blob: de22ea1014606f973daf064c14c838a77a59142a [file] [log] [blame]
//! This modules implements a function to resolve a path `foo::bar::baz` to a
//! def, which is used within the name resolution.
//!
//! When name resolution is finished, the result of resolving a path is either
//! `Some(def)` or `None`. However, when we are in process of resolving imports
//! or macros, there's a third possibility:
//!
//! I can't resolve this path right now, but I might be resolve this path
//! later, when more macros are expanded.
//!
//! `ReachedFixedPoint` signals about this.
use base_db::Edition;
use hir_expand::name::Name;
use triomphe::Arc;
use crate::{
db::DefDatabase,
item_scope::BUILTIN_SCOPE,
nameres::{sub_namespace_match, BlockInfo, BuiltinShadowMode, DefMap, MacroSubNs},
path::{ModPath, PathKind},
per_ns::PerNs,
visibility::{RawVisibility, Visibility},
AdtId, CrateId, EnumVariantId, LocalModuleId, ModuleDefId,
};
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(super) enum ResolveMode {
Import,
Other,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(super) enum ReachedFixedPoint {
Yes,
No,
}
#[derive(Debug, Clone)]
pub(super) struct ResolvePathResult {
pub(super) resolved_def: PerNs,
pub(super) segment_index: Option<usize>,
pub(super) reached_fixedpoint: ReachedFixedPoint,
pub(super) krate: Option<CrateId>,
}
impl ResolvePathResult {
fn empty(reached_fixedpoint: ReachedFixedPoint) -> ResolvePathResult {
ResolvePathResult::with(PerNs::none(), reached_fixedpoint, None, None)
}
fn with(
resolved_def: PerNs,
reached_fixedpoint: ReachedFixedPoint,
segment_index: Option<usize>,
krate: Option<CrateId>,
) -> ResolvePathResult {
ResolvePathResult { resolved_def, segment_index, reached_fixedpoint, krate }
}
}
impl PerNs {
pub(super) fn filter_macro(
mut self,
db: &dyn DefDatabase,
expected: Option<MacroSubNs>,
) -> Self {
self.macros = self.macros.filter(|&(id, _)| {
let this = MacroSubNs::from_id(db, id);
sub_namespace_match(Some(this), expected)
});
self
}
}
impl DefMap {
pub(crate) fn resolve_visibility(
&self,
db: &dyn DefDatabase,
// module to import to
original_module: LocalModuleId,
// pub(path)
// ^^^^ this
visibility: &RawVisibility,
within_impl: bool,
) -> Option<Visibility> {
let mut vis = match visibility {
RawVisibility::Module(path) => {
let (result, remaining) =
self.resolve_path(db, original_module, path, BuiltinShadowMode::Module, None);
if remaining.is_some() {
return None;
}
let types = result.take_types()?;
match types {
ModuleDefId::ModuleId(m) => Visibility::Module(m),
_ => {
// error: visibility needs to refer to module
return None;
}
}
}
RawVisibility::Public => Visibility::Public,
};
// In block expressions, `self` normally refers to the containing non-block module, and
// `super` to its parent (etc.). However, visibilities must only refer to a module in the
// DefMap they're written in, so we restrict them when that happens.
if let Visibility::Module(m) = vis {
// ...unless we're resolving visibility for an associated item in an impl.
if self.block_id() != m.block && !within_impl {
cov_mark::hit!(adjust_vis_in_block_def_map);
vis = Visibility::Module(self.module_id(Self::ROOT));
tracing::debug!("visibility {:?} points outside DefMap, adjusting to {:?}", m, vis);
}
}
Some(vis)
}
// Returns Yes if we are sure that additions to `ItemMap` wouldn't change
// the result.
pub(super) fn resolve_path_fp_with_macro(
&self,
db: &dyn DefDatabase,
mode: ResolveMode,
// module to import to
mut original_module: LocalModuleId,
path: &ModPath,
shadow: BuiltinShadowMode,
// Pass `MacroSubNs` if we know we're resolving macro names and which kind of macro we're
// resolving them to. Pass `None` otherwise, e.g. when we're resolving import paths.
expected_macro_subns: Option<MacroSubNs>,
) -> ResolvePathResult {
let mut result = ResolvePathResult::empty(ReachedFixedPoint::No);
let mut arc;
let mut current_map = self;
loop {
let new = current_map.resolve_path_fp_with_macro_single(
db,
mode,
original_module,
path,
shadow,
expected_macro_subns,
);
// Merge `new` into `result`.
result.resolved_def = result.resolved_def.or(new.resolved_def);
if result.reached_fixedpoint == ReachedFixedPoint::No {
result.reached_fixedpoint = new.reached_fixedpoint;
}
// FIXME: this doesn't seem right; what if the different namespace resolutions come from different crates?
result.krate = result.krate.or(new.krate);
result.segment_index = match (result.segment_index, new.segment_index) {
(Some(idx), None) => Some(idx),
(Some(old), Some(new)) => Some(old.max(new)),
(None, new) => new,
};
match current_map.block {
Some(block) if original_module == Self::ROOT => {
// Block modules "inherit" names from its parent module.
original_module = block.parent.local_id;
arc = block.parent.def_map(db, current_map.krate);
current_map = &arc;
}
// Proper (non-block) modules, including those in block `DefMap`s, don't.
_ => return result,
}
}
}
pub(super) fn resolve_path_fp_with_macro_single(
&self,
db: &dyn DefDatabase,
mode: ResolveMode,
original_module: LocalModuleId,
path: &ModPath,
shadow: BuiltinShadowMode,
expected_macro_subns: Option<MacroSubNs>,
) -> ResolvePathResult {
let graph = db.crate_graph();
let _cx = stdx::panic_context::enter(format!(
"DefMap {:?} crate_name={:?} block={:?} path={}",
self.krate,
graph[self.krate].display_name,
self.block,
path.display(db.upcast())
));
let mut segments = path.segments().iter().enumerate();
let mut curr_per_ns = match path.kind {
PathKind::DollarCrate(krate) => {
if krate == self.krate {
cov_mark::hit!(macro_dollar_crate_self);
PerNs::types(self.crate_root().into(), Visibility::Public)
} else {
let def_map = db.crate_def_map(krate);
let module = def_map.module_id(Self::ROOT);
cov_mark::hit!(macro_dollar_crate_other);
PerNs::types(module.into(), Visibility::Public)
}
}
PathKind::Crate => PerNs::types(self.crate_root().into(), Visibility::Public),
// plain import or absolute path in 2015: crate-relative with
// fallback to extern prelude (with the simplification in
// rust-lang/rust#57745)
// FIXME there must be a nicer way to write this condition
PathKind::Plain | PathKind::Abs
if self.data.edition == Edition::Edition2015
&& (path.kind == PathKind::Abs || mode == ResolveMode::Import) =>
{
let (_, segment) = match segments.next() {
Some((idx, segment)) => (idx, segment),
None => return ResolvePathResult::empty(ReachedFixedPoint::Yes),
};
tracing::debug!("resolving {:?} in crate root (+ extern prelude)", segment);
self.resolve_name_in_crate_root_or_extern_prelude(db, segment)
}
PathKind::Plain => {
let (_, segment) = match segments.next() {
Some((idx, segment)) => (idx, segment),
None => return ResolvePathResult::empty(ReachedFixedPoint::Yes),
};
// The first segment may be a builtin type. If the path has more
// than one segment, we first try resolving it as a module
// anyway.
// FIXME: If the next segment doesn't resolve in the module and
// BuiltinShadowMode wasn't Module, then we need to try
// resolving it as a builtin.
let prefer_module =
if path.segments().len() == 1 { shadow } else { BuiltinShadowMode::Module };
tracing::debug!("resolving {:?} in module", segment);
self.resolve_name_in_module(
db,
original_module,
segment,
prefer_module,
expected_macro_subns,
)
}
PathKind::Super(lvl) => {
let mut local_id = original_module;
let mut ext;
let mut def_map = self;
// Adjust `local_id` to `self`, i.e. the nearest non-block module.
if def_map.module_id(local_id).is_block_module() {
(ext, local_id) = adjust_to_nearest_non_block_module(db, def_map, local_id);
def_map = &ext;
}
// Go up the module tree but skip block modules as `super` always refers to the
// nearest non-block module.
for _ in 0..lvl {
// Loop invariant: at the beginning of each loop, `local_id` must refer to a
// non-block module.
if let Some(parent) = def_map.modules[local_id].parent {
local_id = parent;
if def_map.module_id(local_id).is_block_module() {
(ext, local_id) =
adjust_to_nearest_non_block_module(db, def_map, local_id);
def_map = &ext;
}
} else {
stdx::always!(def_map.block.is_none());
tracing::debug!("super path in root module");
return ResolvePathResult::empty(ReachedFixedPoint::Yes);
}
}
let module = def_map.module_id(local_id);
stdx::never!(module.is_block_module());
if self.block != def_map.block {
// If we have a different `DefMap` from `self` (the orignal `DefMap` we started
// with), resolve the remaining path segments in that `DefMap`.
let path =
ModPath::from_segments(PathKind::Super(0), path.segments().iter().cloned());
return def_map.resolve_path_fp_with_macro(
db,
mode,
local_id,
&path,
shadow,
expected_macro_subns,
);
}
PerNs::types(module.into(), Visibility::Public)
}
PathKind::Abs => {
// 2018-style absolute path -- only extern prelude
let segment = match segments.next() {
Some((_, segment)) => segment,
None => return ResolvePathResult::empty(ReachedFixedPoint::Yes),
};
if let Some(&def) = self.data.extern_prelude.get(segment) {
tracing::debug!("absolute path {:?} resolved to crate {:?}", path, def);
PerNs::types(def.into(), Visibility::Public)
} else {
return ResolvePathResult::empty(ReachedFixedPoint::No); // extern crate declarations can add to the extern prelude
}
}
};
for (i, segment) in segments {
let (curr, vis) = match curr_per_ns.take_types_vis() {
Some(r) => r,
None => {
// we still have path segments left, but the path so far
// didn't resolve in the types namespace => no resolution
// (don't break here because `curr_per_ns` might contain
// something in the value namespace, and it would be wrong
// to return that)
return ResolvePathResult::empty(ReachedFixedPoint::No);
}
};
// resolve segment in curr
curr_per_ns = match curr {
ModuleDefId::ModuleId(module) => {
if module.krate != self.krate {
let path = ModPath::from_segments(
PathKind::Super(0),
path.segments()[i..].iter().cloned(),
);
tracing::debug!("resolving {:?} in other crate", path);
let defp_map = module.def_map(db);
// Macro sub-namespaces only matter when resolving single-segment paths
// because `macro_use` and other preludes should be taken into account. At
// this point, we know we're resolving a multi-segment path so macro kind
// expectation is discarded.
let (def, s) =
defp_map.resolve_path(db, module.local_id, &path, shadow, None);
return ResolvePathResult::with(
def,
ReachedFixedPoint::Yes,
s.map(|s| s + i),
Some(module.krate),
);
}
let def_map;
let module_data = if module.block == self.block_id() {
&self[module.local_id]
} else {
def_map = module.def_map(db);
&def_map[module.local_id]
};
// Since it is a qualified path here, it should not contains legacy macros
module_data.scope.get(segment)
}
ModuleDefId::AdtId(AdtId::EnumId(e)) => {
// enum variant
cov_mark::hit!(can_import_enum_variant);
let enum_data = db.enum_data(e);
match enum_data.variant(segment) {
Some(local_id) => {
let variant = EnumVariantId { parent: e, local_id };
match &*enum_data.variants[local_id].variant_data {
crate::data::adt::VariantData::Record(_) => {
PerNs::types(variant.into(), Visibility::Public)
}
crate::data::adt::VariantData::Tuple(_)
| crate::data::adt::VariantData::Unit => {
PerNs::both(variant.into(), variant.into(), Visibility::Public)
}
}
}
None => {
return ResolvePathResult::with(
PerNs::types(e.into(), vis),
ReachedFixedPoint::Yes,
Some(i),
Some(self.krate),
);
}
}
}
s => {
// could be an inherent method call in UFCS form
// (`Struct::method`), or some other kind of associated item
tracing::debug!(
"path segment {:?} resolved to non-module {:?}, but is not last",
segment,
curr,
);
return ResolvePathResult::with(
PerNs::types(s, vis),
ReachedFixedPoint::Yes,
Some(i),
Some(self.krate),
);
}
};
curr_per_ns = curr_per_ns
.filter_visibility(|vis| vis.is_visible_from_def_map(db, self, original_module));
}
ResolvePathResult::with(curr_per_ns, ReachedFixedPoint::Yes, None, Some(self.krate))
}
fn resolve_name_in_module(
&self,
db: &dyn DefDatabase,
module: LocalModuleId,
name: &Name,
shadow: BuiltinShadowMode,
expected_macro_subns: Option<MacroSubNs>,
) -> PerNs {
// Resolve in:
// - legacy scope of macro
// - current module / scope
// - extern prelude / macro_use prelude
// - std prelude
let from_legacy_macro = self[module]
.scope
.get_legacy_macro(name)
// FIXME: shadowing
.and_then(|it| it.last())
.copied()
.filter(|&id| {
sub_namespace_match(Some(MacroSubNs::from_id(db, id)), expected_macro_subns)
})
.map_or_else(PerNs::none, |m| PerNs::macros(m, Visibility::Public));
let from_scope = self[module].scope.get(name).filter_macro(db, expected_macro_subns);
let from_builtin = match self.block {
Some(_) => {
// Only resolve to builtins in the root `DefMap`.
PerNs::none()
}
None => BUILTIN_SCOPE.get(name).copied().unwrap_or_else(PerNs::none),
};
let from_scope_or_builtin = match shadow {
BuiltinShadowMode::Module => from_scope.or(from_builtin),
BuiltinShadowMode::Other => match from_scope.take_types() {
Some(ModuleDefId::ModuleId(_)) => from_builtin.or(from_scope),
Some(_) | None => from_scope.or(from_builtin),
},
};
let extern_prelude = || {
if self.block.is_some() {
// Don't resolve extern prelude in block `DefMap`s.
return PerNs::none();
}
self.data
.extern_prelude
.get(name)
.map_or(PerNs::none(), |&it| PerNs::types(it.into(), Visibility::Public))
};
let macro_use_prelude = || {
self.macro_use_prelude
.get(name)
.map_or(PerNs::none(), |&it| PerNs::macros(it.into(), Visibility::Public))
};
let prelude = || self.resolve_in_prelude(db, name);
from_legacy_macro
.or(from_scope_or_builtin)
.or_else(extern_prelude)
.or_else(macro_use_prelude)
.or_else(prelude)
}
fn resolve_name_in_crate_root_or_extern_prelude(
&self,
db: &dyn DefDatabase,
name: &Name,
) -> PerNs {
let from_crate_root = match self.block {
Some(_) => {
let def_map = self.crate_root().def_map(db);
def_map[Self::ROOT].scope.get(name)
}
None => self[Self::ROOT].scope.get(name),
};
let from_extern_prelude = || {
if self.block.is_some() {
// Don't resolve extern prelude in block `DefMap`s.
return PerNs::none();
}
self.data
.extern_prelude
.get(name)
.copied()
.map_or(PerNs::none(), |it| PerNs::types(it.into(), Visibility::Public))
};
from_crate_root.or_else(from_extern_prelude)
}
fn resolve_in_prelude(&self, db: &dyn DefDatabase, name: &Name) -> PerNs {
if let Some(prelude) = self.prelude {
let keep;
let def_map = if prelude.krate == self.krate {
self
} else {
// Extend lifetime
keep = prelude.def_map(db);
&keep
};
def_map[prelude.local_id].scope.get(name)
} else {
PerNs::none()
}
}
}
/// Given a block module, returns its nearest non-block module and the `DefMap` it blongs to.
fn adjust_to_nearest_non_block_module(
db: &dyn DefDatabase,
def_map: &DefMap,
mut local_id: LocalModuleId,
) -> (Arc<DefMap>, LocalModuleId) {
// INVARIANT: `local_id` in `def_map` must be a block module.
stdx::always!(def_map.module_id(local_id).is_block_module());
let mut ext;
// This needs to be a local variable due to our mighty lifetime.
let mut def_map = def_map;
loop {
let BlockInfo { parent, .. } = def_map.block.expect("block module without parent module");
ext = parent.def_map(db, def_map.krate);
def_map = &ext;
local_id = parent.local_id;
if !parent.is_block_module() {
return (ext, local_id);
}
}
}