blob: 5788d11ed43ca184c982e6de8c1db259a0809c34 [file] [log] [blame]
use super::*;
fn init_source_map() -> SourceMap {
let sm = SourceMap::new(FilePathMapping::empty());
sm.new_source_file(PathBuf::from("blork.rs").into(), "first line.\nsecond line".to_string());
sm.new_source_file(PathBuf::from("empty.rs").into(), String::new());
sm.new_source_file(PathBuf::from("blork2.rs").into(), "first line.\nsecond line".to_string());
sm
}
impl SourceMap {
/// Returns `Some(span)`, a union of the LHS and RHS span. The LHS must precede the RHS. If
/// there are gaps between LHS and RHS, the resulting union will cross these gaps.
/// For this to work,
///
/// * the syntax contexts of both spans much match,
/// * the LHS span needs to end on the same line the RHS span begins,
/// * the LHS span must start at or before the RHS span.
fn merge_spans(&self, sp_lhs: Span, sp_rhs: Span) -> Option<Span> {
// Ensure we're at the same expansion ID.
if !sp_lhs.eq_ctxt(sp_rhs) {
return None;
}
let lhs_end = match self.lookup_line(sp_lhs.hi()) {
Ok(x) => x,
Err(_) => return None,
};
let rhs_begin = match self.lookup_line(sp_rhs.lo()) {
Ok(x) => x,
Err(_) => return None,
};
// If we must cross lines to merge, don't merge.
if lhs_end.line != rhs_begin.line {
return None;
}
// Ensure these follow the expected order and that we don't overlap.
if (sp_lhs.lo() <= sp_rhs.lo()) && (sp_lhs.hi() <= sp_rhs.lo()) {
Some(sp_lhs.to(sp_rhs))
} else {
None
}
}
/// Converts an absolute `BytePos` to a `CharPos` relative to the `SourceFile`.
fn bytepos_to_file_charpos(&self, bpos: BytePos) -> CharPos {
let idx = self.lookup_source_file_idx(bpos);
let sf = &(*self.files.borrow().source_files)[idx];
let bpos = sf.relative_position(bpos);
sf.bytepos_to_file_charpos(bpos)
}
}
/// Tests `lookup_byte_offset`.
#[test]
fn t3() {
let sm = init_source_map();
let srcfbp1 = sm.lookup_byte_offset(BytePos(23));
assert_eq!(srcfbp1.sf.name, PathBuf::from("blork.rs").into());
assert_eq!(srcfbp1.pos, BytePos(23));
let srcfbp1 = sm.lookup_byte_offset(BytePos(24));
assert_eq!(srcfbp1.sf.name, PathBuf::from("empty.rs").into());
assert_eq!(srcfbp1.pos, BytePos(0));
let srcfbp2 = sm.lookup_byte_offset(BytePos(25));
assert_eq!(srcfbp2.sf.name, PathBuf::from("blork2.rs").into());
assert_eq!(srcfbp2.pos, BytePos(0));
}
/// Tests `bytepos_to_file_charpos`.
#[test]
fn t4() {
let sm = init_source_map();
let cp1 = sm.bytepos_to_file_charpos(BytePos(22));
assert_eq!(cp1, CharPos(22));
let cp2 = sm.bytepos_to_file_charpos(BytePos(25));
assert_eq!(cp2, CharPos(0));
}
/// Tests zero-length `SourceFile`s.
#[test]
fn t5() {
let sm = init_source_map();
let loc1 = sm.lookup_char_pos(BytePos(22));
assert_eq!(loc1.file.name, PathBuf::from("blork.rs").into());
assert_eq!(loc1.line, 2);
assert_eq!(loc1.col, CharPos(10));
let loc2 = sm.lookup_char_pos(BytePos(25));
assert_eq!(loc2.file.name, PathBuf::from("blork2.rs").into());
assert_eq!(loc2.line, 1);
assert_eq!(loc2.col, CharPos(0));
}
fn init_source_map_mbc() -> SourceMap {
let sm = SourceMap::new(FilePathMapping::empty());
// "€" is a three-byte UTF8 char.
sm.new_source_file(
PathBuf::from("blork.rs").into(),
"fir€st €€€€ line.\nsecond line".to_string(),
);
sm.new_source_file(
PathBuf::from("blork2.rs").into(),
"first line€€.\n€ second line".to_string(),
);
sm
}
/// Tests `bytepos_to_file_charpos` in the presence of multi-byte chars.
#[test]
fn t6() {
let sm = init_source_map_mbc();
let cp1 = sm.bytepos_to_file_charpos(BytePos(3));
assert_eq!(cp1, CharPos(3));
let cp2 = sm.bytepos_to_file_charpos(BytePos(6));
assert_eq!(cp2, CharPos(4));
let cp3 = sm.bytepos_to_file_charpos(BytePos(56));
assert_eq!(cp3, CharPos(12));
let cp4 = sm.bytepos_to_file_charpos(BytePos(61));
assert_eq!(cp4, CharPos(15));
}
/// Test `span_to_lines` for a span ending at the end of a `SourceFile`.
#[test]
fn t7() {
let sm = init_source_map();
let span = Span::with_root_ctxt(BytePos(12), BytePos(23));
let file_lines = sm.span_to_lines(span).unwrap();
assert_eq!(file_lines.file.name, PathBuf::from("blork.rs").into());
assert_eq!(file_lines.lines.len(), 1);
assert_eq!(file_lines.lines[0].line_index, 1);
}
/// Given a string like " ~~~~~~~~~~~~ ", produces a span
/// converting that range. The idea is that the string has the same
/// length as the input, and we uncover the byte positions. Note
/// that this can span lines and so on.
fn span_from_selection(input: &str, selection: &str) -> Span {
assert_eq!(input.len(), selection.len());
let left_index = selection.find('~').unwrap() as u32;
let right_index = selection.rfind('~').map_or(left_index, |x| x as u32);
Span::with_root_ctxt(BytePos(left_index), BytePos(right_index + 1))
}
/// Tests `span_to_snippet` and `span_to_lines` for a span converting 3
/// lines in the middle of a file.
#[test]
fn span_to_snippet_and_lines_spanning_multiple_lines() {
let sm = SourceMap::new(FilePathMapping::empty());
let inputtext = "aaaaa\nbbbbBB\nCCC\nDDDDDddddd\neee\n";
let selection = " \n ~~\n~~~\n~~~~~ \n \n";
sm.new_source_file(Path::new("blork.rs").to_owned().into(), inputtext.to_string());
let span = span_from_selection(inputtext, selection);
// Check that we are extracting the text we thought we were extracting.
assert_eq!(&sm.span_to_snippet(span).unwrap(), "BB\nCCC\nDDDDD");
// Check that span_to_lines gives us the complete result with the lines/cols we expected.
let lines = sm.span_to_lines(span).unwrap();
let expected = vec![
LineInfo { line_index: 1, start_col: CharPos(4), end_col: CharPos(6) },
LineInfo { line_index: 2, start_col: CharPos(0), end_col: CharPos(3) },
LineInfo { line_index: 3, start_col: CharPos(0), end_col: CharPos(5) },
];
assert_eq!(lines.lines, expected);
}
/// Test span_to_snippet for a span ending at the end of a `SourceFile`.
#[test]
fn t8() {
let sm = init_source_map();
let span = Span::with_root_ctxt(BytePos(12), BytePos(23));
let snippet = sm.span_to_snippet(span);
assert_eq!(snippet, Ok("second line".to_string()));
}
/// Test `span_to_str` for a span ending at the end of a `SourceFile`.
#[test]
fn t9() {
let sm = init_source_map();
let span = Span::with_root_ctxt(BytePos(12), BytePos(23));
let sstr = sm.span_to_diagnostic_string(span);
assert_eq!(sstr, "blork.rs:2:1: 2:12");
}
/// Tests failing to merge two spans on different lines.
#[test]
fn span_merging_fail() {
let sm = SourceMap::new(FilePathMapping::empty());
let inputtext = "bbbb BB\ncc CCC\n";
let selection1 = " ~~\n \n";
let selection2 = " \n ~~~\n";
sm.new_source_file(Path::new("blork.rs").to_owned().into(), inputtext.to_owned());
let span1 = span_from_selection(inputtext, selection1);
let span2 = span_from_selection(inputtext, selection2);
assert!(sm.merge_spans(span1, span2).is_none());
}
/// Tests loading an external source file that requires normalization.
#[test]
fn t10() {
let sm = SourceMap::new(FilePathMapping::empty());
let unnormalized = "first line.\r\nsecond line";
let normalized = "first line.\nsecond line";
let src_file = sm.new_source_file(PathBuf::from("blork.rs").into(), unnormalized.to_string());
assert_eq!(src_file.src.as_ref().unwrap().as_ref(), normalized);
assert!(
src_file.src_hash.matches(unnormalized),
"src_hash should use the source before normalization"
);
let SourceFile {
name,
src_hash,
source_len,
lines,
multibyte_chars,
non_narrow_chars,
normalized_pos,
stable_id,
..
} = (*src_file).clone();
let imported_src_file = sm.new_imported_source_file(
name,
src_hash,
stable_id,
source_len.to_u32(),
CrateNum::new(0),
FreezeLock::new(lines.read().clone()),
multibyte_chars,
non_narrow_chars,
normalized_pos,
0,
);
assert!(
imported_src_file.external_src.borrow().get_source().is_none(),
"imported source file should not have source yet"
);
imported_src_file.add_external_src(|| Some(unnormalized.to_string()));
assert_eq!(
imported_src_file.external_src.borrow().get_source().unwrap().as_ref(),
normalized,
"imported source file should be normalized"
);
}
/// Returns the span corresponding to the `n`th occurrence of `substring` in `source_text`.
trait SourceMapExtension {
fn span_substr(
&self,
file: &Lrc<SourceFile>,
source_text: &str,
substring: &str,
n: usize,
) -> Span;
}
impl SourceMapExtension for SourceMap {
fn span_substr(
&self,
file: &Lrc<SourceFile>,
source_text: &str,
substring: &str,
n: usize,
) -> Span {
eprintln!(
"span_substr(file={:?}/{:?}, substring={:?}, n={})",
file.name, file.start_pos, substring, n
);
let mut i = 0;
let mut hi = 0;
loop {
let offset = source_text[hi..].find(substring).unwrap_or_else(|| {
panic!(
"source_text `{}` does not have {} occurrences of `{}`, only {}",
source_text, n, substring, i
);
});
let lo = hi + offset;
hi = lo + substring.len();
if i == n {
let span = Span::with_root_ctxt(
BytePos(lo as u32 + file.start_pos.0),
BytePos(hi as u32 + file.start_pos.0),
);
assert_eq!(&self.span_to_snippet(span).unwrap()[..], substring);
return span;
}
i += 1;
}
}
}
// Takes a unix-style path and returns a platform specific path.
fn path(p: &str) -> PathBuf {
path_str(p).into()
}
// Takes a unix-style path and returns a platform specific path.
fn path_str(p: &str) -> String {
#[cfg(not(windows))]
{
return p.into();
}
#[cfg(windows)]
{
let mut path = p.replace('/', "\\");
if let Some(rest) = path.strip_prefix('\\') {
path = ["X:\\", rest].concat();
}
path
}
}
fn map_path_prefix(mapping: &FilePathMapping, p: &str) -> String {
// It's important that we convert to a string here because that's what
// later stages do too (e.g. in the backend), and comparing `Path` values
// won't catch some differences at the string level, e.g. "abc" and "abc/"
// compare as equal.
mapping.map_prefix(path(p)).0.to_string_lossy().to_string()
}
fn reverse_map_prefix(mapping: &FilePathMapping, p: &str) -> Option<String> {
mapping.reverse_map_prefix_heuristically(&path(p)).map(|q| q.to_string_lossy().to_string())
}
#[test]
fn path_prefix_remapping() {
// Relative to relative
{
let mapping = &FilePathMapping::new(
vec![(path("abc/def"), path("foo"))],
FileNameDisplayPreference::Remapped,
);
assert_eq!(map_path_prefix(mapping, "abc/def/src/main.rs"), path_str("foo/src/main.rs"));
assert_eq!(map_path_prefix(mapping, "abc/def"), path_str("foo"));
}
// Relative to absolute
{
let mapping = &FilePathMapping::new(
vec![(path("abc/def"), path("/foo"))],
FileNameDisplayPreference::Remapped,
);
assert_eq!(map_path_prefix(mapping, "abc/def/src/main.rs"), path_str("/foo/src/main.rs"));
assert_eq!(map_path_prefix(mapping, "abc/def"), path_str("/foo"));
}
// Absolute to relative
{
let mapping = &FilePathMapping::new(
vec![(path("/abc/def"), path("foo"))],
FileNameDisplayPreference::Remapped,
);
assert_eq!(map_path_prefix(mapping, "/abc/def/src/main.rs"), path_str("foo/src/main.rs"));
assert_eq!(map_path_prefix(mapping, "/abc/def"), path_str("foo"));
}
// Absolute to absolute
{
let mapping = &FilePathMapping::new(
vec![(path("/abc/def"), path("/foo"))],
FileNameDisplayPreference::Remapped,
);
assert_eq!(map_path_prefix(mapping, "/abc/def/src/main.rs"), path_str("/foo/src/main.rs"));
assert_eq!(map_path_prefix(mapping, "/abc/def"), path_str("/foo"));
}
}
#[test]
fn path_prefix_remapping_expand_to_absolute() {
// "virtual" working directory is relative path
let mapping = &FilePathMapping::new(
vec![(path("/foo"), path("FOO")), (path("/bar"), path("BAR"))],
FileNameDisplayPreference::Remapped,
);
let working_directory = path("/foo");
let working_directory = RealFileName::Remapped {
local_path: Some(working_directory.clone()),
virtual_name: mapping.map_prefix(working_directory).0.into_owned(),
};
assert_eq!(working_directory.remapped_path_if_available(), path("FOO"));
// Unmapped absolute path
assert_eq!(
mapping.to_embeddable_absolute_path(
RealFileName::LocalPath(path("/foo/src/main.rs")),
&working_directory
),
RealFileName::Remapped { local_path: None, virtual_name: path("FOO/src/main.rs") }
);
// Unmapped absolute path with unrelated working directory
assert_eq!(
mapping.to_embeddable_absolute_path(
RealFileName::LocalPath(path("/bar/src/main.rs")),
&working_directory
),
RealFileName::Remapped { local_path: None, virtual_name: path("BAR/src/main.rs") }
);
// Unmapped absolute path that does not match any prefix
assert_eq!(
mapping.to_embeddable_absolute_path(
RealFileName::LocalPath(path("/quux/src/main.rs")),
&working_directory
),
RealFileName::LocalPath(path("/quux/src/main.rs")),
);
// Unmapped relative path
assert_eq!(
mapping.to_embeddable_absolute_path(
RealFileName::LocalPath(path("src/main.rs")),
&working_directory
),
RealFileName::Remapped { local_path: None, virtual_name: path("FOO/src/main.rs") }
);
// Unmapped relative path with `./`
assert_eq!(
mapping.to_embeddable_absolute_path(
RealFileName::LocalPath(path("./src/main.rs")),
&working_directory
),
RealFileName::Remapped { local_path: None, virtual_name: path("FOO/src/main.rs") }
);
// Unmapped relative path that does not match any prefix
assert_eq!(
mapping.to_embeddable_absolute_path(
RealFileName::LocalPath(path("quux/src/main.rs")),
&RealFileName::LocalPath(path("/abc")),
),
RealFileName::LocalPath(path("/abc/quux/src/main.rs")),
);
// Already remapped absolute path
assert_eq!(
mapping.to_embeddable_absolute_path(
RealFileName::Remapped {
local_path: Some(path("/foo/src/main.rs")),
virtual_name: path("FOO/src/main.rs"),
},
&working_directory
),
RealFileName::Remapped { local_path: None, virtual_name: path("FOO/src/main.rs") }
);
// Already remapped absolute path, with unrelated working directory
assert_eq!(
mapping.to_embeddable_absolute_path(
RealFileName::Remapped {
local_path: Some(path("/bar/src/main.rs")),
virtual_name: path("BAR/src/main.rs"),
},
&working_directory
),
RealFileName::Remapped { local_path: None, virtual_name: path("BAR/src/main.rs") }
);
// Already remapped relative path
assert_eq!(
mapping.to_embeddable_absolute_path(
RealFileName::Remapped { local_path: None, virtual_name: path("XYZ/src/main.rs") },
&working_directory
),
RealFileName::Remapped { local_path: None, virtual_name: path("XYZ/src/main.rs") }
);
}
#[test]
fn path_prefix_remapping_reverse() {
// Ignores options without alphanumeric chars.
{
let mapping = &FilePathMapping::new(
vec![(path("abc"), path("/")), (path("def"), path("."))],
FileNameDisplayPreference::Remapped,
);
assert_eq!(reverse_map_prefix(mapping, "/hello.rs"), None);
assert_eq!(reverse_map_prefix(mapping, "./hello.rs"), None);
}
// Returns `None` if multiple options match.
{
let mapping = &FilePathMapping::new(
vec![(path("abc"), path("/redacted")), (path("def"), path("/redacted"))],
FileNameDisplayPreference::Remapped,
);
assert_eq!(reverse_map_prefix(mapping, "/redacted/hello.rs"), None);
}
// Distinct reverse mappings.
{
let mapping = &FilePathMapping::new(
vec![(path("abc"), path("/redacted")), (path("def/ghi"), path("/fake/dir"))],
FileNameDisplayPreference::Remapped,
);
assert_eq!(
reverse_map_prefix(mapping, "/redacted/path/hello.rs"),
Some(path_str("abc/path/hello.rs"))
);
assert_eq!(
reverse_map_prefix(mapping, "/fake/dir/hello.rs"),
Some(path_str("def/ghi/hello.rs"))
);
}
}
#[test]
fn test_next_point() {
let sm = SourceMap::new(FilePathMapping::empty());
sm.new_source_file(PathBuf::from("example.rs").into(), "a…b".to_string());
// Dummy spans don't advance.
let span = DUMMY_SP;
let span = sm.next_point(span);
assert_eq!(span.lo().0, 0);
assert_eq!(span.hi().0, 0);
// Span advance respect multi-byte character
let span = Span::with_root_ctxt(BytePos(0), BytePos(1));
assert_eq!(sm.span_to_snippet(span), Ok("a".to_string()));
let span = sm.next_point(span);
assert_eq!(sm.span_to_snippet(span), Ok("…".to_string()));
assert_eq!(span.lo().0, 1);
assert_eq!(span.hi().0, 4);
// An empty span pointing just before a multi-byte character should
// advance to contain the multi-byte character.
let span = Span::with_root_ctxt(BytePos(1), BytePos(1));
let span = sm.next_point(span);
assert_eq!(span.lo().0, 1);
assert_eq!(span.hi().0, 4);
let span = Span::with_root_ctxt(BytePos(1), BytePos(4));
let span = sm.next_point(span);
assert_eq!(span.lo().0, 4);
assert_eq!(span.hi().0, 5);
// Reaching to the end of file, return a span that will get error with `span_to_snippet`
let span = Span::with_root_ctxt(BytePos(4), BytePos(5));
let span = sm.next_point(span);
assert_eq!(span.lo().0, 5);
assert_eq!(span.hi().0, 6);
assert!(sm.span_to_snippet(span).is_err());
// Reaching to the end of file, return a span that will get error with `span_to_snippet`
let span = Span::with_root_ctxt(BytePos(5), BytePos(5));
let span = sm.next_point(span);
assert_eq!(span.lo().0, 5);
assert_eq!(span.hi().0, 6);
assert!(sm.span_to_snippet(span).is_err());
}
#[cfg(target_os = "linux")]
#[test]
fn read_binary_file_handles_lying_stat() {
// read_binary_file tries to read the contents of a file into an Lrc<[u8]> while
// never having two copies of the data in memory at once. This is an optimization
// to support include_bytes! with large files. But since Rust allocators are
// sensitive to alignment, our implementation can't be bootstrapped off calling
// std::fs::read. So we test that we have the same behavior even on files where
// fs::metadata lies.
// stat always says that /proc/self/cmdline is length 0, but it isn't.
let cmdline = Path::new("/proc/self/cmdline");
let len = std::fs::metadata(cmdline).unwrap().len() as usize;
let real = std::fs::read(cmdline).unwrap();
assert!(len < real.len());
let bin = RealFileLoader.read_binary_file(cmdline).unwrap();
assert_eq!(&real[..], &bin[..]);
// stat always says that /sys/devices/system/cpu/kernel_max is the size of a block.
let kernel_max = Path::new("/sys/devices/system/cpu/kernel_max");
let len = std::fs::metadata(kernel_max).unwrap().len() as usize;
let real = std::fs::read(kernel_max).unwrap();
assert!(len > real.len());
let bin = RealFileLoader.read_binary_file(kernel_max).unwrap();
assert_eq!(&real[..], &bin[..]);
}