.vtable_map.id(current_ty);
let ptr_size = self.ptr_size();
Owned(id.to_le_bytes()[0..ptr_size].to_vec())
} else {
not_supported!(
"creating a fn pointer from a non FnDef or Closure type"
);
}
}
PointerCast::Unsize => {
let current_ty = self.operand_ty(operand, locals)?;
let addr = self.eval_operand(operand, locals)?;
self.coerce_unsized(addr, &current_ty, target_ty)?
}
PointerCast::MutToConstPointer | PointerCast::UnsafeFnPointer => {
// This is no-op
Borrowed(self.eval_operand(operand, locals)?)
}
PointerCast::ArrayToPointer => {
// We should remove the metadata part if the current type is slice
Borrowed(self.eval_operand(operand, locals)?.slice(0..self.ptr_size()))
}
},
CastKind::DynStar => not_supported!("dyn star cast"),
CastKind::IntToInt
| CastKind::PointerExposeAddress
| CastKind::PointerFromExposedAddress => {
let current_ty = self.operand_ty(operand, locals)?;
let is_signed = matches!(
current_ty.kind(Interner),
TyKind::Scalar(chalk_ir::Scalar::Int(_))
);
let current = pad16(self.eval_operand(operand, locals)?.get(self)?, is_signed);
let dest_size =
self.size_of_sized(target_ty, locals, "destination of int to int cast")?;
Owned(current[0..dest_size].to_vec())
}
CastKind::FloatToInt => not_supported!("float to int cast"),
CastKind::FloatToFloat => not_supported!("float to float cast"),
CastKind::IntToFloat => not_supported!("float to int cast"),
CastKind::FnPtrToPtr => not_supported!("fn ptr to ptr cast"),
},
})
}
fn compute_discriminant(&self, ty: Ty, bytes: &[u8]) -> Result<i128> {
let layout = self.layout(&ty)?;
let &TyKind::Adt(chalk_ir::AdtId(AdtId::EnumId(e)), _) = ty.kind(Interner) else {
return Ok(0);
};
match &layout.variants {
Variants::Single { index } => {
let r = self.const_eval_discriminant(self.db.enum_data(e).variants[index.0].0)?;
Ok(r)
}
Variants::Multiple { tag, tag_encoding, variants, .. } => {
let Some(target_data_layout) = self.db.target_data_layout(self.crate_id) else {
not_supported!("missing target data layout");
};
let size = tag.size(&*target_data_layout).bytes_usize();
let offset = layout.fields.offset(0).bytes_usize(); // The only field on enum variants is the tag field
match tag_encoding {
TagEncoding::Direct => {
let tag = &bytes[offset..offset + size];
Ok(i128::from_le_bytes(pad16(tag, false)))
}
TagEncoding::Niche { untagged_variant, niche_start, .. } => {
let tag = &bytes[offset..offset + size];
let candidate_tag = i128::from_le_bytes(pad16(tag, false))
.wrapping_sub(*niche_start as i128)
as usize;
let idx = variants
.iter_enumerated()
.map(|(it, _)| it)
.filter(|it| it != untagged_variant)
.nth(candidate_tag)
.unwrap_or(*untagged_variant)
.0;
let result =
self.const_eval_discriminant(self.db.enum_data(e).variants[idx].0)?;
Ok(result)
}
}
}
}
}
fn coerce_unsized_look_through_fields<T>(
&self,
ty: &Ty,
goal: impl Fn(&TyKind) -> Option<T>,
) -> Result<T> {
let kind = ty.kind(Interner);
if let Some(it) = goal(kind) {
return Ok(it);
}
if let TyKind::Adt(id, subst) = kind {
if let AdtId::StructId(struct_id) = id.0 {
let field_types = self.db.field_types(struct_id.into());
let mut field_types = field_types.iter();
if let Some(ty) =
field_types.next().map(|it| it.1.clone().substitute(Interner, subst))
{
return self.coerce_unsized_look_through_fields(&ty, goal);
}
}
}
Err(MirEvalError::CoerceUnsizedError(ty.clone()))
}
fn coerce_unsized(
&mut self,
addr: Interval,
current_ty: &Ty,
target_ty: &Ty,
) -> Result<IntervalOrOwned> {
fn for_ptr(it: &TyKind) -> Option<Ty> {
match it {
TyKind::Raw(_, ty) | TyKind::Ref(_, _, ty) => Some(ty.clone()),
_ => None,
}
}
let target_ty = self.coerce_unsized_look_through_fields(target_ty, for_ptr)?;
let current_ty = self.coerce_unsized_look_through_fields(current_ty, for_ptr)?;
self.unsizing_ptr_from_addr(target_ty, current_ty, addr)
}
/// Adds metadata to the address and create the fat pointer result of the unsizing operation.
fn unsizing_ptr_from_addr(
&mut self,
target_ty: Ty,
current_ty: Ty,
addr: Interval,
) -> Result<IntervalOrOwned> {
use IntervalOrOwned::*;
Ok(match &target_ty.kind(Interner) {
TyKind::Slice(_) => match &current_ty.kind(Interner) {
TyKind::Array(_, size) => {
let len = match try_const_usize(self.db, size) {
None => {
not_supported!("unevaluatble len of array in coerce unsized")
}
Some(it) => it as usize,
};
let mut r = Vec::with_capacity(16);
let addr = addr.get(self)?;
r.extend(addr.iter().copied());
r.extend(len.to_le_bytes());
Owned(r)
}
t => {
not_supported!("slice unsizing from non array type {t:?}")
}
},
TyKind::Dyn(_) => {
let vtable = self.vtable_map.id(current_ty);
let mut r = Vec::with_capacity(16);
let addr = addr.get(self)?;
r.extend(addr.iter().copied());
r.extend(vtable.to_le_bytes());
Owned(r)
}
TyKind::Adt(id, target_subst) => match &current_ty.kind(Interner) {
TyKind::Adt(current_id, current_subst) => {
if id != current_id {
not_supported!("unsizing struct with different type");
}
let id = match id.0 {
AdtId::StructId(s) => s,
AdtId::UnionId(_) => not_supported!("unsizing unions"),
AdtId::EnumId(_) => not_supported!("unsizing enums"),
};
let Some((last_field, _)) =
self.db.struct_data(id).variant_data.fields().iter().next_back()
else {
not_supported!("unsizing struct without field");
};
let target_last_field = self.db.field_types(id.into())[last_field]
.clone()
.substitute(Interner, target_subst);
let current_last_field = self.db.field_types(id.into())[last_field]
.clone()
.substitute(Interner, current_subst);
return self.unsizing_ptr_from_addr(
target_last_field,
current_last_field,
addr,
);
}
_ => not_supported!("unsizing struct with non adt type"),
},
_ => not_supported!("unknown unsized cast"),
})
}
fn layout_of_variant(
&mut self,
it: VariantId,
subst: Substitution,
locals: &Locals,
) -> Result<(usize, Arc<Layout>, Option<(usize, usize, i128)>)> {
let adt = it.adt_id(self.db.upcast());
if let DefWithBodyId::VariantId(f) = locals.body.owner {
if let VariantId::EnumVariantId(it) = it {
if let AdtId::EnumId(e) = adt {
if f.lookup(self.db.upcast()).parent == e {
// Computing the exact size of enums require resolving the enum discriminants. In order to prevent loops (and
// infinite sized type errors) we use a dummy layout
let i = self.const_eval_discriminant(it)?;
return Ok((16, self.layout(&TyBuilder::unit())?, Some((0, 16, i))));
}
}
}
}
let layout = self.layout_adt(adt, subst)?;
Ok(match &layout.variants {
Variants::Single { .. } => (layout.size.bytes_usize(), layout, None),
Variants::Multiple { variants, tag, tag_encoding, .. } => {
let cx = self
.db
.target_data_layout(self.crate_id)
.ok_or(MirEvalError::TargetDataLayoutNotAvailable)?;
let enum_variant_id = match it {
VariantId::EnumVariantId(it) => it,
_ => not_supported!("multi variant layout for non-enums"),
};
let mut discriminant = self.const_eval_discriminant(enum_variant_id)?;
let lookup = enum_variant_id.lookup(self.db.upcast());
let rustc_enum_variant_idx = RustcEnumVariantIdx(lookup.index as usize);
let variant_layout = variants[rustc_enum_variant_idx].clone();
let have_tag = match tag_encoding {
TagEncoding::Direct => true,
TagEncoding::Niche { untagged_variant, niche_variants: _, niche_start } => {
if *untagged_variant == rustc_enum_variant_idx {
false
} else {
discriminant = (variants
.iter_enumerated()
.filter(|(it, _)| it != untagged_variant)
.position(|(it, _)| it == rustc_enum_variant_idx)
.unwrap() as i128)
.wrapping_add(*niche_start as i128);
true
}
}
};
(
layout.size.bytes_usize(),
Arc::new(variant_layout),
if have_tag {
Some((
layout.fields.offset(0).bytes_usize(),
tag.size(&*cx).bytes_usize(),
discriminant,
))
} else {
None
},
)
}
})
}
fn make_by_layout(
&mut self,
size: usize, // Not necessarily equal to variant_layout.size
variant_layout: &Layout,
tag: Option<(usize, usize, i128)>,
values: impl Iterator<Item = IntervalOrOwned>,
) -> Result<Vec<u8>> {
let mut result = vec![0; size];
if let Some((offset, size, value)) = tag {
match result.get_mut(offset..offset + size) {
Some(it) => it.copy_from_slice(&value.to_le_bytes()[0..size]),
None => return Err(MirEvalError::BrokenLayout(Box::new(variant_layout.clone()))),
}
}
for (i, op) in values.enumerate() {
let offset = variant_layout.fields.offset(i).bytes_usize();
let op = op.get(self)?;
match result.get_mut(offset..offset + op.len()) {
Some(it) => it.copy_from_slice(op),
None => return Err(MirEvalError::BrokenLayout(Box::new(variant_layout.clone()))),
}
}
Ok(result)
}
fn eval_operand(&mut self, it: &Operand, locals: &mut Locals) -> Result<Interval> {
Ok(match it {
Operand::Copy(p) | Operand::Move(p) => {
locals.drop_flags.remove_place(p, &locals.body.projection_store);
self.eval_place(p, locals)?
}
Operand::Static(st) => {
let addr = self.eval_static(*st, locals)?;
Interval::new(addr, self.ptr_size())
}
Operand::Constant(konst) => self.allocate_const_in_heap(locals, konst)?,
})
}
#[allow(clippy::double_parens)]
fn allocate_const_in_heap(&mut self, locals: &Locals, konst: &Const) -> Result<Interval> {
let ty = &konst.data(Interner).ty;
let chalk_ir::ConstValue::Concrete(c) = &konst.data(Interner).value else {
not_supported!("evaluating non concrete constant");
};
let result_owner;
let (v, memory_map) = match &c.interned {
ConstScalar::Bytes(v, mm) => (v, mm),
ConstScalar::UnevaluatedConst(const_id, subst) => 'b: {
let mut const_id = *const_id;
let mut subst = subst.clone();
if let hir_def::GeneralConstId::ConstId(c) = const_id {
let (c, s) = lookup_impl_const(self.db, self.trait_env.clone(), c, subst);
const_id = hir_def::GeneralConstId::ConstId(c);
subst = s;
}
result_owner = self
.db
.const_eval(const_id, subst, Some(self.trait_env.clone()))
.map_err(|e| {
let name = const_id.name(self.db.upcast());
MirEvalError::ConstEvalError(name, Box::new(e))
})?;
if let chalk_ir::ConstValue::Concrete(c) = &result_owner.data(Interner).value {
if let ConstScalar::Bytes(v, mm) = &c.interned {
break 'b (v, mm);
}
}
not_supported!("unevaluatable constant");
}
ConstScalar::Unknown => not_supported!("evaluating unknown const"),
};
let mut v: Cow<'_, [u8]> = Cow::Borrowed(v);
let patch_map = memory_map.transform_addresses(|b, align| {
let addr = self.heap_allocate(b.len(), align)?;
self.write_memory(addr, b)?;
Ok(addr.to_usize())
})?;
let (size, align) = self.size_align_of(ty, locals)?.unwrap_or((v.len(), 1));
if size != v.len() {
// Handle self enum
if size == 16 && v.len() < 16 {
v = Cow::Owned(pad16(&v, false).to_vec());
} else if size < 16 && v.len() == 16 {
v = Cow::Owned(v[0..size].to_vec());
} else {
return Err(MirEvalError::InvalidConst(konst.clone()));
}
}
let addr = self.heap_allocate(size, align)?;
self.write_memory(addr, &v)?;
self.patch_addresses(
&patch_map,
|bytes| match &memory_map {
MemoryMap::Empty | MemoryMap::Simple(_) => {
Err(MirEvalError::InvalidVTableId(from_bytes!(usize, bytes)))
}
MemoryMap::Complex(cm) => cm.vtable.ty_of_bytes(bytes),
},
addr,
ty,
locals,
)?;
Ok(Interval::new(addr, size))
}
fn eval_place(&mut self, p: &Place, locals: &Locals) -> Result<Interval> {
let addr = self.place_addr(p, locals)?;
Ok(Interval::new(
addr,
self.size_of_sized(&self.place_ty(p, locals)?, locals, "type of this place")?,
))
}
fn read_memory(&self, addr: Address, size: usize) -> Result<&[u8]> {
if size == 0 {
return Ok(&[]);
}
let (mem, pos) = match addr {
Stack(it) => (&self.stack, it),
Heap(it) => (&self.heap, it),
Invalid(it) => {
return Err(MirEvalError::UndefinedBehavior(format!(
"read invalid memory address {it} with size {size}"
)));
}
};
mem.get(pos..pos + size)
.ok_or_else(|| MirEvalError::UndefinedBehavior("out of bound memory read".to_string()))
}
fn write_memory_using_ref(&mut self, addr: Address, size: usize) -> Result<&mut [u8]> {
let (mem, pos) = match addr {
Stack(it) => (&mut self.stack, it),
Heap(it) => (&mut self.heap, it),
Invalid(it) => {
return Err(MirEvalError::UndefinedBehavior(format!(
"write invalid memory address {it} with size {size}"
)));
}
};
mem.get_mut(pos..pos + size)
.ok_or_else(|| MirEvalError::UndefinedBehavior("out of bound memory write".to_string()))
}
fn write_memory(&mut self, addr: Address, r: &[u8]) -> Result<()> {
if r.is_empty() {
return Ok(());
}
self.write_memory_using_ref(addr, r.len())?.copy_from_slice(r);
Ok(())
}
fn copy_from_interval_or_owned(&mut self, addr: Address, r: IntervalOrOwned) -> Result<()> {
match r {
IntervalOrOwned::Borrowed(r) => self.copy_from_interval(addr, r),
IntervalOrOwned::Owned(r) => self.write_memory(addr, &r),
}
}
fn copy_from_interval(&mut self, addr: Address, r: Interval) -> Result<()> {
if r.size == 0 {
return Ok(());
}
let oob = || MirEvalError::UndefinedBehavior("out of bounds memory write".to_string());
match (addr, r.addr) {
(Stack(dst), Stack(src)) => {
if self.stack.len() < src + r.size || self.stack.len() < dst + r.size {
return Err(oob());
}
self.stack.copy_within(src..src + r.size, dst)
}
(Heap(dst), Heap(src)) => {
if self.stack.len() < src + r.size || self.stack.len() < dst + r.size {
return Err(oob());
}
self.heap.copy_within(src..src + r.size, dst)
}
(Stack(dst), Heap(src)) => {
self.stack
.get_mut(dst..dst + r.size)
.ok_or_else(oob)?
.copy_from_slice(self.heap.get(src..src + r.size).ok_or_else(oob)?);
}
(Heap(dst), Stack(src)) => {
self.heap
.get_mut(dst..dst + r.size)
.ok_or_else(oob)?
.copy_from_slice(self.stack.get(src..src + r.size).ok_or_else(oob)?);
}
_ => {
return Err(MirEvalError::UndefinedBehavior(format!(
"invalid memory write at address {addr:?}"
)))
}
}
Ok(())
}
fn size_align_of(&self, ty: &Ty, locals: &Locals) -> Result<Option<(usize, usize)>> {
if let Some(layout) = self.layout_cache.borrow().get(ty) {
return Ok(layout
.is_sized()
.then(|| (layout.size.bytes_usize(), layout.align.abi.bytes() as usize)));
}
if let DefWithBodyId::VariantId(f) = locals.body.owner {
if let Some((AdtId::EnumId(e), _)) = ty.as_adt() {
if f.lookup(self.db.upcast()).parent == e {
// Computing the exact size of enums require resolving the enum discriminants. In order to prevent loops (and
// infinite sized type errors) we use a dummy size
return Ok(Some((16, 16)));
}
}
}
let layout = self.layout(ty);
if self.assert_placeholder_ty_is_unused
&& matches!(layout, Err(MirEvalError::LayoutError(LayoutError::HasPlaceholder, _)))
{
return Ok(Some((0, 1)));
}
let layout = layout?;
Ok(layout
.is_sized()
.then(|| (layout.size.bytes_usize(), layout.align.abi.bytes() as usize)))
}
/// A version of `self.size_of` which returns error if the type is unsized. `what` argument should
/// be something that complete this: `error: type {ty} was unsized. {what} should be sized`
fn size_of_sized(&self, ty: &Ty, locals: &Locals, what: &'static str) -> Result<usize> {
match self.size_align_of(ty, locals)? {
Some(it) => Ok(it.0),
None => Err(MirEvalError::TypeIsUnsized(ty.clone(), what)),
}
}
/// A version of `self.size_align_of` which returns error if the type is unsized. `what` argument should
/// be something that complete this: `error: type {ty} was unsized. {what} should be sized`
fn size_align_of_sized(
&self,
ty: &Ty,
locals: &Locals,
what: &'static str,
) -> Result<(usize, usize)> {
match self.size_align_of(ty, locals)? {
Some(it) => Ok(it),
None => Err(MirEvalError::TypeIsUnsized(ty.clone(), what)),
}
}
fn heap_allocate(&mut self, size: usize, align: usize) -> Result<Address> {
if !align.is_power_of_two() || align > 10000 {
return Err(MirEvalError::UndefinedBehavior(format!("Alignment {align} is invalid")));
}
while self.heap.len() % align != 0 {
self.heap.push(0);
}
if size.checked_add(self.heap.len()).map_or(true, |x| x > self.memory_limit) {
return Err(MirEvalError::Panic(format!("Memory allocation of {size} bytes failed")));
}
let pos = self.heap.len();
self.heap.extend(iter::repeat(0).take(size));
Ok(Address::Heap(pos))
}
fn detect_fn_trait(&self, def: FunctionId) -> Option<FnTrait> {
let def = Some(def);
if def == self.cached_fn_trait_func {
Some(FnTrait::Fn)
} else if def == self.cached_fn_mut_trait_func {
Some(FnTrait::FnMut)
} else if def == self.cached_fn_once_trait_func {
Some(FnTrait::FnOnce)
} else {
None
}
}
fn create_memory_map(
&self,
bytes: &[u8],
ty: &Ty,
locals: &Locals,
) -> Result<ComplexMemoryMap> {
fn rec(
this: &Evaluator<'_>,
bytes: &[u8],
ty: &Ty,
locals: &Locals,
mm: &mut ComplexMemoryMap,
) -> Result<()> {
match ty.kind(Interner) {
TyKind::Ref(_, _, t) => {
let size = this.size_align_of(t, locals)?;
match size {
Some((size, _)) => {
let addr_usize = from_bytes!(usize, bytes);
mm.insert(
addr_usize,
this.read_memory(Address::from_usize(addr_usize), size)?.into(),
)
}
None => {
let mut check_inner = None;
let (addr, meta) = bytes.split_at(bytes.len() / 2);
let element_size = match t.kind(Interner) {
TyKind::Str => 1,
TyKind::Slice(t) => {
check_inner = Some(t);
this.size_of_sized(t, locals, "slice inner type")?
}
TyKind::Dyn(_) => {
let t = this.vtable_map.ty_of_bytes(meta)?;
check_inner = Some(t);
this.size_of_sized(t, locals, "dyn concrete type")?
}
_ => return Ok(()),
};
let count = match t.kind(Interner) {
TyKind::Dyn(_) => 1,
_ => from_bytes!(usize, meta),
};
let size = element_size * count;
let addr = Address::from_bytes(addr)?;
let b = this.read_memory(addr, size)?;
mm.insert(addr.to_usize(), b.into());
if let Some(ty) = check_inner {
for i in 0..count {
let offset = element_size * i;
rec(this, &b[offset..offset + element_size], ty, locals, mm)?;
}
}
}
}
}
chalk_ir::TyKind::Array(inner, len) => {
let len = match try_const_usize(this.db, len) {
Some(it) => it as usize,
None => not_supported!("non evaluatable array len in patching addresses"),
};
let size = this.size_of_sized(inner, locals, "inner of array")?;
for i in 0..len {
let offset = i * size;
rec(this, &bytes[offset..offset + size], inner, locals, mm)?;
}
}
chalk_ir::TyKind::Tuple(_, subst) => {
let layout = this.layout(ty)?;
for (id, ty) in subst.iter(Interner).enumerate() {
let ty = ty.assert_ty_ref(Interner); // Tuple only has type argument
let offset = layout.fields.offset(id).bytes_usize();
let size = this.layout(ty)?.size.bytes_usize();
rec(this, &bytes[offset..offset + size], ty, locals, mm)?;
}
}
chalk_ir::TyKind::Adt(adt, subst) => match adt.0 {
AdtId::StructId(s) => {
let data = this.db.struct_data(s);
let layout = this.layout(ty)?;
let field_types = this.db.field_types(s.into());
for (f, _) in data.variant_data.fields().iter() {
let offset = layout
.fields
.offset(u32::from(f.into_raw()) as usize)
.bytes_usize();
let ty = &field_types[f].clone().substitute(Interner, subst);
let size = this.layout(ty)?.size.bytes_usize();
rec(this, &bytes[offset..offset + size], ty, locals, mm)?;
}
}
AdtId::EnumId(e) => {
let layout = this.layout(ty)?;
if let Some((v, l)) = detect_variant_from_bytes(
&layout,
this.db,
this.trait_env.clone(),
bytes,
e,
) {
let data = &this.db.enum_variant_data(v).variant_data;
let field_types = this.db.field_types(v.into());
for (f, _) in data.fields().iter() {
let offset =
l.fields.offset(u32::from(f.into_raw()) as usize).bytes_usize();
let ty = &field_types[f].clone().substitute(Interner, subst);
let size = this.layout(ty)?.size.bytes_usize();
rec(this, &bytes[offset..offset + size], ty, locals, mm)?;
}
}
}
AdtId::UnionId(_) => (),
},
_ => (),
}
Ok(())
}
let mut mm = ComplexMemoryMap::default();
rec(self, bytes, ty, locals, &mut mm)?;
Ok(mm)
}
fn patch_addresses<'vtable>(
&mut self,
patch_map: &FxHashMap<usize, usize>,
ty_of_bytes: impl Fn(&[u8]) -> Result<&'vtable Ty> + Copy,
addr: Address,
ty: &Ty,
locals: &Locals,
) -> Result<()> {
// FIXME: support indirect references
let layout = self.layout(ty)?;
let my_size = self.size_of_sized(ty, locals, "value to patch address")?;
match ty.kind(Interner) {
TyKind::Ref(_, _, t) => {
let size = self.size_align_of(t, locals)?;
match size {
Some(_) => {
let current = from_bytes!(usize, self.read_memory(addr, my_size)?);
if let Some(it) = patch_map.get(&current) {
self.write_memory(addr, &it.to_le_bytes())?;
}
}
None => {
let current = from_bytes!(usize, self.read_memory(addr, my_size / 2)?);
if let Some(it) = patch_map.get(&current) {
self.write_memory(addr, &it.to_le_bytes())?;
}
}
}
}
TyKind::Function(_) => {
let ty = ty_of_bytes(self.read_memory(addr, my_size)?)?.clone();
let new_id = self.vtable_map.id(ty);
self.write_memory(addr, &new_id.to_le_bytes())?;
}
TyKind::Adt(id, subst) => match id.0 {
AdtId::StructId(s) => {
for (i, (_, ty)) in self.db.field_types(s.into()).iter().enumerate() {
let offset = layout.fields.offset(i).bytes_usize();
let ty = ty.clone().substitute(Interner, subst);
self.patch_addresses(
patch_map,
ty_of_bytes,
addr.offset(offset),
&ty,
locals,
)?;
}
}
AdtId::UnionId(_) => (),
AdtId::EnumId(e) => {
if let Some((ev, layout)) = detect_variant_from_bytes(
&layout,
self.db,
self.trait_env.clone(),
self.read_memory(addr, layout.size.bytes_usize())?,
e,
) {
for (i, (_, ty)) in self.db.field_types(ev.into()).iter().enumerate() {
let offset = layout.fields.offset(i).bytes_usize();
let ty = ty.clone().substitute(Interner, subst);
self.patch_addresses(
patch_map,
ty_of_bytes,
addr.offset(offset),
&ty,
locals,
)?;
}
}
}
},
TyKind::Tuple(_, subst) => {
for (id, ty) in subst.iter(Interner).enumerate() {
let ty = ty.assert_ty_ref(Interner); // Tuple only has type argument
let offset = layout.fields.offset(id).bytes_usize();
self.patch_addresses(patch_map, ty_of_bytes, addr.offset(offset), ty, locals)?;
}
}
TyKind::Array(inner, len) => {
let len = match try_const_usize(self.db, len) {
Some(it) => it as usize,
None => not_supported!("non evaluatable array len in patching addresses"),
};
let size = self.size_of_sized(inner, locals, "inner of array")?;
for i in 0..len {
self.patch_addresses(
patch_map,
ty_of_bytes,
addr.offset(i * size),
inner,
locals,
)?;
}
}
TyKind::AssociatedType(_, _)
| TyKind::Scalar(_)
| TyKind::Slice(_)
| TyKind::Raw(_, _)
| TyKind::OpaqueType(_, _)
| TyKind::FnDef(_, _)
| TyKind::Str
| TyKind::Never
| TyKind::Closure(_, _)
| TyKind::Coroutine(_, _)
| TyKind::CoroutineWitness(_, _)
| TyKind::Foreign(_)
| TyKind::Error
| TyKind::Placeholder(_)
| TyKind::Dyn(_)
| TyKind::Alias(_)
| TyKind::BoundVar(_)
| TyKind::InferenceVar(_, _) => (),
}
Ok(())
}
fn exec_fn_pointer(
&mut self,
bytes: Interval,
destination: Interval,
args: &[IntervalAndTy],
locals: &Locals,
target_bb: Option<BasicBlockId>,
span: MirSpan,
) -> Result<Option<StackFrame>> {
let id = from_bytes!(usize, bytes.get(self)?);
let next_ty = self.vtable_map.ty(id)?.clone();
match &next_ty.kind(Interner) {
TyKind::FnDef(def, generic_args) => {
self.exec_fn_def(*def, generic_args, destination, args, locals, target_bb, span)
}
TyKind::Closure(id, subst) => {
self.exec_closure(*id, bytes.slice(0..0), subst, destination, args, locals, span)
}
_ => Err(MirEvalError::TypeError("function pointer to non function")),
}
}
fn exec_closure(
&mut self,
closure: ClosureId,
closure_data: Interval,
generic_args: &Substitution,
destination: Interval,
args: &[IntervalAndTy],
locals: &Locals,
span: MirSpan,
) -> Result<Option<StackFrame>> {
let mir_body = self
.db
.monomorphized_mir_body_for_closure(
closure,
generic_args.clone(),
self.trait_env.clone(),
)
.map_err(|it| MirEvalError::MirLowerErrorForClosure(closure, it))?;
let closure_data = if mir_body.locals[mir_body.param_locals[0]].ty.as_reference().is_some()
{
closure_data.addr.to_bytes().to_vec()
} else {
closure_data.get(self)?.to_owned()
};
let arg_bytes = iter::once(Ok(closure_data))
.chain(args.iter().map(|it| Ok(it.get(self)?.to_owned())))
.collect::<Result<Vec<_>>>()?;
let interval = self
.interpret_mir(mir_body, arg_bytes.into_iter().map(IntervalOrOwned::Owned))
.map_err(|e| {
MirEvalError::InFunction(
Box::new(e),
vec![(Either::Right(closure), span, locals.body.owner)],
)
})?;
destination.write_from_interval(self, interval)?;
Ok(None)
}
fn exec_fn_def(
&mut self,
def: FnDefId,
generic_args: &Substitution,
destination: Interval,
args: &[IntervalAndTy],
locals: &Locals,
target_bb: Option<BasicBlockId>,
span: MirSpan,
) -> Result<Option<StackFrame>> {
let def: CallableDefId = from_chalk(self.db, def);
let generic_args = generic_args.clone();
match def {
CallableDefId::FunctionId(def) => {
if self.detect_fn_trait(def).is_some() {
return self.exec_fn_trait(
def,
args,
generic_args,
locals,
destination,
target_bb,
span,
);
}
self.exec_fn_with_args(
def,
args,
generic_args,
locals,
destination,
target_bb,
span,
)
}
CallableDefId::StructId(id) => {
let (size, variant_layout, tag) =
self.layout_of_variant(id.into(), generic_args, locals)?;
let result = self.make_by_layout(
size,
&variant_layout,
tag,
args.iter().map(|it| it.interval.into()),
)?;
destination.write_from_bytes(self, &result)?;
Ok(None)
}
CallableDefId::EnumVariantId(id) => {
let (size, variant_layout, tag) =
self.layout_of_variant(id.into(), generic_args, locals)?;
let result = self.make_by_layout(
size,
&variant_layout,
tag,
args.iter().map(|it| it.interval.into()),
)?;
destination.write_from_bytes(self, &result)?;
Ok(None)
}
}
}
fn get_mir_or_dyn_index(
&self,
def: FunctionId,
generic_args: Substitution,
locals: &Locals,
span: MirSpan,
) -> Result<MirOrDynIndex> {
let pair = (def, generic_args);
if let Some(r) = self.mir_or_dyn_index_cache.borrow().get(&pair) {
return Ok(r.clone());
}
let (def, generic_args) = pair;
let r = if let Some(self_ty_idx) =
is_dyn_method(self.db, self.trait_env.clone(), def, generic_args.clone())
{
MirOrDynIndex::Dyn(self_ty_idx)
} else {
let (imp, generic_args) =
self.db.lookup_impl_method(self.trait_env.clone(), def, generic_args.clone());
let mir_body = self
.db
.monomorphized_mir_body(imp.into(), generic_args, self.trait_env.clone())
.map_err(|e| {
MirEvalError::InFunction(
Box::new(MirEvalError::MirLowerError(imp, e)),
vec![(Either::Left(imp), span, locals.body.owner)],
)
})?;
MirOrDynIndex::Mir(mir_body)
};
self.mir_or_dyn_index_cache.borrow_mut().insert((def, generic_args), r.clone());
Ok(r)
}
fn exec_fn_with_args(
&mut self,
def: FunctionId,
args: &[IntervalAndTy],
generic_args: Substitution,
locals: &Locals,
destination: Interval,
target_bb: Option<BasicBlockId>,
span: MirSpan,
) -> Result<Option<StackFrame>> {
if self.detect_and_exec_special_function(
def,
args,
&generic_args,
locals,
destination,
span,
)? {
return Ok(None);
}
let arg_bytes = args.iter().map(|it| IntervalOrOwned::Borrowed(it.interval));
match self.get_mir_or_dyn_index(def, generic_args.clone(), locals, span)? {
MirOrDynIndex::Dyn(self_ty_idx) => {
// In the layout of current possible receiver, which at the moment of writing this code is one of
// `&T`, `&mut T`, `Box<T>`, `Rc<T>`, `Arc<T>`, and `Pin<P>` where `P` is one of possible receivers,
// the vtable is exactly in the `[ptr_size..2*ptr_size]` bytes. So we can use it without branching on
// the type.
let first_arg = arg_bytes.clone().next().unwrap();
let first_arg = first_arg.get(self)?;
let ty = self
.vtable_map
.ty_of_bytes(&first_arg[self.ptr_size()..self.ptr_size() * 2])?;
let mut args_for_target = args.to_vec();
args_for_target[0] = IntervalAndTy {
interval: args_for_target[0].interval.slice(0..self.ptr_size()),
ty: ty.clone(),
};
let ty = ty.clone().cast(Interner);
let generics_for_target = Substitution::from_iter(
Interner,
generic_args.iter(Interner).enumerate().map(|(i, it)| {
if i == self_ty_idx {
&ty
} else {
it
}
}),
);
self.exec_fn_with_args(
def,
&args_for_target,
generics_for_target,
locals,
destination,
target_bb,
span,
)
}
MirOrDynIndex::Mir(body) => self.exec_looked_up_function(
body,
locals,
def,
arg_bytes,
span,
destination,
target_bb,
),
}
}
fn exec_looked_up_function(
&mut self,
mir_body: Arc<MirBody>,
locals: &Locals,
def: FunctionId,
arg_bytes: impl Iterator<Item = IntervalOrOwned>,
span: MirSpan,
destination: Interval,
target_bb: Option<BasicBlockId>,
) -> Result<Option<StackFrame>> {
Ok(if let Some(target_bb) = target_bb {
let (mut locals, prev_stack_ptr) =
self.create_locals_for_body(&mir_body, Some(destination))?;
self.fill_locals_for_body(&mir_body, &mut locals, arg_bytes.into_iter())?;
let span = (span, locals.body.owner);
Some(StackFrame { locals, destination: Some(target_bb), prev_stack_ptr, span })
} else {
let result = self.interpret_mir(mir_body, arg_bytes).map_err(|e| {
MirEvalError::InFunction(
Box::new(e),
vec![(Either::Left(def), span, locals.body.owner)],
)
})?;
destination.write_from_interval(self, result)?;
None
})
}
fn exec_fn_trait(
&mut self,
def: FunctionId,
args: &[IntervalAndTy],
generic_args: Substitution,
locals: &Locals,
destination: Interval,
target_bb: Option<BasicBlockId>,
span: MirSpan,
) -> Result<Option<StackFrame>> {
let func = args.first().ok_or(MirEvalError::TypeError("fn trait with no arg"))?;
let mut func_ty = func.ty.clone();
let mut func_data = func.interval;
while let TyKind::Ref(_, _, z) = func_ty.kind(Interner) {
func_ty = z.clone();
if matches!(func_ty.kind(Interner), TyKind::Dyn(_)) {
let id =
from_bytes!(usize, &func_data.get(self)?[self.ptr_size()..self.ptr_size() * 2]);
func_data = func_data.slice(0..self.ptr_size());
func_ty = self.vtable_map.ty(id)?.clone();
}
let size = self.size_of_sized(&func_ty, locals, "self type of fn trait")?;
func_data = Interval { addr: Address::from_bytes(func_data.get(self)?)?, size };
}
match &func_ty.kind(Interner) {
TyKind::FnDef(def, subst) => {
self.exec_fn_def(*def, subst, destination, &args[1..], locals, target_bb, span)
}
TyKind::Function(_) => {
self.exec_fn_pointer(func_data, destination, &args[1..], locals, target_bb, span)
}
TyKind::Closure(closure, subst) => {
return self.exec_closure(
*closure,
func_data,
&Substitution::from_iter(Interner, ClosureSubst(subst).parent_subst()),
destination,
&args[1..],
locals,
span,
);
}
_ => {
// try to execute the manual impl of `FnTrait` for structs (nightly feature used in std)
let arg0 = func;
let args = &args[1..];
let arg1 = {
let ty = TyKind::Tuple(
args.len(),
Substitution::from_iter(Interner, args.iter().map(|it| it.ty.clone())),
)
.intern(Interner);
let layout = self.layout(&ty)?;
let result = self.make_by_layout(
layout.size.bytes_usize(),
&layout,
None,
args.iter().map(|it| IntervalOrOwned::Borrowed(it.interval)),
)?;
// FIXME: there is some leak here
let size = layout.size.bytes_usize();
let addr = self.heap_allocate(size, layout.align.abi.bytes() as usize)?;
self.write_memory(addr, &result)?;
IntervalAndTy { interval: Interval { addr, size }, ty }
};
self.exec_fn_with_args(
def,
&[arg0.clone(), arg1],
generic_args,
locals,
destination,
target_bb,
span,
)
}
}
}
fn eval_static(&mut self, st: StaticId, locals: &Locals) -> Result<Address> {
if let Some(o) = self.static_locations.get(&st) {
return Ok(*o);
};
let static_data = self.db.static_data(st);
let result = if !static_data.is_extern {
let konst = self.db.const_eval_static(st).map_err(|e| {
MirEvalError::ConstEvalError(
static_data.name.as_str().unwrap_or("_").to_owned(),
Box::new(e),
)
})?;
self.allocate_const_in_heap(locals, &konst)?
} else {
let ty = &self.db.infer(st.into())[self.db.body(st.into()).body_expr];
let Some((size, align)) = self.size_align_of(ty, locals)? else {
not_supported!("unsized extern static");
};
let addr = self.heap_allocate(size, align)?;
Interval::new(addr, size)
};
let addr = self.heap_allocate(self.ptr_size(), self.ptr_size())?;
self.write_memory(addr, &result.addr.to_bytes())?;
self.static_locations.insert(st, addr);
Ok(addr)
}
fn const_eval_discriminant(&self, variant: EnumVariantId) -> Result<i128> {
let r = self.db.const_eval_discriminant(variant);
match r {
Ok(r) => Ok(r),
Err(e) => {
let db = self.db.upcast();
let loc = variant.lookup(db);
let enum_loc = loc.parent.lookup(db);
let name = format!(
"{}::{}",
enum_loc.id.item_tree(db)[enum_loc.id.value].name.display(db.upcast()),
loc.id.item_tree(db)[loc.id.value].name.display(db.upcast()),
);
Err(MirEvalError::ConstEvalError(name, Box::new(e)))
}
}
}
fn drop_place(&mut self, place: &Place, locals: &mut Locals, span: MirSpan) -> Result<()> {
let (addr, ty, metadata) = self.place_addr_and_ty_and_metadata(place, locals)?;
if !locals.drop_flags.remove_place(place, &locals.body.projection_store) {
return Ok(());
}
let metadata = match metadata {
Some(it) => it.get(self)?.to_vec(),
None => vec![],
};
self.run_drop_glue_deep(ty, locals, addr, &metadata, span)
}
fn run_drop_glue_deep(
&mut self,
ty: Ty,
locals: &Locals,
addr: Address,
_metadata: &[u8],
span: MirSpan,
) -> Result<()> {
let Some(drop_fn) = (|| {
let drop_trait = self.db.lang_item(self.crate_id, LangItem::Drop)?.as_trait()?;
self.db.trait_data(drop_trait).method_by_name(&name![drop])
})() else {
// in some tests we don't have drop trait in minicore, and
// we can ignore drop in them.
return Ok(());
};
let generic_args = Substitution::from1(Interner, ty.clone());
if let Ok(MirOrDynIndex::Mir(body)) =
self.get_mir_or_dyn_index(drop_fn, generic_args, locals, span)
{
self.exec_looked_up_function(
body,
locals,
drop_fn,
iter::once(IntervalOrOwned::Owned(addr.to_bytes().to_vec())),
span,
Interval { addr: Address::Invalid(0), size: 0 },
None,
)?;
}
match ty.kind(Interner) {
TyKind::Adt(id, subst) => {
match id.0 {
AdtId::StructId(s) => {
let data = self.db.struct_data(s);
if data.flags.contains(StructFlags::IS_MANUALLY_DROP) {
return Ok(());
}
let layout = self.layout_adt(id.0, subst.clone())?;
match data.variant_data.as_ref() {
VariantData::Record(fields) | VariantData::Tuple(fields) => {
let field_types = self.db.field_types(s.into());
for (field, _) in fields.iter() {
let offset = layout
.fields
.offset(u32::from(field.into_raw()) as usize)
.bytes_usize();
let addr = addr.offset(offset);
let ty = field_types[field].clone().substitute(Interner, subst);
self.run_drop_glue_deep(ty, locals, addr, &[], span)?;
}
}
VariantData::Unit => (),
}
}
AdtId::UnionId(_) => (), // union fields don't need drop
AdtId::EnumId(_) => (),
}
}
TyKind::AssociatedType(_, _)
| TyKind::Scalar(_)
| TyKind::Tuple(_, _)
| TyKind::Array(_, _)
| TyKind::Slice(_)
| TyKind::Raw(_, _)
| TyKind::Ref(_, _, _)
| TyKind::OpaqueType(_, _)
| TyKind::FnDef(_, _)
| TyKind::Str
| TyKind::Never
| TyKind::Closure(_, _)
| TyKind::Coroutine(_, _)
| TyKind::CoroutineWitness(_, _)
| TyKind::Foreign(_)
| TyKind::Error
| TyKind::Placeholder(_)
| TyKind::Dyn(_)
| TyKind::Alias(_)
| TyKind::Function(_)
| TyKind::BoundVar(_)
| TyKind::InferenceVar(_, _) => (),
};
Ok(())
}
fn write_to_stdout(&mut self, interval: Interval) -> Result<()> {
self.stdout.extend(interval.get(self)?.to_vec());
Ok(())
}
fn write_to_stderr(&mut self, interval: Interval) -> Result<()> {
self.stderr.extend(interval.get(self)?.to_vec());
Ok(())
}
}
pub fn render_const_using_debug_impl(
db: &dyn HirDatabase,
owner: ConstId,
c: &Const,
) -> Result<String> {
let mut evaluator = Evaluator::new(db, owner.into(), false, None);
let locals = &Locals {
ptr: ArenaMap::new(),
body: db
.mir_body(owner.into())
.map_err(|_| MirEvalError::NotSupported("unreachable".to_string()))?,
drop_flags: DropFlags::default(),
};
let data = evaluator.allocate_const_in_heap(locals, c)?;
let resolver = owner.resolver(db.upcast());
let Some(TypeNs::TraitId(debug_trait)) = resolver.resolve_path_in_type_ns_fully(
db.upcast(),
&hir_def::path::Path::from_known_path_with_no_generic(ModPath::from_segments(
hir_expand::mod_path::PathKind::Abs,
[name![core], name![fmt], name![Debug]],
)),
) else {
not_supported!("core::fmt::Debug not found");
};
let Some(debug_fmt_fn) = db.trait_data(debug_trait).method_by_name(&name![fmt]) else {
not_supported!("core::fmt::Debug::fmt not found");
};
// a1 = &[""]
let a1 = evaluator.heap_allocate(evaluator.ptr_size() * 2, evaluator.ptr_size())?;
// a2 = &[::core::fmt::ArgumentV1::new(&(THE_CONST), ::core::fmt::Debug::fmt)]
// FIXME: we should call the said function, but since its name is going to break in the next rustc version
// and its ABI doesn't break yet, we put it in memory manually.
let a2 = evaluator.heap_allocate(evaluator.ptr_size() * 2, evaluator.ptr_size())?;
evaluator.write_memory(a2, &data.addr.to_bytes())?;
let debug_fmt_fn_ptr = evaluator.vtable_map.id(TyKind::FnDef(
db.intern_callable_def(debug_fmt_fn.into()).into(),
Substitution::from1(Interner, c.data(Interner).ty.clone()),
)
.intern(Interner));
evaluator.write_memory(a2.offset(evaluator.ptr_size()), &debug_fmt_fn_ptr.to_le_bytes())?;
// a3 = ::core::fmt::Arguments::new_v1(a1, a2)
// FIXME: similarly, we should call function here, not directly working with memory.
let a3 = evaluator.heap_allocate(evaluator.ptr_size() * 6, evaluator.ptr_size())?;
evaluator.write_memory(a3.offset(2 * evaluator.ptr_size()), &a1.to_bytes())?;
evaluator.write_memory(a3.offset(3 * evaluator.ptr_size()), &[1])?;
evaluator.write_memory(a3.offset(4 * evaluator.ptr_size()), &a2.to_bytes())?;
evaluator.write_memory(a3.offset(5 * evaluator.ptr_size()), &[1])?;
let Some(ValueNs::FunctionId(format_fn)) = resolver.resolve_path_in_value_ns_fully(
db.upcast(),
&hir_def::path::Path::from_known_path_with_no_generic(ModPath::from_segments(
hir_expand::mod_path::PathKind::Abs,
[name![std], name![fmt], name![format]],
)),
) else {
not_supported!("std::fmt::format not found");
};
let interval = evaluator.interpret_mir(
db.mir_body(format_fn.into()).map_err(|e| MirEvalError::MirLowerError(format_fn, e))?,
[IntervalOrOwned::Borrowed(Interval { addr: a3, size: evaluator.ptr_size() * 6 })]
.into_iter(),
)?;
let message_string = interval.get(&evaluator)?;
let addr =
Address::from_bytes(&message_string[evaluator.ptr_size()..2 * evaluator.ptr_size()])?;
let size = from_bytes!(usize, message_string[2 * evaluator.ptr_size()..]);
Ok(std::string::String::from_utf8_lossy(evaluator.read_memory(addr, size)?).into_owned())
}
pub fn pad16(it: &[u8], is_signed: bool) -> [u8; 16] {
let is_negative = is_signed && it.last().unwrap_or(&0) > &127;
let fill_with = if is_negative { 255 } else { 0 };
it.iter()
.copied()
.chain(iter::repeat(fill_with))
.take(16)
.collect::<Vec<u8>>()
.try_into()
.expect("iterator take is not working")
}