blob: 11192685c903bd0fbee31192dc4a1d8ba614e5f9 [file] [log] [blame]
//! Definitions for registers, operands, etc. Provides a thin
//! interface over the register allocator so that we can more easily
//! swap it out or shim it when necessary.
use alloc::{string::String, vec::Vec};
use core::{fmt::Debug, hash::Hash};
use regalloc2::{
Allocation, Operand, OperandConstraint, OperandKind, OperandPos, PReg, PRegSet, VReg,
};
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};
/// The first 192 vregs (64 int, 64 float, 64 vec) are "pinned" to
/// physical registers: this means that they are always constrained to
/// the corresponding register at all use/mod/def sites.
///
/// Arbitrary vregs can also be constrained to physical registers at
/// particular use/def/mod sites, and this is preferable; but pinned
/// vregs allow us to migrate code that has been written using
/// RealRegs directly.
const PINNED_VREGS: usize = 192;
/// Convert a `VReg` to its pinned `PReg`, if any.
pub fn pinned_vreg_to_preg(vreg: VReg) -> Option<PReg> {
if vreg.vreg() < PINNED_VREGS {
Some(PReg::from_index(vreg.vreg()))
} else {
None
}
}
/// Give the first available vreg for generated code (i.e., after all
/// pinned vregs).
pub fn first_user_vreg_index() -> usize {
// This is just the constant defined above, but we keep the
// constant private and expose only this helper function with the
// specific name in order to ensure other parts of the code don't
// open-code and depend on the index-space scheme.
PINNED_VREGS
}
/// A register named in an instruction. This register can be either a
/// virtual register or a fixed physical register. It does not have
/// any constraints applied to it: those can be added later in
/// `MachInst::get_operands()` when the `Reg`s are converted to
/// `Operand`s.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Reg(VReg);
impl Reg {
/// Get the physical register (`RealReg`), if this register is
/// one.
pub fn to_real_reg(self) -> Option<RealReg> {
if pinned_vreg_to_preg(self.0).is_some() {
Some(RealReg(self.0))
} else {
None
}
}
/// Get the virtual (non-physical) register, if this register is
/// one.
pub fn to_virtual_reg(self) -> Option<VirtualReg> {
if pinned_vreg_to_preg(self.0).is_none() {
Some(VirtualReg(self.0))
} else {
None
}
}
/// Get the class of this register.
pub fn class(self) -> RegClass {
self.0.class()
}
/// Is this a real (physical) reg?
pub fn is_real(self) -> bool {
self.to_real_reg().is_some()
}
/// Is this a virtual reg?
pub fn is_virtual(self) -> bool {
self.to_virtual_reg().is_some()
}
}
impl std::fmt::Debug for Reg {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if let Some(rreg) = self.to_real_reg() {
let preg: PReg = rreg.into();
write!(f, "{}", preg)
} else if let Some(vreg) = self.to_virtual_reg() {
let vreg: VReg = vreg.into();
write!(f, "{}", vreg)
} else {
unreachable!()
}
}
}
/// A real (physical) register. This corresponds to one of the target
/// ISA's named registers and can be used as an instruction operand.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct RealReg(VReg);
impl RealReg {
/// Get the class of this register.
pub fn class(self) -> RegClass {
self.0.class()
}
pub fn hw_enc(self) -> u8 {
PReg::from(self).hw_enc() as u8
}
}
impl std::fmt::Debug for RealReg {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
Reg::from(*self).fmt(f)
}
}
/// A virtual register. This can be allocated into a real (physical)
/// register of the appropriate register class, but which one is not
/// specified. Virtual registers are used when generating `MachInst`s,
/// before register allocation occurs, in order to allow us to name as
/// many register-carried values as necessary.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct VirtualReg(VReg);
impl VirtualReg {
/// Get the class of this register.
pub fn class(self) -> RegClass {
self.0.class()
}
pub fn index(self) -> usize {
self.0.vreg()
}
}
impl std::fmt::Debug for VirtualReg {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
Reg::from(*self).fmt(f)
}
}
/// A type wrapper that indicates a register type is writable. The
/// underlying register can be extracted, and the type wrapper can be
/// built using an arbitrary register. Hence, this type-level wrapper
/// is not strictly a guarantee. However, "casting" to a writable
/// register is an explicit operation for which we can
/// audit. Ordinarily, internal APIs in the compiler backend should
/// take a `Writable<Reg>` whenever the register is written, and the
/// usual, frictionless way to get one of these is to allocate a new
/// temporary.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Writable<T: Clone + Copy + Debug + PartialEq + Eq + PartialOrd + Ord + Hash> {
reg: T,
}
impl<T: Clone + Copy + Debug + PartialEq + Eq + PartialOrd + Ord + Hash> Writable<T> {
/// Explicitly construct a `Writable<T>` from a `T`. As noted in
/// the documentation for `Writable`, this is not hidden or
/// disallowed from the outside; anyone can perform the "cast";
/// but it is explicit so that we can audit the use sites.
pub fn from_reg(reg: T) -> Writable<T> {
Writable { reg }
}
/// Get the underlying register, which can be read.
pub fn to_reg(self) -> T {
self.reg
}
/// Map the underlying register to another value or type.
pub fn map<U, F>(self, f: F) -> Writable<U>
where
U: Clone + Copy + Debug + PartialEq + Eq + PartialOrd + Ord + Hash,
F: Fn(T) -> U,
{
Writable { reg: f(self.reg) }
}
}
// Conversions between regalloc2 types (VReg) and our types
// (VirtualReg, RealReg, Reg).
impl std::convert::From<regalloc2::VReg> for Reg {
fn from(vreg: regalloc2::VReg) -> Reg {
Reg(vreg)
}
}
impl std::convert::From<regalloc2::VReg> for VirtualReg {
fn from(vreg: regalloc2::VReg) -> VirtualReg {
debug_assert!(pinned_vreg_to_preg(vreg).is_none());
VirtualReg(vreg)
}
}
impl std::convert::From<regalloc2::VReg> for RealReg {
fn from(vreg: regalloc2::VReg) -> RealReg {
debug_assert!(pinned_vreg_to_preg(vreg).is_some());
RealReg(vreg)
}
}
impl std::convert::From<Reg> for regalloc2::VReg {
/// Extract the underlying `regalloc2::VReg`. Note that physical
/// registers also map to particular (special) VRegs, so this
/// method can be used either on virtual or physical `Reg`s.
fn from(reg: Reg) -> regalloc2::VReg {
reg.0
}
}
impl std::convert::From<VirtualReg> for regalloc2::VReg {
fn from(reg: VirtualReg) -> regalloc2::VReg {
reg.0
}
}
impl std::convert::From<RealReg> for regalloc2::VReg {
fn from(reg: RealReg) -> regalloc2::VReg {
reg.0
}
}
impl std::convert::From<RealReg> for regalloc2::PReg {
fn from(reg: RealReg) -> regalloc2::PReg {
PReg::from_index(reg.0.vreg())
}
}
impl std::convert::From<regalloc2::PReg> for RealReg {
fn from(preg: regalloc2::PReg) -> RealReg {
RealReg(VReg::new(preg.index(), preg.class()))
}
}
impl std::convert::From<regalloc2::PReg> for Reg {
fn from(preg: regalloc2::PReg) -> Reg {
Reg(VReg::new(preg.index(), preg.class()))
}
}
impl std::convert::From<RealReg> for Reg {
fn from(reg: RealReg) -> Reg {
Reg(reg.0)
}
}
impl std::convert::From<VirtualReg> for Reg {
fn from(reg: VirtualReg) -> Reg {
Reg(reg.0)
}
}
/// A spill slot.
pub type SpillSlot = regalloc2::SpillSlot;
/// A register class. Each register in the ISA has one class, and the
/// classes are disjoint. Most modern ISAs will have just two classes:
/// the integer/general-purpose registers (GPRs), and the float/vector
/// registers (typically used for both).
///
/// Note that unlike some other compiler backend/register allocator
/// designs, we do not allow for overlapping classes, i.e. registers
/// that belong to more than one class, because doing so makes the
/// allocation problem significantly more complex. Instead, when a
/// register can be addressed under different names for different
/// sizes (for example), the backend author should pick classes that
/// denote some fundamental allocation unit that encompasses the whole
/// register. For example, always allocate 128-bit vector registers
/// `v0`..`vN`, even though `f32` and `f64` values may use only the
/// low 32/64 bits of those registers and name them differently.
pub type RegClass = regalloc2::RegClass;
/// An OperandCollector is a wrapper around a Vec of Operands
/// (flattened array for a whole sequence of instructions) that
/// gathers operands from a single instruction and provides the range
/// in the flattened array.
#[derive(Debug)]
pub struct OperandCollector<'a, F: Fn(VReg) -> VReg> {
operands: &'a mut Vec<Operand>,
operands_start: usize,
clobbers: PRegSet,
/// The subset of physical registers that are allocatable.
allocatable: PRegSet,
renamer: F,
}
impl<'a, F: Fn(VReg) -> VReg> OperandCollector<'a, F> {
/// Start gathering operands into one flattened operand array.
pub fn new(operands: &'a mut Vec<Operand>, allocatable: PRegSet, renamer: F) -> Self {
let operands_start = operands.len();
Self {
operands,
operands_start,
clobbers: PRegSet::default(),
allocatable,
renamer,
}
}
/// Returns true if no reuse_def constraints have been added.
pub fn no_reuse_def(&self) -> bool {
!self.operands[self.operands_start..]
.iter()
.any(|operand| match operand.constraint() {
OperandConstraint::Reuse(_) => true,
_ => false,
})
}
fn is_allocatable_preg(&self, reg: PReg) -> bool {
self.allocatable.contains(reg)
}
/// Add an operand.
fn add_operand(&mut self, operand: Operand) {
let vreg = (self.renamer)(operand.vreg());
let operand = Operand::new(vreg, operand.constraint(), operand.kind(), operand.pos());
self.operands.push(operand);
}
/// Finish the operand collection and return the tuple giving the
/// range of indices in the flattened operand array, and the
/// clobber set.
pub fn finish(self) -> ((u32, u32), PRegSet) {
let start = self.operands_start as u32;
let end = self.operands.len() as u32;
((start, end), self.clobbers)
}
/// Add a use of a fixed, nonallocatable physical register.
pub fn reg_fixed_nonallocatable(&mut self, preg: PReg) {
debug_assert!(!self.is_allocatable_preg(preg));
self.add_operand(Operand::fixed_nonallocatable(preg))
}
/// Add a register use, at the start of the instruction (`Before`
/// position).
pub fn reg_use(&mut self, reg: Reg) {
if let Some(rreg) = reg.to_real_reg() {
self.reg_fixed_nonallocatable(rreg.into());
} else {
debug_assert!(reg.is_virtual());
self.add_operand(Operand::reg_use(reg.into()));
}
}
/// Add a register use, at the end of the instruction (`After` position).
pub fn reg_late_use(&mut self, reg: Reg) {
if let Some(rreg) = reg.to_real_reg() {
self.reg_fixed_nonallocatable(rreg.into());
} else {
debug_assert!(reg.is_virtual());
self.add_operand(Operand::reg_use_at_end(reg.into()));
}
}
/// Add multiple register uses.
pub fn reg_uses(&mut self, regs: &[Reg]) {
for &reg in regs {
self.reg_use(reg);
}
}
/// Add a register def, at the end of the instruction (`After`
/// position). Use only when this def will be written after all
/// uses are read.
pub fn reg_def(&mut self, reg: Writable<Reg>) {
if let Some(rreg) = reg.to_reg().to_real_reg() {
self.reg_fixed_nonallocatable(rreg.into());
} else {
debug_assert!(reg.to_reg().is_virtual());
self.add_operand(Operand::reg_def(reg.to_reg().into()));
}
}
/// Add multiple register defs.
pub fn reg_defs(&mut self, regs: &[Writable<Reg>]) {
for &reg in regs {
self.reg_def(reg);
}
}
/// Add a register "early def", which logically occurs at the
/// beginning of the instruction, alongside all uses. Use this
/// when the def may be written before all uses are read; the
/// regalloc will ensure that it does not overwrite any uses.
pub fn reg_early_def(&mut self, reg: Writable<Reg>) {
if let Some(rreg) = reg.to_reg().to_real_reg() {
self.reg_fixed_nonallocatable(rreg.into());
} else {
debug_assert!(reg.to_reg().is_virtual());
self.add_operand(Operand::reg_def_at_start(reg.to_reg().into()));
}
}
/// Add a register "fixed use", which ties a vreg to a particular
/// RealReg at the end of the instruction.
pub fn reg_fixed_late_use(&mut self, reg: Reg, rreg: Reg) {
debug_assert!(reg.is_virtual());
let rreg = rreg.to_real_reg().expect("fixed reg is not a RealReg");
debug_assert!(self.is_allocatable_preg(rreg.into()));
self.add_operand(Operand::new(
reg.into(),
OperandConstraint::FixedReg(rreg.into()),
OperandKind::Use,
OperandPos::Late,
));
}
/// Add a register "fixed use", which ties a vreg to a particular
/// RealReg at this point.
pub fn reg_fixed_use(&mut self, reg: Reg, rreg: Reg) {
debug_assert!(reg.is_virtual());
let rreg = rreg.to_real_reg().expect("fixed reg is not a RealReg");
debug_assert!(self.is_allocatable_preg(rreg.into()));
self.add_operand(Operand::reg_fixed_use(reg.into(), rreg.into()));
}
/// Add a register "fixed def", which ties a vreg to a particular
/// RealReg at this point.
pub fn reg_fixed_def(&mut self, reg: Writable<Reg>, rreg: Reg) {
debug_assert!(reg.to_reg().is_virtual());
let rreg = rreg.to_real_reg().expect("fixed reg is not a RealReg");
debug_assert!(
self.is_allocatable_preg(rreg.into()),
"{rreg:?} is not allocatable"
);
self.add_operand(Operand::reg_fixed_def(reg.to_reg().into(), rreg.into()));
}
/// Add a register def that reuses an earlier use-operand's
/// allocation. The index of that earlier operand (relative to the
/// current instruction's start of operands) must be known.
pub fn reg_reuse_def(&mut self, reg: Writable<Reg>, idx: usize) {
if let Some(rreg) = reg.to_reg().to_real_reg() {
// In some cases we see real register arguments to a reg_reuse_def
// constraint. We assume the creator knows what they're doing
// here, though we do also require that the real register be a
// fixed-nonallocatable register.
self.reg_fixed_nonallocatable(rreg.into());
} else {
// The operand we're reusing must not be fixed-nonallocatable, as
// that would imply that the register has been allocated to a
// virtual register.
self.add_operand(Operand::reg_reuse_def(reg.to_reg().into(), idx));
}
}
/// Add a register clobber set. This is a set of registers that
/// are written by the instruction, so must be reserved (not used)
/// for the whole instruction, but are not used afterward.
pub fn reg_clobbers(&mut self, regs: PRegSet) {
self.clobbers.union_from(regs);
}
}
/// Pretty-print part of a disassembly, with knowledge of
/// operand/instruction size, and optionally with regalloc
/// results. This can be used, for example, to print either `rax` or
/// `eax` for the register by those names on x86-64, depending on a
/// 64- or 32-bit context.
pub trait PrettyPrint {
fn pretty_print(&self, size_bytes: u8, allocs: &mut AllocationConsumer<'_>) -> String;
fn pretty_print_default(&self) -> String {
self.pretty_print(0, &mut AllocationConsumer::new(&[]))
}
}
/// A consumer of an (optional) list of Allocations along with Regs
/// that provides RealRegs where available.
///
/// This is meant to be used during code emission or
/// pretty-printing. In at least the latter case, regalloc results may
/// or may not be available, so we may end up printing either vregs or
/// rregs. Even pre-regalloc, though, some registers may be RealRegs
/// that were provided when the instruction was created.
///
/// This struct should be used in a specific way: when matching on an
/// instruction, provide it the Regs in the same order as they were
/// provided to the OperandCollector.
#[derive(Clone)]
pub struct AllocationConsumer<'a> {
allocs: std::slice::Iter<'a, Allocation>,
}
impl<'a> AllocationConsumer<'a> {
pub fn new(allocs: &'a [Allocation]) -> Self {
Self {
allocs: allocs.iter(),
}
}
pub fn next_fixed_nonallocatable(&mut self, preg: PReg) {
let alloc = self.allocs.next();
let alloc = alloc.map(|alloc| {
Reg::from(
alloc
.as_reg()
.expect("Should not have gotten a stack allocation"),
)
});
match alloc {
Some(alloc) => {
assert_eq!(preg, alloc.to_real_reg().unwrap().into());
}
None => {}
}
}
pub fn next(&mut self, pre_regalloc_reg: Reg) -> Reg {
let alloc = self.allocs.next();
let alloc = alloc.map(|alloc| {
Reg::from(
alloc
.as_reg()
.expect("Should not have gotten a stack allocation"),
)
});
match (pre_regalloc_reg.to_real_reg(), alloc) {
(Some(rreg), None) => rreg.into(),
(Some(rreg), Some(alloc)) => {
debug_assert_eq!(Reg::from(rreg), alloc);
alloc
}
(None, Some(alloc)) => alloc,
_ => pre_regalloc_reg,
}
}
pub fn next_writable(&mut self, pre_regalloc_reg: Writable<Reg>) -> Writable<Reg> {
Writable::from_reg(self.next(pre_regalloc_reg.to_reg()))
}
}
impl<'a> std::default::Default for AllocationConsumer<'a> {
fn default() -> Self {
Self { allocs: [].iter() }
}
}