blob: 6b6345807388822a68ebb70210ae1a8156dab38c [file] [log] [blame]
//! This example shows an example of how to parse an escaped string. The
//! rules for the string are similar to JSON and rust. A string is:
//!
//! - Enclosed by double quotes
//! - Can contain any raw unescaped code point besides \ and "
//! - Matches the following escape sequences: \b, \f, \n, \r, \t, \", \\, \/
//! - Matches code points like Rust: \u{XXXX}, where XXXX can be up to 6
//! hex characters
//! - an escape followed by whitespace consumes all whitespace between the
//! escape and the next non-whitespace character
use winnow::ascii::multispace1;
use winnow::combinator::alt;
use winnow::combinator::fold_repeat;
use winnow::combinator::{delimited, preceded};
use winnow::error::{FromExternalError, ParserError};
use winnow::prelude::*;
use winnow::token::{take_till1, take_while};
/// Parse a string. Use a loop of `parse_fragment` and push all of the fragments
/// into an output string.
pub fn parse_string<'a, E>(input: &mut &'a str) -> PResult<String, E>
where
E: ParserError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>,
{
// fold_repeat is the equivalent of iterator::fold. It runs a parser in a loop,
// and for each output value, calls a folding function on each output value.
let build_string = fold_repeat(
0..,
// Our parser function – parses a single string fragment
parse_fragment,
// Our init value, an empty string
String::new,
// Our folding function. For each fragment, append the fragment to the
// string.
|mut string, fragment| {
match fragment {
StringFragment::Literal(s) => string.push_str(s),
StringFragment::EscapedChar(c) => string.push(c),
StringFragment::EscapedWS => {}
}
string
},
);
// Finally, parse the string. Note that, if `build_string` could accept a raw
// " character, the closing delimiter " would never match. When using
// `delimited` with a looping parser (like fold_repeat), be sure that the
// loop won't accidentally match your closing delimiter!
delimited('"', build_string, '"').parse_next(input)
}
/// A string fragment contains a fragment of a string being parsed: either
/// a non-empty Literal (a series of non-escaped characters), a single
/// parsed escaped character, or a block of escaped whitespace.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum StringFragment<'a> {
Literal(&'a str),
EscapedChar(char),
EscapedWS,
}
/// Combine `parse_literal`, `parse_escaped_whitespace`, and `parse_escaped_char`
/// into a `StringFragment`.
fn parse_fragment<'a, E>(input: &mut &'a str) -> PResult<StringFragment<'a>, E>
where
E: ParserError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>,
{
alt((
// The `map` combinator runs a parser, then applies a function to the output
// of that parser.
parse_literal.map(StringFragment::Literal),
parse_escaped_char.map(StringFragment::EscapedChar),
parse_escaped_whitespace.value(StringFragment::EscapedWS),
))
.parse_next(input)
}
/// Parse a non-empty block of text that doesn't include \ or "
fn parse_literal<'a, E: ParserError<&'a str>>(input: &mut &'a str) -> PResult<&'a str, E> {
// `take_till1` parses a string of 0 or more characters that aren't one of the
// given characters.
let not_quote_slash = take_till1(['"', '\\']);
// `verify` runs a parser, then runs a verification function on the output of
// the parser. The verification function accepts the output only if it
// returns true. In this case, we want to ensure that the output of take_till1
// is non-empty.
not_quote_slash
.verify(|s: &str| !s.is_empty())
.parse_next(input)
}
// parser combinators are constructed from the bottom up:
// first we write parsers for the smallest elements (escaped characters),
// then combine them into larger parsers.
/// Parse an escaped character: \n, \t, \r, \u{00AC}, etc.
fn parse_escaped_char<'a, E>(input: &mut &'a str) -> PResult<char, E>
where
E: ParserError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>,
{
preceded(
'\\',
// `alt` tries each parser in sequence, returning the result of
// the first successful match
alt((
parse_unicode,
// The `value` parser returns a fixed value (the first argument) if its
// parser (the second argument) succeeds. In these cases, it looks for
// the marker characters (n, r, t, etc) and returns the matching
// character (\n, \r, \t, etc).
'n'.value('\n'),
'r'.value('\r'),
't'.value('\t'),
'b'.value('\u{08}'),
'f'.value('\u{0C}'),
'\\'.value('\\'),
'/'.value('/'),
'"'.value('"'),
)),
)
.parse_next(input)
}
/// Parse a unicode sequence, of the form u{XXXX}, where XXXX is 1 to 6
/// hexadecimal numerals. We will combine this later with `parse_escaped_char`
/// to parse sequences like \u{00AC}.
fn parse_unicode<'a, E>(input: &mut &'a str) -> PResult<char, E>
where
E: ParserError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>,
{
// `take_while` parses between `m` and `n` bytes (inclusive) that match
// a predicate. `parse_hex` here parses between 1 and 6 hexadecimal numerals.
let parse_hex = take_while(1..=6, |c: char| c.is_ascii_hexdigit());
// `preceded` takes a prefix parser, and if it succeeds, returns the result
// of the body parser. In this case, it parses u{XXXX}.
let parse_delimited_hex = preceded(
'u',
// `delimited` is like `preceded`, but it parses both a prefix and a suffix.
// It returns the result of the middle parser. In this case, it parses
// {XXXX}, where XXXX is 1 to 6 hex numerals, and returns XXXX
delimited('{', parse_hex, '}'),
);
// `try_map` takes the result of a parser and applies a function that returns
// a Result. In this case we take the hex bytes from parse_hex and attempt to
// convert them to a u32.
let parse_u32 = parse_delimited_hex.try_map(move |hex| u32::from_str_radix(hex, 16));
// verify_map is like try_map, but it takes an Option instead of a Result. If
// the function returns None, verify_map returns an error. In this case, because
// not all u32 values are valid unicode code points, we have to fallibly
// convert to char with from_u32.
parse_u32.verify_map(std::char::from_u32).parse_next(input)
}
/// Parse a backslash, followed by any amount of whitespace. This is used later
/// to discard any escaped whitespace.
fn parse_escaped_whitespace<'a, E: ParserError<&'a str>>(
input: &mut &'a str,
) -> PResult<&'a str, E> {
preceded('\\', multispace1).parse_next(input)
}