blob: 83e0f870c8a25d47aef5147665c892ea0b486e8d [file] [log] [blame]
use crate::base::{DummyResult, ExtCtxt, MacResult, TTMacroExpander};
use crate::base::{SyntaxExtension, SyntaxExtensionKind};
use crate::expand::{ensure_complete_parse, parse_ast_fragment, AstFragment, AstFragmentKind};
use crate::mbe;
use crate::mbe::diagnostics::{annotate_doc_comment, parse_failure_msg};
use crate::mbe::macro_check;
use crate::mbe::macro_parser::{Error, ErrorReported, Failure, Success, TtParser};
use crate::mbe::macro_parser::{MatchedSeq, MatchedTokenTree, MatcherLoc};
use crate::mbe::transcribe::transcribe;
use rustc_ast as ast;
use rustc_ast::token::{self, Delimiter, NonterminalKind, Token, TokenKind, TokenKind::*};
use rustc_ast::tokenstream::{DelimSpan, TokenStream};
use rustc_ast::{NodeId, DUMMY_NODE_ID};
use rustc_ast_pretty::pprust;
use rustc_attr::{self as attr, TransparencyError};
use rustc_data_structures::fx::{FxHashMap, FxIndexMap};
use rustc_errors::{Applicability, ErrorGuaranteed};
use rustc_feature::Features;
use rustc_lint_defs::builtin::{
RUST_2021_INCOMPATIBLE_OR_PATTERNS, SEMICOLON_IN_EXPRESSIONS_FROM_MACROS,
};
use rustc_lint_defs::BuiltinLintDiagnostics;
use rustc_parse::parser::{Parser, Recovery};
use rustc_session::parse::ParseSess;
use rustc_session::Session;
use rustc_span::edition::Edition;
use rustc_span::hygiene::Transparency;
use rustc_span::symbol::{kw, sym, Ident, MacroRulesNormalizedIdent};
use rustc_span::Span;
use std::borrow::Cow;
use std::collections::hash_map::Entry;
use std::{mem, slice};
use super::diagnostics;
use super::macro_parser::{NamedMatches, NamedParseResult};
pub(crate) struct ParserAnyMacro<'a> {
parser: Parser<'a>,
/// Span of the expansion site of the macro this parser is for
site_span: Span,
/// The ident of the macro we're parsing
macro_ident: Ident,
lint_node_id: NodeId,
is_trailing_mac: bool,
arm_span: Span,
/// Whether or not this macro is defined in the current crate
is_local: bool,
}
impl<'a> ParserAnyMacro<'a> {
pub(crate) fn make(mut self: Box<ParserAnyMacro<'a>>, kind: AstFragmentKind) -> AstFragment {
let ParserAnyMacro {
site_span,
macro_ident,
ref mut parser,
lint_node_id,
arm_span,
is_trailing_mac,
is_local,
} = *self;
let snapshot = &mut parser.create_snapshot_for_diagnostic();
let fragment = match parse_ast_fragment(parser, kind) {
Ok(f) => f,
Err(err) => {
diagnostics::emit_frag_parse_err(err, parser, snapshot, site_span, arm_span, kind);
return kind.dummy(site_span);
}
};
// We allow semicolons at the end of expressions -- e.g., the semicolon in
// `macro_rules! m { () => { panic!(); } }` isn't parsed by `.parse_expr()`,
// but `m!()` is allowed in expression positions (cf. issue #34706).
if kind == AstFragmentKind::Expr && parser.token == token::Semi {
if is_local {
parser.sess.buffer_lint_with_diagnostic(
SEMICOLON_IN_EXPRESSIONS_FROM_MACROS,
parser.token.span,
lint_node_id,
"trailing semicolon in macro used in expression position",
BuiltinLintDiagnostics::TrailingMacro(is_trailing_mac, macro_ident),
);
}
parser.bump();
}
// Make sure we don't have any tokens left to parse so we don't silently drop anything.
let path = ast::Path::from_ident(macro_ident.with_span_pos(site_span));
ensure_complete_parse(parser, &path, kind.name(), site_span);
fragment
}
}
struct MacroRulesMacroExpander {
node_id: NodeId,
name: Ident,
span: Span,
transparency: Transparency,
lhses: Vec<Vec<MatcherLoc>>,
rhses: Vec<mbe::TokenTree>,
valid: bool,
}
impl TTMacroExpander for MacroRulesMacroExpander {
fn expand<'cx>(
&self,
cx: &'cx mut ExtCtxt<'_>,
sp: Span,
input: TokenStream,
) -> Box<dyn MacResult + 'cx> {
if !self.valid {
return DummyResult::any(sp);
}
expand_macro(
cx,
sp,
self.span,
self.node_id,
self.name,
self.transparency,
input,
&self.lhses,
&self.rhses,
)
}
}
fn macro_rules_dummy_expander<'cx>(
_: &'cx mut ExtCtxt<'_>,
span: Span,
_: TokenStream,
) -> Box<dyn MacResult + 'cx> {
DummyResult::any(span)
}
fn trace_macros_note(cx_expansions: &mut FxIndexMap<Span, Vec<String>>, sp: Span, message: String) {
let sp = sp.macro_backtrace().last().map_or(sp, |trace| trace.call_site);
cx_expansions.entry(sp).or_default().push(message);
}
pub(super) trait Tracker<'matcher> {
/// The contents of `ParseResult::Failure`.
type Failure;
/// Arm failed to match. If the token is `token::Eof`, it indicates an unexpected
/// end of macro invocation. Otherwise, it indicates that no rules expected the given token.
/// The usize is the approximate position of the token in the input token stream.
fn build_failure(tok: Token, position: usize, msg: &'static str) -> Self::Failure;
/// This is called before trying to match next MatcherLoc on the current token.
fn before_match_loc(&mut self, _parser: &TtParser, _matcher: &'matcher MatcherLoc) {}
/// This is called after an arm has been parsed, either successfully or unsuccessfully. When this is called,
/// `before_match_loc` was called at least once (with a `MatcherLoc::Eof`).
fn after_arm(&mut self, _result: &NamedParseResult<Self::Failure>) {}
/// For tracing.
fn description() -> &'static str;
fn recovery() -> Recovery {
Recovery::Forbidden
}
}
/// A noop tracker that is used in the hot path of the expansion, has zero overhead thanks to monomorphization.
pub(super) struct NoopTracker;
impl<'matcher> Tracker<'matcher> for NoopTracker {
type Failure = ();
fn build_failure(_tok: Token, _position: usize, _msg: &'static str) -> Self::Failure {}
fn description() -> &'static str {
"none"
}
}
/// Expands the rules based macro defined by `lhses` and `rhses` for a given
/// input `arg`.
#[instrument(skip(cx, transparency, arg, lhses, rhses))]
fn expand_macro<'cx>(
cx: &'cx mut ExtCtxt<'_>,
sp: Span,
def_span: Span,
node_id: NodeId,
name: Ident,
transparency: Transparency,
arg: TokenStream,
lhses: &[Vec<MatcherLoc>],
rhses: &[mbe::TokenTree],
) -> Box<dyn MacResult + 'cx> {
let sess = &cx.sess.parse_sess;
// Macros defined in the current crate have a real node id,
// whereas macros from an external crate have a dummy id.
let is_local = node_id != DUMMY_NODE_ID;
if cx.trace_macros() {
let msg = format!("expanding `{}! {{ {} }}`", name, pprust::tts_to_string(&arg));
trace_macros_note(&mut cx.expansions, sp, msg);
}
// Track nothing for the best performance.
let try_success_result = try_match_macro(sess, name, &arg, lhses, &mut NoopTracker);
match try_success_result {
Ok((i, named_matches)) => {
let (rhs, rhs_span): (&mbe::Delimited, DelimSpan) = match &rhses[i] {
mbe::TokenTree::Delimited(span, _, delimited) => (&delimited, *span),
_ => cx.dcx().span_bug(sp, "malformed macro rhs"),
};
let arm_span = rhses[i].span();
// rhs has holes ( `$id` and `$(...)` that need filled)
let tts = match transcribe(cx, &named_matches, rhs, rhs_span, transparency) {
Ok(tts) => tts,
Err(err) => {
err.emit();
return DummyResult::any(arm_span);
}
};
if cx.trace_macros() {
let msg = format!("to `{}`", pprust::tts_to_string(&tts));
trace_macros_note(&mut cx.expansions, sp, msg);
}
let p = Parser::new(sess, tts, None);
if is_local {
cx.resolver.record_macro_rule_usage(node_id, i);
}
// Let the context choose how to interpret the result.
// Weird, but useful for X-macros.
Box::new(ParserAnyMacro {
parser: p,
// Pass along the original expansion site and the name of the macro
// so we can print a useful error message if the parse of the expanded
// macro leaves unparsed tokens.
site_span: sp,
macro_ident: name,
lint_node_id: cx.current_expansion.lint_node_id,
is_trailing_mac: cx.current_expansion.is_trailing_mac,
arm_span,
is_local,
})
}
Err(CanRetry::No(_)) => {
debug!("Will not retry matching as an error was emitted already");
DummyResult::any(sp)
}
Err(CanRetry::Yes) => {
// Retry and emit a better error.
diagnostics::failed_to_match_macro(cx, sp, def_span, name, arg, lhses)
}
}
}
pub(super) enum CanRetry {
Yes,
/// We are not allowed to retry macro expansion as a fatal error has been emitted already.
No(ErrorGuaranteed),
}
/// Try expanding the macro. Returns the index of the successful arm and its named_matches if it was successful,
/// and nothing if it failed. On failure, it's the callers job to use `track` accordingly to record all errors
/// correctly.
#[instrument(level = "debug", skip(sess, arg, lhses, track), fields(tracking = %T::description()))]
pub(super) fn try_match_macro<'matcher, T: Tracker<'matcher>>(
sess: &ParseSess,
name: Ident,
arg: &TokenStream,
lhses: &'matcher [Vec<MatcherLoc>],
track: &mut T,
) -> Result<(usize, NamedMatches), CanRetry> {
// We create a base parser that can be used for the "black box" parts.
// Every iteration needs a fresh copy of that parser. However, the parser
// is not mutated on many of the iterations, particularly when dealing with
// macros like this:
//
// macro_rules! foo {
// ("a") => (A);
// ("b") => (B);
// ("c") => (C);
// // ... etc. (maybe hundreds more)
// }
//
// as seen in the `html5ever` benchmark. We use a `Cow` so that the base
// parser is only cloned when necessary (upon mutation). Furthermore, we
// reinitialize the `Cow` with the base parser at the start of every
// iteration, so that any mutated parsers are not reused. This is all quite
// hacky, but speeds up the `html5ever` benchmark significantly. (Issue
// 68836 suggests a more comprehensive but more complex change to deal with
// this situation.)
let parser = parser_from_cx(sess, arg.clone(), T::recovery());
// Try each arm's matchers.
let mut tt_parser = TtParser::new(name);
for (i, lhs) in lhses.iter().enumerate() {
let _tracing_span = trace_span!("Matching arm", %i);
// Take a snapshot of the state of pre-expansion gating at this point.
// This is used so that if a matcher is not `Success(..)`ful,
// then the spans which became gated when parsing the unsuccessful matcher
// are not recorded. On the first `Success(..)`ful matcher, the spans are merged.
let mut gated_spans_snapshot = mem::take(&mut *sess.gated_spans.spans.borrow_mut());
let result = tt_parser.parse_tt(&mut Cow::Borrowed(&parser), lhs, track);
track.after_arm(&result);
match result {
Success(named_matches) => {
debug!("Parsed arm successfully");
// The matcher was `Success(..)`ful.
// Merge the gated spans from parsing the matcher with the preexisting ones.
sess.gated_spans.merge(gated_spans_snapshot);
return Ok((i, named_matches));
}
Failure(_) => {
trace!("Failed to match arm, trying the next one");
// Try the next arm.
}
Error(_, _) => {
debug!("Fatal error occurred during matching");
// We haven't emitted an error yet, so we can retry.
return Err(CanRetry::Yes);
}
ErrorReported(guarantee) => {
debug!("Fatal error occurred and was reported during matching");
// An error has been reported already, we cannot retry as that would cause duplicate errors.
return Err(CanRetry::No(guarantee));
}
}
// The matcher was not `Success(..)`ful.
// Restore to the state before snapshotting and maybe try again.
mem::swap(&mut gated_spans_snapshot, &mut sess.gated_spans.spans.borrow_mut());
}
Err(CanRetry::Yes)
}
// Note that macro-by-example's input is also matched against a token tree:
// $( $lhs:tt => $rhs:tt );+
//
// Holy self-referential!
/// Converts a macro item into a syntax extension.
pub fn compile_declarative_macro(
sess: &Session,
features: &Features,
def: &ast::Item,
edition: Edition,
) -> (SyntaxExtension, Vec<(usize, Span)>) {
debug!("compile_declarative_macro: {:?}", def);
let mk_syn_ext = |expander| {
SyntaxExtension::new(
sess,
features,
SyntaxExtensionKind::LegacyBang(expander),
def.span,
Vec::new(),
edition,
def.ident.name,
&def.attrs,
def.id != DUMMY_NODE_ID,
)
};
let dummy_syn_ext = || (mk_syn_ext(Box::new(macro_rules_dummy_expander)), Vec::new());
let dcx = &sess.parse_sess.dcx;
let lhs_nm = Ident::new(sym::lhs, def.span);
let rhs_nm = Ident::new(sym::rhs, def.span);
let tt_spec = Some(NonterminalKind::TT);
let macro_def = match &def.kind {
ast::ItemKind::MacroDef(def) => def,
_ => unreachable!(),
};
let macro_rules = macro_def.macro_rules;
// Parse the macro_rules! invocation
// The pattern that macro_rules matches.
// The grammar for macro_rules! is:
// $( $lhs:tt => $rhs:tt );+
// ...quasiquoting this would be nice.
// These spans won't matter, anyways
let argument_gram = vec![
mbe::TokenTree::Sequence(
DelimSpan::dummy(),
mbe::SequenceRepetition {
tts: vec![
mbe::TokenTree::MetaVarDecl(def.span, lhs_nm, tt_spec),
mbe::TokenTree::token(token::FatArrow, def.span),
mbe::TokenTree::MetaVarDecl(def.span, rhs_nm, tt_spec),
],
separator: Some(Token::new(
if macro_rules { token::Semi } else { token::Comma },
def.span,
)),
kleene: mbe::KleeneToken::new(mbe::KleeneOp::OneOrMore, def.span),
num_captures: 2,
},
),
// to phase into semicolon-termination instead of semicolon-separation
mbe::TokenTree::Sequence(
DelimSpan::dummy(),
mbe::SequenceRepetition {
tts: vec![mbe::TokenTree::token(
if macro_rules { token::Semi } else { token::Comma },
def.span,
)],
separator: None,
kleene: mbe::KleeneToken::new(mbe::KleeneOp::ZeroOrMore, def.span),
num_captures: 0,
},
),
];
// Convert it into `MatcherLoc` form.
let argument_gram = mbe::macro_parser::compute_locs(&argument_gram);
let create_parser = || {
let body = macro_def.body.tokens.clone();
Parser::new(&sess.parse_sess, body, rustc_parse::MACRO_ARGUMENTS)
};
let parser = create_parser();
let mut tt_parser =
TtParser::new(Ident::with_dummy_span(if macro_rules { kw::MacroRules } else { kw::Macro }));
let argument_map =
match tt_parser.parse_tt(&mut Cow::Owned(parser), &argument_gram, &mut NoopTracker) {
Success(m) => m,
Failure(()) => {
// The fast `NoopTracker` doesn't have any info on failure, so we need to retry it
// with another one that gives us the information we need.
// For this we need to reclone the macro body as the previous parser consumed it.
let retry_parser = create_parser();
let parse_result = tt_parser.parse_tt(
&mut Cow::Owned(retry_parser),
&argument_gram,
&mut diagnostics::FailureForwarder,
);
let Failure((token, _, msg)) = parse_result else {
unreachable!("matcher returned something other than Failure after retry");
};
let s = parse_failure_msg(&token);
let sp = token.span.substitute_dummy(def.span);
let mut err = sess.dcx().struct_span_err(sp, s);
err.span_label(sp, msg);
annotate_doc_comment(&mut err, sess.source_map(), sp);
err.emit();
return dummy_syn_ext();
}
Error(sp, msg) => {
sess.dcx().span_err(sp.substitute_dummy(def.span), msg);
return dummy_syn_ext();
}
ErrorReported(_) => {
return dummy_syn_ext();
}
};
let mut valid = true;
// Extract the arguments:
let lhses = match &argument_map[&MacroRulesNormalizedIdent::new(lhs_nm)] {
MatchedSeq(s) => s
.iter()
.map(|m| {
if let MatchedTokenTree(tt) = m {
let tt = mbe::quoted::parse(
&TokenStream::new(vec![tt.clone()]),
true,
sess,
def.id,
features,
edition,
)
.pop()
.unwrap();
// We don't handle errors here, the driver will abort
// after parsing/expansion. we can report every error in every macro this way.
valid &= check_lhs_nt_follows(sess, def, &tt).is_ok();
return tt;
}
sess.dcx().span_bug(def.span, "wrong-structured lhs")
})
.collect::<Vec<mbe::TokenTree>>(),
_ => sess.dcx().span_bug(def.span, "wrong-structured lhs"),
};
let rhses = match &argument_map[&MacroRulesNormalizedIdent::new(rhs_nm)] {
MatchedSeq(s) => s
.iter()
.map(|m| {
if let MatchedTokenTree(tt) = m {
return mbe::quoted::parse(
&TokenStream::new(vec![tt.clone()]),
false,
sess,
def.id,
features,
edition,
)
.pop()
.unwrap();
}
sess.dcx().span_bug(def.span, "wrong-structured rhs")
})
.collect::<Vec<mbe::TokenTree>>(),
_ => sess.dcx().span_bug(def.span, "wrong-structured rhs"),
};
for rhs in &rhses {
valid &= check_rhs(sess, rhs);
}
// don't abort iteration early, so that errors for multiple lhses can be reported
for lhs in &lhses {
valid &= check_lhs_no_empty_seq(sess, slice::from_ref(lhs));
}
valid &= macro_check::check_meta_variables(&sess.parse_sess, def.id, def.span, &lhses, &rhses);
let (transparency, transparency_error) = attr::find_transparency(&def.attrs, macro_rules);
match transparency_error {
Some(TransparencyError::UnknownTransparency(value, span)) => {
dcx.span_err(span, format!("unknown macro transparency: `{value}`"));
}
Some(TransparencyError::MultipleTransparencyAttrs(old_span, new_span)) => {
dcx.span_err(vec![old_span, new_span], "multiple macro transparency attributes");
}
None => {}
}
// Compute the spans of the macro rules for unused rule linting.
// To avoid warning noise, only consider the rules of this
// macro for the lint, if all rules are valid.
// Also, we are only interested in non-foreign macros.
let rule_spans = if valid && def.id != DUMMY_NODE_ID {
lhses
.iter()
.zip(rhses.iter())
.enumerate()
// If the rhs contains an invocation like compile_error!,
// don't consider the rule for the unused rule lint.
.filter(|(_idx, (_lhs, rhs))| !has_compile_error_macro(rhs))
// We only take the span of the lhs here,
// so that the spans of created warnings are smaller.
.map(|(idx, (lhs, _rhs))| (idx, lhs.span()))
.collect::<Vec<_>>()
} else {
Vec::new()
};
// Convert the lhses into `MatcherLoc` form, which is better for doing the
// actual matching. Unless the matcher is invalid.
let lhses = if valid {
lhses
.iter()
.map(|lhs| {
// Ignore the delimiters around the matcher.
match lhs {
mbe::TokenTree::Delimited(.., delimited) => {
mbe::macro_parser::compute_locs(&delimited.tts)
}
_ => sess.dcx().span_bug(def.span, "malformed macro lhs"),
}
})
.collect()
} else {
vec![]
};
let expander = Box::new(MacroRulesMacroExpander {
name: def.ident,
span: def.span,
node_id: def.id,
transparency,
lhses,
rhses,
valid,
});
(mk_syn_ext(expander), rule_spans)
}
fn check_lhs_nt_follows(
sess: &Session,
def: &ast::Item,
lhs: &mbe::TokenTree,
) -> Result<(), ErrorGuaranteed> {
// lhs is going to be like TokenTree::Delimited(...), where the
// entire lhs is those tts. Or, it can be a "bare sequence", not wrapped in parens.
if let mbe::TokenTree::Delimited(.., delimited) = lhs {
check_matcher(sess, def, &delimited.tts)
} else {
let msg = "invalid macro matcher; matchers must be contained in balanced delimiters";
Err(sess.dcx().span_err(lhs.span(), msg))
}
}
fn is_empty_token_tree(sess: &Session, seq: &mbe::SequenceRepetition) -> bool {
if seq.separator.is_some() {
false
} else {
let mut is_empty = true;
let mut iter = seq.tts.iter().peekable();
while let Some(tt) = iter.next() {
match tt {
mbe::TokenTree::MetaVarDecl(_, _, Some(NonterminalKind::Vis)) => {}
mbe::TokenTree::Token(t @ Token { kind: DocComment(..), .. }) => {
let mut now = t;
while let Some(&mbe::TokenTree::Token(
next @ Token { kind: DocComment(..), .. },
)) = iter.peek()
{
now = next;
iter.next();
}
let span = t.span.to(now.span);
sess.dcx().span_note(span, "doc comments are ignored in matcher position");
}
mbe::TokenTree::Sequence(_, sub_seq)
if (sub_seq.kleene.op == mbe::KleeneOp::ZeroOrMore
|| sub_seq.kleene.op == mbe::KleeneOp::ZeroOrOne) => {}
_ => is_empty = false,
}
}
is_empty
}
}
/// Checks that the lhs contains no repetition which could match an empty token
/// tree, because then the matcher would hang indefinitely.
fn check_lhs_no_empty_seq(sess: &Session, tts: &[mbe::TokenTree]) -> bool {
use mbe::TokenTree;
for tt in tts {
match tt {
TokenTree::Token(..)
| TokenTree::MetaVar(..)
| TokenTree::MetaVarDecl(..)
| TokenTree::MetaVarExpr(..) => (),
TokenTree::Delimited(.., del) => {
if !check_lhs_no_empty_seq(sess, &del.tts) {
return false;
}
}
TokenTree::Sequence(span, seq) => {
if is_empty_token_tree(sess, seq) {
let sp = span.entire();
sess.dcx().span_err(sp, "repetition matches empty token tree");
return false;
}
if !check_lhs_no_empty_seq(sess, &seq.tts) {
return false;
}
}
}
}
true
}
fn check_rhs(sess: &Session, rhs: &mbe::TokenTree) -> bool {
match *rhs {
mbe::TokenTree::Delimited(..) => return true,
_ => {
sess.dcx().span_err(rhs.span(), "macro rhs must be delimited");
}
}
false
}
fn check_matcher(
sess: &Session,
def: &ast::Item,
matcher: &[mbe::TokenTree],
) -> Result<(), ErrorGuaranteed> {
let first_sets = FirstSets::new(matcher);
let empty_suffix = TokenSet::empty();
check_matcher_core(sess, def, &first_sets, matcher, &empty_suffix)?;
Ok(())
}
fn has_compile_error_macro(rhs: &mbe::TokenTree) -> bool {
match rhs {
mbe::TokenTree::Delimited(.., d) => {
let has_compile_error = d.tts.array_windows::<3>().any(|[ident, bang, args]| {
if let mbe::TokenTree::Token(ident) = ident
&& let TokenKind::Ident(ident, _) = ident.kind
&& ident == sym::compile_error
&& let mbe::TokenTree::Token(bang) = bang
&& let TokenKind::Not = bang.kind
&& let mbe::TokenTree::Delimited(.., del) = args
&& del.delim != Delimiter::Invisible
{
true
} else {
false
}
});
if has_compile_error { true } else { d.tts.iter().any(has_compile_error_macro) }
}
_ => false,
}
}
// `The FirstSets` for a matcher is a mapping from subsequences in the
// matcher to the FIRST set for that subsequence.
//
// This mapping is partially precomputed via a backwards scan over the
// token trees of the matcher, which provides a mapping from each
// repetition sequence to its *first* set.
//
// (Hypothetically, sequences should be uniquely identifiable via their
// spans, though perhaps that is false, e.g., for macro-generated macros
// that do not try to inject artificial span information. My plan is
// to try to catch such cases ahead of time and not include them in
// the precomputed mapping.)
struct FirstSets<'tt> {
// this maps each TokenTree::Sequence `$(tt ...) SEP OP` that is uniquely identified by its
// span in the original matcher to the First set for the inner sequence `tt ...`.
//
// If two sequences have the same span in a matcher, then map that
// span to None (invalidating the mapping here and forcing the code to
// use a slow path).
first: FxHashMap<Span, Option<TokenSet<'tt>>>,
}
impl<'tt> FirstSets<'tt> {
fn new(tts: &'tt [mbe::TokenTree]) -> FirstSets<'tt> {
use mbe::TokenTree;
let mut sets = FirstSets { first: FxHashMap::default() };
build_recur(&mut sets, tts);
return sets;
// walks backward over `tts`, returning the FIRST for `tts`
// and updating `sets` at the same time for all sequence
// substructure we find within `tts`.
fn build_recur<'tt>(sets: &mut FirstSets<'tt>, tts: &'tt [TokenTree]) -> TokenSet<'tt> {
let mut first = TokenSet::empty();
for tt in tts.iter().rev() {
match tt {
TokenTree::Token(..)
| TokenTree::MetaVar(..)
| TokenTree::MetaVarDecl(..)
| TokenTree::MetaVarExpr(..) => {
first.replace_with(TtHandle::TtRef(tt));
}
TokenTree::Delimited(span, _, delimited) => {
build_recur(sets, &delimited.tts);
first.replace_with(TtHandle::from_token_kind(
token::OpenDelim(delimited.delim),
span.open,
));
}
TokenTree::Sequence(sp, seq_rep) => {
let subfirst = build_recur(sets, &seq_rep.tts);
match sets.first.entry(sp.entire()) {
Entry::Vacant(vac) => {
vac.insert(Some(subfirst.clone()));
}
Entry::Occupied(mut occ) => {
// if there is already an entry, then a span must have collided.
// This should not happen with typical macro_rules macros,
// but syntax extensions need not maintain distinct spans,
// so distinct syntax trees can be assigned the same span.
// In such a case, the map cannot be trusted; so mark this
// entry as unusable.
occ.insert(None);
}
}
// If the sequence contents can be empty, then the first
// token could be the separator token itself.
if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
first.add_one_maybe(TtHandle::from_token(sep.clone()));
}
// Reverse scan: Sequence comes before `first`.
if subfirst.maybe_empty
|| seq_rep.kleene.op == mbe::KleeneOp::ZeroOrMore
|| seq_rep.kleene.op == mbe::KleeneOp::ZeroOrOne
{
// If sequence is potentially empty, then
// union them (preserving first emptiness).
first.add_all(&TokenSet { maybe_empty: true, ..subfirst });
} else {
// Otherwise, sequence guaranteed
// non-empty; replace first.
first = subfirst;
}
}
}
}
first
}
}
// walks forward over `tts` until all potential FIRST tokens are
// identified.
fn first(&self, tts: &'tt [mbe::TokenTree]) -> TokenSet<'tt> {
use mbe::TokenTree;
let mut first = TokenSet::empty();
for tt in tts.iter() {
assert!(first.maybe_empty);
match tt {
TokenTree::Token(..)
| TokenTree::MetaVar(..)
| TokenTree::MetaVarDecl(..)
| TokenTree::MetaVarExpr(..) => {
first.add_one(TtHandle::TtRef(tt));
return first;
}
TokenTree::Delimited(span, _, delimited) => {
first.add_one(TtHandle::from_token_kind(
token::OpenDelim(delimited.delim),
span.open,
));
return first;
}
TokenTree::Sequence(sp, seq_rep) => {
let subfirst_owned;
let subfirst = match self.first.get(&sp.entire()) {
Some(Some(subfirst)) => subfirst,
Some(&None) => {
subfirst_owned = self.first(&seq_rep.tts);
&subfirst_owned
}
None => {
panic!("We missed a sequence during FirstSets construction");
}
};
// If the sequence contents can be empty, then the first
// token could be the separator token itself.
if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
first.add_one_maybe(TtHandle::from_token(sep.clone()));
}
assert!(first.maybe_empty);
first.add_all(subfirst);
if subfirst.maybe_empty
|| seq_rep.kleene.op == mbe::KleeneOp::ZeroOrMore
|| seq_rep.kleene.op == mbe::KleeneOp::ZeroOrOne
{
// Continue scanning for more first
// tokens, but also make sure we
// restore empty-tracking state.
first.maybe_empty = true;
continue;
} else {
return first;
}
}
}
}
// we only exit the loop if `tts` was empty or if every
// element of `tts` matches the empty sequence.
assert!(first.maybe_empty);
first
}
}
// Most `mbe::TokenTree`s are preexisting in the matcher, but some are defined
// implicitly, such as opening/closing delimiters and sequence repetition ops.
// This type encapsulates both kinds. It implements `Clone` while avoiding the
// need for `mbe::TokenTree` to implement `Clone`.
#[derive(Debug)]
enum TtHandle<'tt> {
/// This is used in most cases.
TtRef(&'tt mbe::TokenTree),
/// This is only used for implicit token trees. The `mbe::TokenTree` *must*
/// be `mbe::TokenTree::Token`. No other variants are allowed. We store an
/// `mbe::TokenTree` rather than a `Token` so that `get()` can return a
/// `&mbe::TokenTree`.
Token(mbe::TokenTree),
}
impl<'tt> TtHandle<'tt> {
fn from_token(tok: Token) -> Self {
TtHandle::Token(mbe::TokenTree::Token(tok))
}
fn from_token_kind(kind: TokenKind, span: Span) -> Self {
TtHandle::from_token(Token::new(kind, span))
}
// Get a reference to a token tree.
fn get(&'tt self) -> &'tt mbe::TokenTree {
match self {
TtHandle::TtRef(tt) => tt,
TtHandle::Token(token_tt) => token_tt,
}
}
}
impl<'tt> PartialEq for TtHandle<'tt> {
fn eq(&self, other: &TtHandle<'tt>) -> bool {
self.get() == other.get()
}
}
impl<'tt> Clone for TtHandle<'tt> {
fn clone(&self) -> Self {
match self {
TtHandle::TtRef(tt) => TtHandle::TtRef(tt),
// This variant *must* contain a `mbe::TokenTree::Token`, and not
// any other variant of `mbe::TokenTree`.
TtHandle::Token(mbe::TokenTree::Token(tok)) => {
TtHandle::Token(mbe::TokenTree::Token(tok.clone()))
}
_ => unreachable!(),
}
}
}
// A set of `mbe::TokenTree`s, which may include `TokenTree::Match`s
// (for macro-by-example syntactic variables). It also carries the
// `maybe_empty` flag; that is true if and only if the matcher can
// match an empty token sequence.
//
// The First set is computed on submatchers like `$($a:expr b),* $(c)* d`,
// which has corresponding FIRST = {$a:expr, c, d}.
// Likewise, `$($a:expr b),* $(c)+ d` has FIRST = {$a:expr, c}.
//
// (Notably, we must allow for *-op to occur zero times.)
#[derive(Clone, Debug)]
struct TokenSet<'tt> {
tokens: Vec<TtHandle<'tt>>,
maybe_empty: bool,
}
impl<'tt> TokenSet<'tt> {
// Returns a set for the empty sequence.
fn empty() -> Self {
TokenSet { tokens: Vec::new(), maybe_empty: true }
}
// Returns the set `{ tok }` for the single-token (and thus
// non-empty) sequence [tok].
fn singleton(tt: TtHandle<'tt>) -> Self {
TokenSet { tokens: vec![tt], maybe_empty: false }
}
// Changes self to be the set `{ tok }`.
// Since `tok` is always present, marks self as non-empty.
fn replace_with(&mut self, tt: TtHandle<'tt>) {
self.tokens.clear();
self.tokens.push(tt);
self.maybe_empty = false;
}
// Changes self to be the empty set `{}`; meant for use when
// the particular token does not matter, but we want to
// record that it occurs.
fn replace_with_irrelevant(&mut self) {
self.tokens.clear();
self.maybe_empty = false;
}
// Adds `tok` to the set for `self`, marking sequence as non-empty.
fn add_one(&mut self, tt: TtHandle<'tt>) {
if !self.tokens.contains(&tt) {
self.tokens.push(tt);
}
self.maybe_empty = false;
}
// Adds `tok` to the set for `self`. (Leaves `maybe_empty` flag alone.)
fn add_one_maybe(&mut self, tt: TtHandle<'tt>) {
if !self.tokens.contains(&tt) {
self.tokens.push(tt);
}
}
// Adds all elements of `other` to this.
//
// (Since this is a set, we filter out duplicates.)
//
// If `other` is potentially empty, then preserves the previous
// setting of the empty flag of `self`. If `other` is guaranteed
// non-empty, then `self` is marked non-empty.
fn add_all(&mut self, other: &Self) {
for tt in &other.tokens {
if !self.tokens.contains(tt) {
self.tokens.push(tt.clone());
}
}
if !other.maybe_empty {
self.maybe_empty = false;
}
}
}
// Checks that `matcher` is internally consistent and that it
// can legally be followed by a token `N`, for all `N` in `follow`.
// (If `follow` is empty, then it imposes no constraint on
// the `matcher`.)
//
// Returns the set of NT tokens that could possibly come last in
// `matcher`. (If `matcher` matches the empty sequence, then
// `maybe_empty` will be set to true.)
//
// Requires that `first_sets` is pre-computed for `matcher`;
// see `FirstSets::new`.
fn check_matcher_core<'tt>(
sess: &Session,
def: &ast::Item,
first_sets: &FirstSets<'tt>,
matcher: &'tt [mbe::TokenTree],
follow: &TokenSet<'tt>,
) -> Result<TokenSet<'tt>, ErrorGuaranteed> {
use mbe::TokenTree;
let mut last = TokenSet::empty();
let mut errored = Ok(());
// 2. For each token and suffix [T, SUFFIX] in M:
// ensure that T can be followed by SUFFIX, and if SUFFIX may be empty,
// then ensure T can also be followed by any element of FOLLOW.
'each_token: for i in 0..matcher.len() {
let token = &matcher[i];
let suffix = &matcher[i + 1..];
let build_suffix_first = || {
let mut s = first_sets.first(suffix);
if s.maybe_empty {
s.add_all(follow);
}
s
};
// (we build `suffix_first` on demand below; you can tell
// which cases are supposed to fall through by looking for the
// initialization of this variable.)
let suffix_first;
// First, update `last` so that it corresponds to the set
// of NT tokens that might end the sequence `... token`.
match token {
TokenTree::Token(..)
| TokenTree::MetaVar(..)
| TokenTree::MetaVarDecl(..)
| TokenTree::MetaVarExpr(..) => {
if token_can_be_followed_by_any(token) {
// don't need to track tokens that work with any,
last.replace_with_irrelevant();
// ... and don't need to check tokens that can be
// followed by anything against SUFFIX.
continue 'each_token;
} else {
last.replace_with(TtHandle::TtRef(token));
suffix_first = build_suffix_first();
}
}
TokenTree::Delimited(span, _, d) => {
let my_suffix = TokenSet::singleton(TtHandle::from_token_kind(
token::CloseDelim(d.delim),
span.close,
));
check_matcher_core(sess, def, first_sets, &d.tts, &my_suffix)?;
// don't track non NT tokens
last.replace_with_irrelevant();
// also, we don't need to check delimited sequences
// against SUFFIX
continue 'each_token;
}
TokenTree::Sequence(_, seq_rep) => {
suffix_first = build_suffix_first();
// The trick here: when we check the interior, we want
// to include the separator (if any) as a potential
// (but not guaranteed) element of FOLLOW. So in that
// case, we make a temp copy of suffix and stuff
// delimiter in there.
//
// FIXME: Should I first scan suffix_first to see if
// delimiter is already in it before I go through the
// work of cloning it? But then again, this way I may
// get a "tighter" span?
let mut new;
let my_suffix = if let Some(sep) = &seq_rep.separator {
new = suffix_first.clone();
new.add_one_maybe(TtHandle::from_token(sep.clone()));
&new
} else {
&suffix_first
};
// At this point, `suffix_first` is built, and
// `my_suffix` is some TokenSet that we can use
// for checking the interior of `seq_rep`.
let next = check_matcher_core(sess, def, first_sets, &seq_rep.tts, my_suffix)?;
if next.maybe_empty {
last.add_all(&next);
} else {
last = next;
}
// the recursive call to check_matcher_core already ran the 'each_last
// check below, so we can just keep going forward here.
continue 'each_token;
}
}
// (`suffix_first` guaranteed initialized once reaching here.)
// Now `last` holds the complete set of NT tokens that could
// end the sequence before SUFFIX. Check that every one works with `suffix`.
for tt in &last.tokens {
if let &TokenTree::MetaVarDecl(span, name, Some(kind)) = tt.get() {
for next_token in &suffix_first.tokens {
let next_token = next_token.get();
// Check if the old pat is used and the next token is `|`
// to warn about incompatibility with Rust 2021.
// We only emit this lint if we're parsing the original
// definition of this macro_rules, not while (re)parsing
// the macro when compiling another crate that is using the
// macro. (See #86567.)
// Macros defined in the current crate have a real node id,
// whereas macros from an external crate have a dummy id.
if def.id != DUMMY_NODE_ID
&& matches!(kind, NonterminalKind::PatParam { inferred: true })
&& matches!(next_token, TokenTree::Token(token) if token.kind == BinOp(token::BinOpToken::Or))
{
// It is suggestion to use pat_param, for example: $x:pat -> $x:pat_param.
let suggestion = quoted_tt_to_string(&TokenTree::MetaVarDecl(
span,
name,
Some(NonterminalKind::PatParam { inferred: false }),
));
sess.parse_sess.buffer_lint_with_diagnostic(
RUST_2021_INCOMPATIBLE_OR_PATTERNS,
span,
ast::CRATE_NODE_ID,
"the meaning of the `pat` fragment specifier is changing in Rust 2021, which may affect this macro",
BuiltinLintDiagnostics::OrPatternsBackCompat(span, suggestion),
);
}
match is_in_follow(next_token, kind) {
IsInFollow::Yes => {}
IsInFollow::No(possible) => {
let may_be = if last.tokens.len() == 1 && suffix_first.tokens.len() == 1
{
"is"
} else {
"may be"
};
let sp = next_token.span();
let mut err = sess.dcx().struct_span_err(
sp,
format!(
"`${name}:{frag}` {may_be} followed by `{next}`, which \
is not allowed for `{frag}` fragments",
name = name,
frag = kind,
next = quoted_tt_to_string(next_token),
may_be = may_be
),
);
err.span_label(sp, format!("not allowed after `{kind}` fragments"));
if kind == NonterminalKind::PatWithOr
&& sess.parse_sess.edition.at_least_rust_2021()
&& next_token.is_token(&BinOp(token::BinOpToken::Or))
{
let suggestion = quoted_tt_to_string(&TokenTree::MetaVarDecl(
span,
name,
Some(NonterminalKind::PatParam { inferred: false }),
));
err.span_suggestion(
span,
"try a `pat_param` fragment specifier instead",
suggestion,
Applicability::MaybeIncorrect,
);
}
let msg = "allowed there are: ";
match possible {
&[] => {}
&[t] => {
err.note(format!(
"only {t} is allowed after `{kind}` fragments",
));
}
ts => {
err.note(format!(
"{}{} or {}",
msg,
ts[..ts.len() - 1].to_vec().join(", "),
ts[ts.len() - 1],
));
}
}
errored = Err(err.emit());
}
}
}
}
}
}
errored?;
Ok(last)
}
fn token_can_be_followed_by_any(tok: &mbe::TokenTree) -> bool {
if let mbe::TokenTree::MetaVarDecl(_, _, Some(kind)) = *tok {
frag_can_be_followed_by_any(kind)
} else {
// (Non NT's can always be followed by anything in matchers.)
true
}
}
/// Returns `true` if a fragment of type `frag` can be followed by any sort of
/// token. We use this (among other things) as a useful approximation
/// for when `frag` can be followed by a repetition like `$(...)*` or
/// `$(...)+`. In general, these can be a bit tricky to reason about,
/// so we adopt a conservative position that says that any fragment
/// specifier which consumes at most one token tree can be followed by
/// a fragment specifier (indeed, these fragments can be followed by
/// ANYTHING without fear of future compatibility hazards).
fn frag_can_be_followed_by_any(kind: NonterminalKind) -> bool {
matches!(
kind,
NonterminalKind::Item // always terminated by `}` or `;`
| NonterminalKind::Block // exactly one token tree
| NonterminalKind::Ident // exactly one token tree
| NonterminalKind::Literal // exactly one token tree
| NonterminalKind::Meta // exactly one token tree
| NonterminalKind::Lifetime // exactly one token tree
| NonterminalKind::TT // exactly one token tree
)
}
enum IsInFollow {
Yes,
No(&'static [&'static str]),
}
/// Returns `true` if `frag` can legally be followed by the token `tok`. For
/// fragments that can consume an unbounded number of tokens, `tok`
/// must be within a well-defined follow set. This is intended to
/// guarantee future compatibility: for example, without this rule, if
/// we expanded `expr` to include a new binary operator, we might
/// break macros that were relying on that binary operator as a
/// separator.
// when changing this do not forget to update doc/book/macros.md!
fn is_in_follow(tok: &mbe::TokenTree, kind: NonterminalKind) -> IsInFollow {
use mbe::TokenTree;
if let TokenTree::Token(Token { kind: token::CloseDelim(_), .. }) = *tok {
// closing a token tree can never be matched by any fragment;
// iow, we always require that `(` and `)` match, etc.
IsInFollow::Yes
} else {
match kind {
NonterminalKind::Item => {
// since items *must* be followed by either a `;` or a `}`, we can
// accept anything after them
IsInFollow::Yes
}
NonterminalKind::Block => {
// anything can follow block, the braces provide an easy boundary to
// maintain
IsInFollow::Yes
}
NonterminalKind::Stmt | NonterminalKind::Expr => {
const TOKENS: &[&str] = &["`=>`", "`,`", "`;`"];
match tok {
TokenTree::Token(token) => match token.kind {
FatArrow | Comma | Semi => IsInFollow::Yes,
_ => IsInFollow::No(TOKENS),
},
_ => IsInFollow::No(TOKENS),
}
}
NonterminalKind::PatParam { .. } => {
const TOKENS: &[&str] = &["`=>`", "`,`", "`=`", "`|`", "`if`", "`in`"];
match tok {
TokenTree::Token(token) => match token.kind {
FatArrow | Comma | Eq | BinOp(token::Or) => IsInFollow::Yes,
Ident(name, false) if name == kw::If || name == kw::In => IsInFollow::Yes,
_ => IsInFollow::No(TOKENS),
},
_ => IsInFollow::No(TOKENS),
}
}
NonterminalKind::PatWithOr => {
const TOKENS: &[&str] = &["`=>`", "`,`", "`=`", "`if`", "`in`"];
match tok {
TokenTree::Token(token) => match token.kind {
FatArrow | Comma | Eq => IsInFollow::Yes,
Ident(name, false) if name == kw::If || name == kw::In => IsInFollow::Yes,
_ => IsInFollow::No(TOKENS),
},
_ => IsInFollow::No(TOKENS),
}
}
NonterminalKind::Path | NonterminalKind::Ty => {
const TOKENS: &[&str] = &[
"`{`", "`[`", "`=>`", "`,`", "`>`", "`=`", "`:`", "`;`", "`|`", "`as`",
"`where`",
];
match tok {
TokenTree::Token(token) => match token.kind {
OpenDelim(Delimiter::Brace)
| OpenDelim(Delimiter::Bracket)
| Comma
| FatArrow
| Colon
| Eq
| Gt
| BinOp(token::Shr)
| Semi
| BinOp(token::Or) => IsInFollow::Yes,
Ident(name, false) if name == kw::As || name == kw::Where => {
IsInFollow::Yes
}
_ => IsInFollow::No(TOKENS),
},
TokenTree::MetaVarDecl(_, _, Some(NonterminalKind::Block)) => IsInFollow::Yes,
_ => IsInFollow::No(TOKENS),
}
}
NonterminalKind::Ident | NonterminalKind::Lifetime => {
// being a single token, idents and lifetimes are harmless
IsInFollow::Yes
}
NonterminalKind::Literal => {
// literals may be of a single token, or two tokens (negative numbers)
IsInFollow::Yes
}
NonterminalKind::Meta | NonterminalKind::TT => {
// being either a single token or a delimited sequence, tt is
// harmless
IsInFollow::Yes
}
NonterminalKind::Vis => {
// Explicitly disallow `priv`, on the off chance it comes back.
const TOKENS: &[&str] = &["`,`", "an ident", "a type"];
match tok {
TokenTree::Token(token) => match token.kind {
Comma => IsInFollow::Yes,
Ident(name, is_raw) if is_raw || name != kw::Priv => IsInFollow::Yes,
_ => {
if token.can_begin_type() {
IsInFollow::Yes
} else {
IsInFollow::No(TOKENS)
}
}
},
TokenTree::MetaVarDecl(
_,
_,
Some(NonterminalKind::Ident | NonterminalKind::Ty | NonterminalKind::Path),
) => IsInFollow::Yes,
_ => IsInFollow::No(TOKENS),
}
}
}
}
}
fn quoted_tt_to_string(tt: &mbe::TokenTree) -> String {
match tt {
mbe::TokenTree::Token(token) => pprust::token_to_string(token).into(),
mbe::TokenTree::MetaVar(_, name) => format!("${name}"),
mbe::TokenTree::MetaVarDecl(_, name, Some(kind)) => format!("${name}:{kind}"),
mbe::TokenTree::MetaVarDecl(_, name, None) => format!("${name}:"),
_ => panic!(
"{}",
"unexpected mbe::TokenTree::{Sequence or Delimited} \
in follow set checker"
),
}
}
pub(super) fn parser_from_cx(
sess: &ParseSess,
mut tts: TokenStream,
recovery: Recovery,
) -> Parser<'_> {
tts.desugar_doc_comments();
Parser::new(sess, tts, rustc_parse::MACRO_ARGUMENTS).recovery(recovery)
}