blob: 0f1af81d9f04c7664a507fe4e92caa8d6e35e3ec [file] [log] [blame]
//! A nice interface for working with the infcx. The basic idea is to
//! do `infcx.at(cause, param_env)`, which sets the "cause" of the
//! operation as well as the surrounding parameter environment. Then
//! you can do something like `.sub(a, b)` or `.eq(a, b)` to create a
//! subtype or equality relationship respectively. The first argument
//! is always the "expected" output from the POV of diagnostics.
//!
//! Examples:
//! ```ignore (fragment)
//! infcx.at(cause, param_env).sub(a, b)
//! // requires that `a <: b`, with `a` considered the "expected" type
//!
//! infcx.at(cause, param_env).sup(a, b)
//! // requires that `b <: a`, with `a` considered the "expected" type
//!
//! infcx.at(cause, param_env).eq(a, b)
//! // requires that `a == b`, with `a` considered the "expected" type
//! ```
//! For finer-grained control, you can also do use `trace`:
//! ```ignore (fragment)
//! infcx.at(...).trace(a, b).sub(&c, &d)
//! ```
//! This will set `a` and `b` as the "root" values for
//! error-reporting, but actually operate on `c` and `d`. This is
//! sometimes useful when the types of `c` and `d` are not traceable
//! things. (That system should probably be refactored.)
use super::*;
use rustc_middle::ty::relate::{Relate, TypeRelation};
use rustc_middle::ty::{Const, ImplSubject};
/// Whether we should define opaque types or just treat them opaquely.
///
/// Currently only used to prevent predicate matching from matching anything
/// against opaque types.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum DefineOpaqueTypes {
Yes,
No,
}
#[derive(Clone, Copy)]
pub struct At<'a, 'tcx> {
pub infcx: &'a InferCtxt<'tcx>,
pub cause: &'a ObligationCause<'tcx>,
pub param_env: ty::ParamEnv<'tcx>,
}
pub struct Trace<'a, 'tcx> {
at: At<'a, 'tcx>,
a_is_expected: bool,
trace: TypeTrace<'tcx>,
}
impl<'tcx> InferCtxt<'tcx> {
#[inline]
pub fn at<'a>(
&'a self,
cause: &'a ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> At<'a, 'tcx> {
At { infcx: self, cause, param_env }
}
/// Forks the inference context, creating a new inference context with the same inference
/// variables in the same state. This can be used to "branch off" many tests from the same
/// common state.
pub fn fork(&self) -> Self {
self.fork_with_intercrate(self.intercrate)
}
/// Forks the inference context, creating a new inference context with the same inference
/// variables in the same state, except possibly changing the intercrate mode. This can be
/// used to "branch off" many tests from the same common state. Used in negative coherence.
pub fn fork_with_intercrate(&self, intercrate: bool) -> Self {
Self {
tcx: self.tcx,
defining_use_anchor: self.defining_use_anchor,
considering_regions: self.considering_regions,
skip_leak_check: self.skip_leak_check,
inner: self.inner.clone(),
lexical_region_resolutions: self.lexical_region_resolutions.clone(),
selection_cache: self.selection_cache.clone(),
evaluation_cache: self.evaluation_cache.clone(),
reported_trait_errors: self.reported_trait_errors.clone(),
reported_signature_mismatch: self.reported_signature_mismatch.clone(),
tainted_by_errors: self.tainted_by_errors.clone(),
err_count_on_creation: self.err_count_on_creation,
universe: self.universe.clone(),
intercrate,
next_trait_solver: self.next_trait_solver,
obligation_inspector: self.obligation_inspector.clone(),
}
}
}
pub trait ToTrace<'tcx>: Relate<'tcx> + Copy {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx>;
}
impl<'a, 'tcx> At<'a, 'tcx> {
/// Makes `a <: b`, where `a` may or may not be expected.
///
/// See [`At::trace_exp`] and [`Trace::sub`] for a version of
/// this method that only requires `T: Relate<'tcx>`
pub fn sub_exp<T>(
self,
define_opaque_types: DefineOpaqueTypes,
a_is_expected: bool,
a: T,
b: T,
) -> InferResult<'tcx, ()>
where
T: ToTrace<'tcx>,
{
self.trace_exp(a_is_expected, a, b).sub(define_opaque_types, a, b)
}
/// Makes `actual <: expected`. For example, if type-checking a
/// call like `foo(x)`, where `foo: fn(i32)`, you might have
/// `sup(i32, x)`, since the "expected" type is the type that
/// appears in the signature.
///
/// See [`At::trace`] and [`Trace::sub`] for a version of
/// this method that only requires `T: Relate<'tcx>`
pub fn sup<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T,
) -> InferResult<'tcx, ()>
where
T: ToTrace<'tcx>,
{
self.sub_exp(define_opaque_types, false, actual, expected)
}
/// Makes `expected <: actual`.
///
/// See [`At::trace`] and [`Trace::sub`] for a version of
/// this method that only requires `T: Relate<'tcx>`
pub fn sub<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T,
) -> InferResult<'tcx, ()>
where
T: ToTrace<'tcx>,
{
self.sub_exp(define_opaque_types, true, expected, actual)
}
/// Makes `expected <: actual`.
///
/// See [`At::trace_exp`] and [`Trace::eq`] for a version of
/// this method that only requires `T: Relate<'tcx>`
pub fn eq_exp<T>(
self,
define_opaque_types: DefineOpaqueTypes,
a_is_expected: bool,
a: T,
b: T,
) -> InferResult<'tcx, ()>
where
T: ToTrace<'tcx>,
{
self.trace_exp(a_is_expected, a, b).eq(define_opaque_types, a, b)
}
/// Makes `expected <: actual`.
///
/// See [`At::trace`] and [`Trace::eq`] for a version of
/// this method that only requires `T: Relate<'tcx>`
pub fn eq<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T,
) -> InferResult<'tcx, ()>
where
T: ToTrace<'tcx>,
{
self.trace(expected, actual).eq(define_opaque_types, expected, actual)
}
pub fn relate<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
variance: ty::Variance,
actual: T,
) -> InferResult<'tcx, ()>
where
T: ToTrace<'tcx>,
{
match variance {
ty::Variance::Covariant => self.sub(define_opaque_types, expected, actual),
ty::Variance::Invariant => self.eq(define_opaque_types, expected, actual),
ty::Variance::Contravariant => self.sup(define_opaque_types, expected, actual),
// We could make this make sense but it's not readily
// exposed and I don't feel like dealing with it. Note
// that bivariance in general does a bit more than just
// *nothing*, it checks that the types are the same
// "modulo variance" basically.
ty::Variance::Bivariant => panic!("Bivariant given to `relate()`"),
}
}
/// Computes the least-upper-bound, or mutual supertype, of two
/// values. The order of the arguments doesn't matter, but since
/// this can result in an error (e.g., if asked to compute LUB of
/// u32 and i32), it is meaningful to call one of them the
/// "expected type".
///
/// See [`At::trace`] and [`Trace::lub`] for a version of
/// this method that only requires `T: Relate<'tcx>`
pub fn lub<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T,
) -> InferResult<'tcx, T>
where
T: ToTrace<'tcx>,
{
self.trace(expected, actual).lub(define_opaque_types, expected, actual)
}
/// Computes the greatest-lower-bound, or mutual subtype, of two
/// values. As with `lub` order doesn't matter, except for error
/// cases.
///
/// See [`At::trace`] and [`Trace::glb`] for a version of
/// this method that only requires `T: Relate<'tcx>`
pub fn glb<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T,
) -> InferResult<'tcx, T>
where
T: ToTrace<'tcx>,
{
self.trace(expected, actual).glb(define_opaque_types, expected, actual)
}
/// Sets the "trace" values that will be used for
/// error-reporting, but doesn't actually perform any operation
/// yet (this is useful when you want to set the trace using
/// distinct values from those you wish to operate upon).
pub fn trace<T>(self, expected: T, actual: T) -> Trace<'a, 'tcx>
where
T: ToTrace<'tcx>,
{
self.trace_exp(true, expected, actual)
}
/// Like `trace`, but the expected value is determined by the
/// boolean argument (if true, then the first argument `a` is the
/// "expected" value).
pub fn trace_exp<T>(self, a_is_expected: bool, a: T, b: T) -> Trace<'a, 'tcx>
where
T: ToTrace<'tcx>,
{
let trace = ToTrace::to_trace(self.cause, a_is_expected, a, b);
Trace { at: self, trace, a_is_expected }
}
}
impl<'a, 'tcx> Trace<'a, 'tcx> {
/// Makes `a <: b` where `a` may or may not be expected (if
/// `a_is_expected` is true, then `a` is expected).
#[instrument(skip(self), level = "debug")]
pub fn sub<T>(self, define_opaque_types: DefineOpaqueTypes, a: T, b: T) -> InferResult<'tcx, ()>
where
T: Relate<'tcx>,
{
let Trace { at, trace, a_is_expected } = self;
at.infcx.commit_if_ok(|_| {
let mut fields = at.infcx.combine_fields(trace, at.param_env, define_opaque_types);
fields
.sub(a_is_expected)
.relate(a, b)
.map(move |_| InferOk { value: (), obligations: fields.obligations })
})
}
/// Makes `a == b`; the expectation is set by the call to
/// `trace()`.
#[instrument(skip(self), level = "debug")]
pub fn eq<T>(self, define_opaque_types: DefineOpaqueTypes, a: T, b: T) -> InferResult<'tcx, ()>
where
T: Relate<'tcx>,
{
let Trace { at, trace, a_is_expected } = self;
at.infcx.commit_if_ok(|_| {
let mut fields = at.infcx.combine_fields(trace, at.param_env, define_opaque_types);
fields
.equate(a_is_expected)
.relate(a, b)
.map(move |_| InferOk { value: (), obligations: fields.obligations })
})
}
#[instrument(skip(self), level = "debug")]
pub fn lub<T>(self, define_opaque_types: DefineOpaqueTypes, a: T, b: T) -> InferResult<'tcx, T>
where
T: Relate<'tcx>,
{
let Trace { at, trace, a_is_expected } = self;
at.infcx.commit_if_ok(|_| {
let mut fields = at.infcx.combine_fields(trace, at.param_env, define_opaque_types);
fields
.lub(a_is_expected)
.relate(a, b)
.map(move |t| InferOk { value: t, obligations: fields.obligations })
})
}
#[instrument(skip(self), level = "debug")]
pub fn glb<T>(self, define_opaque_types: DefineOpaqueTypes, a: T, b: T) -> InferResult<'tcx, T>
where
T: Relate<'tcx>,
{
let Trace { at, trace, a_is_expected } = self;
at.infcx.commit_if_ok(|_| {
let mut fields = at.infcx.combine_fields(trace, at.param_env, define_opaque_types);
fields
.glb(a_is_expected)
.relate(a, b)
.map(move |t| InferOk { value: t, obligations: fields.obligations })
})
}
}
impl<'tcx> ToTrace<'tcx> for ImplSubject<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
match (a, b) {
(ImplSubject::Trait(trait_ref_a), ImplSubject::Trait(trait_ref_b)) => {
ToTrace::to_trace(cause, a_is_expected, trait_ref_a, trait_ref_b)
}
(ImplSubject::Inherent(ty_a), ImplSubject::Inherent(ty_b)) => {
ToTrace::to_trace(cause, a_is_expected, ty_a, ty_b)
}
(ImplSubject::Trait(_), ImplSubject::Inherent(_))
| (ImplSubject::Inherent(_), ImplSubject::Trait(_)) => {
bug!("can not trace TraitRef and Ty");
}
}
}
}
impl<'tcx> ToTrace<'tcx> for Ty<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
}
}
}
impl<'tcx> ToTrace<'tcx> for ty::Region<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace { cause: cause.clone(), values: Regions(ExpectedFound::new(a_is_expected, a, b)) }
}
}
impl<'tcx> ToTrace<'tcx> for Const<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
}
}
}
impl<'tcx> ToTrace<'tcx> for ty::GenericArg<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
use GenericArgKind::*;
TypeTrace {
cause: cause.clone(),
values: match (a.unpack(), b.unpack()) {
(Lifetime(a), Lifetime(b)) => Regions(ExpectedFound::new(a_is_expected, a, b)),
(Type(a), Type(b)) => Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
(Const(a), Const(b)) => {
Terms(ExpectedFound::new(a_is_expected, a.into(), b.into()))
}
(Lifetime(_), Type(_) | Const(_))
| (Type(_), Lifetime(_) | Const(_))
| (Const(_), Lifetime(_) | Type(_)) => {
bug!("relating different kinds: {a:?} {b:?}")
}
},
}
}
}
impl<'tcx> ToTrace<'tcx> for ty::Term<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace { cause: cause.clone(), values: Terms(ExpectedFound::new(a_is_expected, a, b)) }
}
}
impl<'tcx> ToTrace<'tcx> for ty::TraitRef<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: PolyTraitRefs(ExpectedFound::new(
a_is_expected,
ty::Binder::dummy(a),
ty::Binder::dummy(b),
)),
}
}
}
impl<'tcx> ToTrace<'tcx> for ty::PolyTraitRef<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: PolyTraitRefs(ExpectedFound::new(a_is_expected, a, b)),
}
}
}
impl<'tcx> ToTrace<'tcx> for ty::AliasTy<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace { cause: cause.clone(), values: Aliases(ExpectedFound::new(a_is_expected, a, b)) }
}
}
impl<'tcx> ToTrace<'tcx> for ty::FnSig<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: PolySigs(ExpectedFound::new(
a_is_expected,
ty::Binder::dummy(a),
ty::Binder::dummy(b),
)),
}
}
}
impl<'tcx> ToTrace<'tcx> for ty::PolyFnSig<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: PolySigs(ExpectedFound::new(a_is_expected, a, b)),
}
}
}
impl<'tcx> ToTrace<'tcx> for ty::PolyExistentialTraitRef<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: ExistentialTraitRef(ExpectedFound::new(a_is_expected, a, b)),
}
}
}
impl<'tcx> ToTrace<'tcx> for ty::PolyExistentialProjection<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: ExistentialProjection(ExpectedFound::new(a_is_expected, a, b)),
}
}
}