blob: 9cde6f5598864ae18f7484c30eb4a16e7eb3507d [file] [log] [blame]
//===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the integer arithmetic instructions in the X86
// architecture.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// LEA - Load Effective Address
let SchedRW = [WriteLEA] in {
let hasSideEffects = 0 in
def LEA16r : I<0x8D, MRMSrcMem,
(outs GR16:$dst), (ins anymem:$src),
"lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize16;
let isReMaterializable = 1 in
def LEA32r : I<0x8D, MRMSrcMem,
(outs GR32:$dst), (ins anymem:$src),
"lea{l}\t{$src|$dst}, {$dst|$src}",
[(set GR32:$dst, lea32addr:$src)]>,
OpSize32, Requires<[Not64BitMode]>;
def LEA64_32r : I<0x8D, MRMSrcMem,
(outs GR32:$dst), (ins lea64_32mem:$src),
"lea{l}\t{$src|$dst}, {$dst|$src}",
[(set GR32:$dst, lea64_32addr:$src)]>,
OpSize32, Requires<[In64BitMode]>;
let isReMaterializable = 1 in
def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
"lea{q}\t{$src|$dst}, {$dst|$src}",
[(set GR64:$dst, lea64addr:$src)]>;
} // SchedRW
// Pseudo instruction for lea that prevent optimizer from eliminating
// the instruction.
let SchedRW = [WriteLEA], isPseudo = true, hasSideEffects = 1 in {
def PLEA32r : PseudoI<(outs GR32:$dst), (ins anymem:$src), []>;
def PLEA64r : PseudoI<(outs GR64:$dst), (ins anymem:$src), []>;
}
//===----------------------------------------------------------------------===//
// Fixed-Register Multiplication and Division Instructions.
//
// SchedModel info for instruction that loads one value and gets the second
// (and possibly third) value from a register.
// This is used for instructions that put the memory operands before other
// uses.
class SchedLoadReg<X86FoldableSchedWrite Sched> : Sched<[Sched.Folded,
// Memory operand.
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
// Register reads (implicit or explicit).
Sched.ReadAfterFold, Sched.ReadAfterFold]>;
// BinOpRR - Binary instructions with inputs "reg, reg".
class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, MRMDestReg, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
Sched<[sched]>;
// BinOpRR_F - Binary instructions with inputs "reg, reg", where the pattern
// has just a EFLAGS as a result.
class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode>
: BinOpRR<opcode, mnemonic, typeinfo, (outs), WriteALU,
[(set EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
// BinOpRR_RF - Binary instructions with inputs "reg, reg", where the pattern
// has both a regclass and EFLAGS as a result.
class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteALU,
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
// BinOpRR_RFF - Binary instructions with inputs "reg, reg", where the pattern
// has both a regclass and EFLAGS as a result, and has EFLAGS as input.
class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteADC,
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2,
EFLAGS))]>;
// BinOpRR_Rev - Binary instructions with inputs "reg, reg"(reversed encoding).
class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
X86FoldableSchedWrite sched = WriteALU>
: ITy<opcode, MRMSrcReg, typeinfo,
(outs typeinfo.RegClass:$dst),
(ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
mnemonic, "{$src2, $dst|$dst, $src2}", []>,
Sched<[sched]> {
// The disassembler should know about this, but not the asmparser.
let isCodeGenOnly = 1;
let ForceDisassemble = 1;
let hasSideEffects = 0;
}
// BinOpRR_RFF_Rev - Binary instructions with inputs "reg, reg"(reversed
// encoding), with sched = WriteADC.
class BinOpRR_RFF_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
: BinOpRR_Rev<opcode, mnemonic, typeinfo, WriteADC>;
// BinOpRR_F_Rev - Binary instructions with inputs "reg, reg"(reversed
// encoding), without outlist dag.
class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
: ITy<opcode, MRMSrcReg, typeinfo, (outs),
(ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", []>,
Sched<[WriteALU]> {
// The disassembler should know about this, but not the asmparser.
let isCodeGenOnly = 1;
let ForceDisassemble = 1;
let hasSideEffects = 0;
}
// BinOpRM - Binary instructions with inputs "reg, [mem]".
class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, MRMSrcMem, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
// BinOpRM_ImplicitUse - Binary instructions with inputs "reg, [mem]".
// There is an implicit register read at the end of the operand sequence.
class BinOpRM_ImplicitUse<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, MRMSrcMem, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
Sched<[sched.Folded, sched.ReadAfterFold,
// base, scale, index, offset, segment.
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
// implicit register read.
sched.ReadAfterFold]>;
// BinOpRM_F - Binary instructions with inputs "reg, [mem]", where the pattern
// has just a EFLAGS as a result.
class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRM<opcode, mnemonic, typeinfo, (outs), WriteALU,
[(set EFLAGS,
(opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
// BinOpRM_RF - Binary instructions with inputs "reg, [mem]", where the pattern
// has both a regclass and EFLAGS as a result.
class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteALU,
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
// BinOpRM_RFF - Binary instructions with inputs "reg, [mem]", where the pattern
// has both a regclass and EFLAGS as a result, and has EFLAGS as input.
class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRM_ImplicitUse<opcode, mnemonic, typeinfo,
(outs typeinfo.RegClass:$dst), WriteADC,
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1,
(typeinfo.LoadNode addr:$src2), EFLAGS))]>;
// BinOpRI - Binary instructions with inputs "reg, imm".
class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Format f, dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, f, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
Sched<[sched]> {
let ImmT = typeinfo.ImmEncoding;
}
// BinOpRI_F - Binary instructions with inputs "reg, imm", where the pattern
// has EFLAGS as a result.
class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode, Format f>
: BinOpRI<opcode, mnemonic, typeinfo, f, (outs), WriteALU,
[(set EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
// BinOpRI_RF - Binary instructions with inputs "reg, imm", where the pattern
// has both a regclass and EFLAGS as a result.
class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
: BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteALU,
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
// BinOpRI_RFF - Binary instructions with inputs "reg, imm", where the pattern
// has both a regclass and EFLAGS as a result, and has EFLAGS as input.
class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
: BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteADC,
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2,
EFLAGS))]>;
// BinOpRI8 - Binary instructions with inputs "reg, imm8".
class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Format f, dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, f, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
Sched<[sched]> {
let ImmT = Imm8; // Always 8-bit immediate.
}
// BinOpRI8_F - Binary instructions with inputs "reg, imm8".
class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, Format f>
: BinOpRI8<opcode, mnemonic, typeinfo, f, (outs), WriteALU, []>;
// BinOpRI8_RF - Binary instructions with inputs "reg, imm8".
class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, Format f>
: BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteALU, []>;
// BinOpRI8_RFF - Binary instructions with inputs "reg, imm8".
class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, Format f>
: BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteADC, []>;
// BinOpMR - Binary instructions with inputs "[mem], reg".
class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
list<dag> pattern>
: ITy<opcode, MRMDestMem, typeinfo,
(outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src),
mnemonic, "{$src, $dst|$dst, $src}", pattern>;
// BinOpMR_RMW - Binary instructions with inputs "[mem], reg", where the pattern
// implicitly use EFLAGS.
class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpMR<opcode, mnemonic, typeinfo,
[(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst),
(implicit EFLAGS)]>,
Sched<[WriteALURMW,
// base, scale, index, offset, segment
ReadDefault, ReadDefault, ReadDefault,
ReadDefault, ReadDefault,
WriteALU.ReadAfterFold]>; // reg
// BinOpMR_RMW_FF - Binary instructions with inputs "[mem], reg", where the
// pattern sets EFLAGS and implicitly uses EFLAGS.
class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpMR<opcode, mnemonic, typeinfo,
[(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS),
addr:$dst),
(implicit EFLAGS)]>,
Sched<[WriteADCRMW,
// base, scale, index, offset, segment
ReadDefault, ReadDefault, ReadDefault,
ReadDefault, ReadDefault,
WriteALU.ReadAfterFold, // reg
WriteALU.ReadAfterFold]>; // EFLAGS
// BinOpMR_F - Binary instructions with inputs "[mem], reg", where the pattern
// has EFLAGS as a result.
class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode>
: BinOpMR<opcode, mnemonic, typeinfo,
[(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst),
typeinfo.RegClass:$src))]>,
Sched<[WriteALU.Folded, ReadDefault, ReadDefault, ReadDefault,
ReadDefault, ReadDefault, WriteALU.ReadAfterFold]>;
// BinOpMI - Binary instructions with inputs "[mem], imm".
class BinOpMI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Format f, list<dag> pattern>
: ITy<opcode, f, typeinfo,
(outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
mnemonic, "{$src, $dst|$dst, $src}", pattern> {
let ImmT = typeinfo.ImmEncoding;
}
// BinOpMI_RMW - Binary instructions with inputs "[mem], imm", where the
// pattern implicitly use EFLAGS.
class BinOpMI_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
: BinOpMI<opcode, mnemonic, typeinfo, f,
[(store (opnode (typeinfo.VT (load addr:$dst)),
typeinfo.ImmOperator:$src), addr:$dst),
(implicit EFLAGS)]>,
Sched<[WriteALURMW]>;
// BinOpMI_RMW_FF - Binary instructions with inputs "[mem], imm", where the
// pattern sets EFLAGS and implicitly uses EFLAGS.
class BinOpMI_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
: BinOpMI<opcode, mnemonic, typeinfo, f,
[(store (opnode (typeinfo.VT (load addr:$dst)),
typeinfo.ImmOperator:$src, EFLAGS), addr:$dst),
(implicit EFLAGS)]>,
Sched<[WriteADCRMW]>;
// BinOpMI_F - Binary instructions with inputs "[mem], imm", where the pattern
// has EFLAGS as a result.
class BinOpMI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode, Format f>
: BinOpMI<opcode, mnemonic, typeinfo, f,
[(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst),
typeinfo.ImmOperator:$src))]>,
Sched<[WriteALU.Folded]>;
// BinOpMI8 - Binary instructions with inputs "[mem], imm8".
class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
Format f, list<dag> pattern>
: ITy<0x82, f, typeinfo,
(outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src),
mnemonic, "{$src, $dst|$dst, $src}", pattern> {
let ImmT = Imm8; // Always 8-bit immediate.
}
// BinOpMI8_RMW - Binary instructions with inputs "[mem], imm8".
class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo, Format f>
: BinOpMI8<mnemonic, typeinfo, f, []>, Sched<[WriteALURMW]>;
// BinOpMI8_RMW_FF - Binary instructions with inputs "[mem], imm8".
class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo, Format f>
: BinOpMI8<mnemonic, typeinfo, f, []>, Sched<[WriteADCRMW]>;
// BinOpMI8_F - Binary instructions with inputs "[mem], imm8"
class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo, Format f>
: BinOpMI8<mnemonic, typeinfo, f, []>, Sched<[WriteALU.Folded]>;
// BinOpAI - Binary instructions with input imm, that implicitly use A reg and
// implicitly define Areg and EFLAGS.
class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Register areg, string operands, X86FoldableSchedWrite sched = WriteALU>
: ITy<opcode, RawFrm, typeinfo,
(outs), (ins typeinfo.ImmOperand:$src),
mnemonic, operands, []>,
Sched<[sched]> {
let ImmT = typeinfo.ImmEncoding;
let Uses = [areg];
let Defs = [areg, EFLAGS];
let hasSideEffects = 0;
}
// BinOpAI_RFF - Binary instructions with input imm, that implicitly use and
// define Areg and EFLAGS.
class BinOpAI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Register areg, string operands>
: BinOpAI<opcode, mnemonic, typeinfo, areg, operands, WriteADC> {
let Uses = [areg, EFLAGS];
}
// BinOpAI_F - Binary instructions with input imm, that implicitly use A reg and
// implicitly define EFLAGS.
class BinOpAI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Register areg, string operands>
: BinOpAI<opcode, mnemonic, typeinfo, areg, operands> {
let Defs = [EFLAGS];
}
// UnaryOpM - Unary instructions with a memory operand.
class UnaryOpM<bits<8> opcode, Format f, string mnemonic, X86TypeInfo info,
list<dag> pattern>
: ITy<opcode, f, info, (outs), (ins info.MemOperand:$dst), mnemonic,
"$dst", pattern>;
// UnaryOpR - Unary instructions with a register.
class UnaryOpR<bits<8> opcode, Format f, string mnemonic, X86TypeInfo info,
list<dag> pattern>
: ITy<opcode, f, info, (outs info.RegClass:$dst),
(ins info.RegClass:$src1), mnemonic, "$dst", pattern>;
// INCDECR - Instructions like "inc reg".
class INCDECR<Format f, string mnemonic, X86TypeInfo info,
SDPatternOperator node>
: UnaryOpR<0xFE, f, mnemonic, info,
[(set info.RegClass:$dst, EFLAGS,
(node info.RegClass:$src1, 1))]>;
// INCDECM - Instructions like "inc [mem]".
class INCDECM<Format f, string mnemonic, X86TypeInfo info, int num>
: UnaryOpM<0xFE, f, mnemonic, info,
[(store (add (info.LoadNode addr:$dst), num), addr:$dst),
(implicit EFLAGS)]>;
// INCDECR_ALT - Instructions like "inc reg" short forms.
class INCDECR_ALT<bits<8> opcode, string mnemonic, X86TypeInfo info>
: UnaryOpR<opcode, AddRegFrm, mnemonic, info, []>{
let Predicates = [Not64BitMode];
let Opcode = opcode;
}
// MulOpR - Instructions like "mul reg".
class MulOpR<bits<8> opcode, Format f, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, f, info, (outs), (ins info.RegClass:$src), mnemonic,
"$src", pattern>,
Sched<[sched]>;
// MulOpM - Instructions like "mul [mem]".
class MulOpM<bits<8> opcode, Format f, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, f, info, (outs), (ins info.MemOperand:$src), mnemonic,
"$src", pattern>, SchedLoadReg<sched>;
// NegOpR - Instructions like "neg reg", with implicit EFLAGS.
class NegOpR<bits<8> opcode, string mnemonic, X86TypeInfo info>
: UnaryOpR<opcode, MRM3r, mnemonic, info,
[(set info.RegClass:$dst, (ineg info.RegClass:$src1)),
(implicit EFLAGS)]>;
// NotOpR - Instructions like "not reg".
class NotOpR<bits<8> opcode, string mnemonic, X86TypeInfo info>
: UnaryOpR<opcode, MRM2r, mnemonic, info,
[(set info.RegClass:$dst,
(not info.RegClass:$src1))]>;
// NegOpM - Instructions like "neg [mem]", with implicit EFLAGS.
class NegOpM<bits<8> opcode, string mnemonic, X86TypeInfo info>
: UnaryOpM<opcode, MRM3m, mnemonic, info,
[(store (ineg (info.LoadNode addr:$dst)), addr:$dst),
(implicit EFLAGS)]>;
// NotOpM - Instructions like "neg [mem]".
class NotOpM<bits<8> opcode, string mnemonic, X86TypeInfo info>
: UnaryOpM<opcode, MRM2m, mnemonic, info,
[(store (not (info.LoadNode addr:$dst)), addr:$dst)]>;
// BinOpRR_C - Binary instructions with inputs "reg, reg", which used mainly
// with Constraints = "$src1 = $dst".
class BinOpRR_C<bits<8> opcode, Format f, string mnemonic, X86TypeInfo info,
list<dag> pattern>
: ITy<opcode, f, info, (outs info.RegClass:$dst),
(ins info.RegClass:$src1, info.RegClass:$src2),
mnemonic, "{$src2, $dst|$dst, $src2}", pattern>;
// BinOpRM_C - Binary instructions with inputs "reg, [mem]", which used mainly
// with Constraints = "$src1 = $dst".
class BinOpRM_C<bits<8> opcode, Format f, string mnemonic, X86TypeInfo info,
list<dag> pattern>
: ITy<opcode, f, info, (outs info.RegClass:$dst),
(ins info.RegClass:$src1, info.MemOperand:$src2),
mnemonic, "{$src2, $dst|$dst, $src2}", pattern>;
// IMulOpRR - Instructions like "imul reg, reg, i8".
class IMulOpRR<bits<8> opcode, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched>
: BinOpRR_C<opcode, MRMSrcReg, mnemonic, info,
[(set info.RegClass:$dst, EFLAGS,
(X86smul_flag info.RegClass:$src1,
info.RegClass:$src2))]>,
Sched<[sched]>, TB;
// IMulOpRM - Instructions like "imul reg, reg, [mem]".
class IMulOpRM<bits<8> opcode, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched>
: BinOpRM_C<opcode, MRMSrcMem, mnemonic, info,
[(set info.RegClass:$dst, EFLAGS,
(X86smul_flag info.RegClass:$src1, (info.LoadNode addr:$src2)))]>,
Sched<[sched.Folded, sched.ReadAfterFold]>, TB;
// IMulOpRRI8 - Instructions like "imul reg, reg, i8".
class IMulOpRRI8<bits<8> opcode, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched>
: ITy<opcode, MRMSrcReg, info, (outs info.RegClass:$dst),
(ins info.RegClass:$src1, info.Imm8Operand:$src2), mnemonic,
"{$src2, $src1, $dst|$dst, $src1, $src2}", []>, Sched<[sched]> {
let ImmT = Imm8;
}
// IMulOpRRI - Instructions like "imul reg, reg, i16/i32/i64".
class IMulOpRRI<bits<8> opcode, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched>
: ITy<opcode, MRMSrcReg, info, (outs info.RegClass:$dst),
(ins info.RegClass:$src1, info.ImmOperand:$src2), mnemonic,
"{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set info.RegClass:$dst, EFLAGS,
(X86smul_flag info.RegClass:$src1,
info.ImmNoSuOperator:$src2))]>,
Sched<[sched]>{
let ImmT = info.ImmEncoding;
}
// IMulOpRMI8 - Instructions like "imul reg, [mem], i8".
class IMulOpRMI8<bits<8> opcode, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched>
: ITy<opcode, MRMSrcMem, info, (outs info.RegClass:$dst),
(ins info.MemOperand:$src1, info.Imm8Operand:$src2), mnemonic,
"{$src2, $src1, $dst|$dst, $src1, $src2}", []>, Sched<[sched.Folded]> {
let ImmT = Imm8;
}
// IMulOpRMI - Instructions like "imul reg, [mem], i16/i32/i64".
class IMulOpRMI<bits<8> opcode, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched>
: ITy<opcode, MRMSrcMem, info, (outs info.RegClass:$dst),
(ins info.MemOperand:$src1, info.ImmOperand:$src2), mnemonic,
"{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set info.RegClass:$dst, EFLAGS,
(X86smul_flag (info.LoadNode addr:$src1),
info.ImmNoSuOperator:$src2))]>,
Sched<[sched.Folded]>{
let ImmT = info.ImmEncoding;
}
def X86add_flag_nocf : PatFrag<(ops node:$lhs, node:$rhs),
(X86add_flag node:$lhs, node:$rhs), [{
return hasNoCarryFlagUses(SDValue(N, 1));
}]>;
def X86sub_flag_nocf : PatFrag<(ops node:$lhs, node:$rhs),
(X86sub_flag node:$lhs, node:$rhs), [{
// Only use DEC if the result is used.
return !SDValue(N, 0).use_empty() && hasNoCarryFlagUses(SDValue(N, 1));
}]>;
let Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
// Short forms only valid in 32-bit mode. Selected during MCInst lowering.
let CodeSize = 1, hasSideEffects = 0 in {
def INC16r_alt : INCDECR_ALT<0x40, "inc", Xi16>;
def INC32r_alt : INCDECR_ALT<0x40, "inc", Xi32>;
} // CodeSize = 1, hasSideEffects = 0
let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA.
def INC8r : INCDECR<MRM0r, "inc", Xi8, X86add_flag_nocf>;
def INC16r : INCDECR<MRM0r, "inc", Xi16, X86add_flag_nocf>;
def INC32r : INCDECR<MRM0r, "inc", Xi32, X86add_flag_nocf>;
def INC64r : INCDECR<MRM0r, "inc", Xi64, X86add_flag_nocf>;
} // isConvertibleToThreeAddress = 1, CodeSize = 2
} // Constraints = "$src1 = $dst", SchedRW
let CodeSize = 2, SchedRW = [WriteALURMW] in {
let Predicates = [UseIncDec] in {
def INC8m : INCDECM<MRM0m, "inc", Xi8, 1>;
def INC16m : INCDECM<MRM0m, "inc", Xi16, 1>;
def INC32m : INCDECM<MRM0m, "inc", Xi32, 1>;
} // Predicates
let Predicates = [UseIncDec, In64BitMode] in {
def INC64m : INCDECM<MRM0m, "inc", Xi64, 1>;
} // Predicates
} // CodeSize = 2, SchedRW
let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
// Short forms only valid in 32-bit mode. Selected during MCInst lowering.
let CodeSize = 1, hasSideEffects = 0 in {
def DEC16r_alt : INCDECR_ALT<0x48, "dec", Xi16>;
def DEC32r_alt : INCDECR_ALT<0x48, "dec", Xi32>;
} // CodeSize = 1, hasSideEffects = 0
let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA.
def DEC8r : INCDECR<MRM1r, "dec", Xi8, X86sub_flag_nocf>;
def DEC16r : INCDECR<MRM1r, "dec", Xi16, X86sub_flag_nocf>;
def DEC32r : INCDECR<MRM1r, "dec", Xi32, X86sub_flag_nocf>;
def DEC64r : INCDECR<MRM1r, "dec", Xi64, X86sub_flag_nocf>;
} // isConvertibleToThreeAddress = 1, CodeSize = 2
} // Constraints = "$src1 = $dst", SchedRW
let CodeSize = 2, SchedRW = [WriteALURMW] in {
let Predicates = [UseIncDec] in {
def DEC8m : INCDECM<MRM1m, "dec", Xi8, -1>;
def DEC16m : INCDECM<MRM1m, "dec", Xi16, -1>;
def DEC32m : INCDECM<MRM1m, "dec", Xi32, -1>;
} // Predicates
let Predicates = [UseIncDec, In64BitMode] in {
def DEC64m : INCDECM<MRM1m, "dec", Xi64, -1>;
} // Predicates
} // CodeSize = 2, SchedRW
} // Defs = [EFLAGS]
// Extra precision multiplication
// AL is really implied by AX, but the registers in Defs must match the
// SDNode results (i8, i32).
// AL,AH = AL*GR8
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def MUL8r : MulOpR<0xF6, MRM4r, "mul", Xi8, WriteIMul8,
// FIXME: Used for 8-bit mul, ignore result upper 8 bits.
// This probably ought to be moved to a def : Pat<> if the
// syntax can be accepted.
[(set AL, (mul AL, GR8:$src)), (implicit EFLAGS)]>;
// AX,DX = AX*GR16
let Defs = [AX,DX,EFLAGS], Uses = [AX], hasSideEffects = 0 in
def MUL16r : MulOpR<0xF7, MRM4r, "mul", Xi16, WriteIMul16, []>;
// EAX,EDX = EAX*GR32
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], hasSideEffects = 0 in
def MUL32r : MulOpR<0xF7, MRM4r, "mul", Xi32, WriteIMul32,
[/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/]>;
// RAX,RDX = RAX*GR64
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], hasSideEffects = 0 in
def MUL64r : MulOpR<0xF7, MRM4r, "mul", Xi64, WriteIMul64,
[/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/]>;
// AL,AH = AL*[mem8]
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def MUL8m : MulOpM<0xF6, MRM4m, "mul", Xi8, WriteIMul8,
// FIXME: Used for 8-bit mul, ignore result upper 8 bits.
// This probably ought to be moved to a def : Pat<> if the
// syntax can be accepted.
[(set AL, (mul AL, (loadi8 addr:$src))),
(implicit EFLAGS)]>;
// AX,DX = AX*[mem16]
let mayLoad = 1, hasSideEffects = 0 in {
let Defs = [AX,DX,EFLAGS], Uses = [AX] in
def MUL16m : MulOpM<0xF7, MRM4m, "mul", Xi16, WriteIMul16, []>;
// EAX,EDX = EAX*[mem32]
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
def MUL32m : MulOpM<0xF7, MRM4m, "mul", Xi32, WriteIMul32, []>;
// RAX,RDX = RAX*[mem64]
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
def MUL64m : MulOpM<0xF7, MRM4m, "mul", Xi64, WriteIMul64, []>,
Requires<[In64BitMode]>;
}
let hasSideEffects = 0 in {
// AL,AH = AL*GR8
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def IMUL8r : MulOpR<0xF6, MRM5r, "imul", Xi8, WriteIMul8, []>;
// AX,DX = AX*GR16
let Defs = [AX,DX,EFLAGS], Uses = [AX] in
def IMUL16r : MulOpR<0xF7, MRM5r, "imul", Xi16, WriteIMul16, []>;
// EAX,EDX = EAX*GR32
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
def IMUL32r : MulOpR<0xF7, MRM5r, "imul", Xi32, WriteIMul32, []>;
// RAX,RDX = RAX*GR64
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
def IMUL64r : MulOpR<0xF7, MRM5r, "imul", Xi64, WriteIMul64, []>;
let mayLoad = 1 in {
// AL,AH = AL*[mem8]
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def IMUL8m : MulOpM<0xF6, MRM5m, "imul", Xi8, WriteIMul8, []>;
// AX,DX = AX*[mem16]
let Defs = [AX,DX,EFLAGS], Uses = [AX] in
def IMUL16m : MulOpM<0xF7, MRM5m, "imul", Xi16, WriteIMul16, []>;
// EAX,EDX = EAX*[mem32]
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
def IMUL32m : MulOpM<0xF7, MRM5m, "imul", Xi32, WriteIMul32, []>;
// RAX,RDX = RAX*[mem64]
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
def IMUL64m : MulOpM<0xF7, MRM5m, "imul", Xi64, WriteIMul64, []>,
Requires<[In64BitMode]>;
}
let Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst" in {
let isCommutable = 1 in {
// X = IMUL Y, Z --> X = IMUL Z, Y
// Register-Register Signed Integer Multiply
def IMUL16rr : IMulOpRR<0xAF, "imul", Xi16, WriteIMul16Reg>;
def IMUL32rr : IMulOpRR<0xAF, "imul", Xi32, WriteIMul32Reg>;
def IMUL64rr : IMulOpRR<0xAF, "imul", Xi64, WriteIMul64Reg>;
} // isCommutable
// Register-Memory Signed Integer Multiply
def IMUL16rm : IMulOpRM<0xAF, "imul", Xi16, WriteIMul16Reg>;
def IMUL32rm : IMulOpRM<0xAF, "imul", Xi32, WriteIMul32Reg>;
def IMUL64rm : IMulOpRM<0xAF, "imul", Xi64, WriteIMul64Reg>;
} // Constraints = "$src1 = $dst"
} // Defs = [EFLAGS]
// Surprisingly enough, these are not two address instructions!
let Defs = [EFLAGS] in {
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
// Register-Integer Signed Integer Multiply
// GR16 = GR16*I8
def IMUL16rri8 : IMulOpRRI8<0x6B, "imul", Xi16, WriteIMul16Imm>;
// GR16 = GR16*I16
def IMUL16rri : IMulOpRRI<0x69, "imul", Xi16, WriteIMul16Imm>;
// GR32 = GR32*I8
def IMUL32rri8 : IMulOpRRI8<0x6B, "imul", Xi32, WriteIMul32Imm>;
// GR32 = GR32*I32
def IMUL32rri : IMulOpRRI<0x69, "imul", Xi32, WriteIMul32Imm>;
// GR64 = GR64*I8
def IMUL64rri8 : IMulOpRRI8<0x6B, "imul", Xi64, WriteIMul64Imm>;
// GR64 = GR64*I32
def IMUL64rri32 : IMulOpRRI<0x69, "imul", Xi64, WriteIMul64Imm>;
// Memory-Integer Signed Integer Multiply
// GR16 = [mem16]*I8
let mayLoad = 1 in {
def IMUL16rmi8 : IMulOpRMI8<0x6B, "imul", Xi16, WriteIMul16Imm>;
// GR16 = [mem16]*I16
def IMUL16rmi : IMulOpRMI<0x69, "imul", Xi16, WriteIMul16Imm>;
// GR32 = [mem32]*I8
def IMUL32rmi8 : IMulOpRMI8<0x6B, "imul", Xi32, WriteIMul32Imm>;
// GR32 = [mem32]*I32
def IMUL32rmi : IMulOpRMI<0x69, "imul", Xi32, WriteIMul32Imm>;
// GR64 = [mem64]*I8
def IMUL64rmi8 : IMulOpRMI8<0x6B, "imul", Xi64, WriteIMul64Imm>;
// GR64 = [mem64]*I32
def IMUL64rmi32 : IMulOpRMI<0x69, "imul", Xi64, WriteIMul64Imm>;
} // mayLoad
} // Defs = [EFLAGS]
} // hasSideEffects
// unsigned division/remainder
let hasSideEffects = 1 in { // so that we don't speculatively execute
let Defs = [AL,AH,EFLAGS], Uses = [AX] in
// AX/r8 = AL,AH
def DIV8r : MulOpR<0xF6, MRM6r, "div", Xi8, WriteDiv8, []>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
// DX:AX/r16 = AX,DX
def DIV16r : MulOpR<0xF7, MRM6r, "div", Xi16, WriteDiv16, []>;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
// EDX:EAX/r32 = EAX,EDX
def DIV32r : MulOpR<0xF7, MRM6r, "div", Xi32, WriteDiv32, []>;
// RDX:RAX/r64 = RAX,RDX
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
def DIV64r : MulOpR<0xF7, MRM6r, "div", Xi64, WriteDiv64, []>;
let mayLoad = 1 in {
let Defs = [AL,AH,EFLAGS], Uses = [AX] in
// AX/[mem8] = AL,AH
def DIV8m : MulOpM<0xF6, MRM6m, "div", Xi8, WriteDiv8, []>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
// DX:AX/[mem16] = AX,DX
def DIV16m : MulOpM<0xF7, MRM6m, "div", Xi16, WriteDiv16, []>;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX
def DIV32m : MulOpM<0xF7, MRM6m, "div", Xi32, WriteDiv32, []>;
// RDX:RAX/[mem64] = RAX,RDX
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
def DIV64m : MulOpM<0xF7, MRM6m, "div", Xi64, WriteDiv64, []>,
Requires<[In64BitMode]>;
}
// Signed division/remainder.
let Defs = [AL,AH,EFLAGS], Uses = [AX] in
// AX/r8 = AL,AH
def IDIV8r : MulOpR<0xF6, MRM7r, "idiv", Xi8, WriteIDiv8, []>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
// DX:AX/r16 = AX,DX
def IDIV16r: MulOpR<0xF7, MRM7r, "idiv", Xi16, WriteIDiv16, []>;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
// EDX:EAX/r32 = EAX,EDX
def IDIV32r: MulOpR<0xF7, MRM7r, "idiv", Xi32, WriteIDiv32, []>;
// RDX:RAX/r64 = RAX,RDX
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
def IDIV64r: MulOpR<0xF7, MRM7r, "idiv", Xi64, WriteIDiv64, []>;
let mayLoad = 1 in {
let Defs = [AL,AH,EFLAGS], Uses = [AX] in
// AX/[mem8] = AL,AH
def IDIV8m : MulOpM<0xF6, MRM7m, "idiv", Xi8, WriteIDiv8, []>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
// DX:AX/[mem16] = AX,DX
def IDIV16m: MulOpM<0xF7, MRM7m, "idiv", Xi16, WriteIDiv16, []>;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
// EDX:EAX/[mem32] = EAX,EDX
def IDIV32m: MulOpM<0xF7, MRM7m, "idiv", Xi32, WriteIDiv32, []>;
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX
// RDX:RAX/[mem64] = RAX,RDX
def IDIV64m: MulOpM<0xF7, MRM7m, "idiv", Xi64, WriteIDiv64, []>,
Requires<[In64BitMode]>;
}
} // hasSideEffects = 1
//===----------------------------------------------------------------------===//
// Two address Instructions.
//
// unary instructions
let CodeSize = 2 in {
let Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
def NEG8r : NegOpR<0xF6, "neg", Xi8>;
def NEG16r : NegOpR<0xF7, "neg", Xi16>;
def NEG32r : NegOpR<0xF7, "neg", Xi32>;
def NEG64r : NegOpR<0xF7, "neg", Xi64>;
} // Constraints = "$src1 = $dst", SchedRW
// Read-modify-write negate.
let SchedRW = [WriteALURMW] in {
def NEG8m : NegOpM<0xF6, "neg", Xi8>;
def NEG16m : NegOpM<0xF7, "neg", Xi16>;
def NEG32m : NegOpM<0xF7, "neg", Xi32>;
def NEG64m : NegOpM<0xF7, "neg", Xi64>, Requires<[In64BitMode]>;
} // SchedRW
} // Defs = [EFLAGS]
// Note: NOT does not set EFLAGS!
let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
def NOT8r : NotOpR<0xF6, "not", Xi8>;
def NOT16r : NotOpR<0xF7, "not", Xi16>;
def NOT32r : NotOpR<0xF7, "not", Xi32>;
def NOT64r : NotOpR<0xF7, "not", Xi64>;
} // Constraints = "$src1 = $dst", SchedRW
let SchedRW = [WriteALURMW] in {
def NOT8m : NotOpM<0xF6, "not", Xi8>;
def NOT16m : NotOpM<0xF7, "not", Xi16>;
def NOT32m : NotOpM<0xF7, "not", Xi32>;
def NOT64m : NotOpM<0xF7, "not", Xi64>, Requires<[In64BitMode]>;
} // SchedRW
} // CodeSize
/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
/// defined with "(set GPR:$dst, EFLAGS, (...".
///
/// It would be nice to get rid of the second and third argument here, but
/// tblgen can't handle dependent type references aggressively enough: PR8330
multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
string mnemonic, Format RegMRM, Format MemMRM,
SDNode opnodeflag, SDNode opnode,
bit CommutableRR, bit ConvertibleToThreeAddress,
bit ConvertibleToThreeAddressRR> {
let Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst" in {
let isCommutable = CommutableRR in {
let isConvertibleToThreeAddress = ConvertibleToThreeAddressRR in {
def NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
} // isConvertibleToThreeAddress
} // isCommutable
def NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
def NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
def NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>;
def NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
def NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress, hasSideEffects= 0 in {
def NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, RegMRM>;
def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, RegMRM>;
def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, RegMRM>;
def NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
def NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
}
} // Constraints = "$src1 = $dst"
let mayLoad = 1, mayStore = 1, hasSideEffects = 0 in {
def NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
def NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
// NOTE: These are order specific, we want the mi8 forms to be listed
// first so that they are slightly preferred to the mi forms.
def NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, MemMRM>;
def NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, MemMRM>;
def NAME#8mi : BinOpMI_RMW<0x80, mnemonic, Xi8 , opnode, MemMRM>;
def NAME#16mi : BinOpMI_RMW<0x80, mnemonic, Xi16, opnode, MemMRM>;
def NAME#32mi : BinOpMI_RMW<0x80, mnemonic, Xi32, opnode, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi32 : BinOpMI_RMW<0x80, mnemonic, Xi64, opnode, MemMRM>;
}
// These are for the disassembler since 0x82 opcode behaves like 0x80, but
// not in 64-bit mode.
let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
hasSideEffects = 0 in {
let Constraints = "$src1 = $dst" in
def NAME#8ri8 : BinOpRI8_RF<0x82, mnemonic, Xi8, RegMRM>;
let mayLoad = 1, mayStore = 1 in
def NAME#8mi8 : BinOpMI8_RMW<mnemonic, Xi8, MemMRM>;
}
} // Defs = [EFLAGS]
def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
"{$src, %al|al, $src}">;
def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
"{$src, %ax|ax, $src}">;
def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
"{$src, %eax|eax, $src}">;
def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
"{$src, %rax|rax, $src}">;
}
/// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is
/// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and
/// SBB.
///
/// It would be nice to get rid of the second and third argument here, but
/// tblgen can't handle dependent type references aggressively enough: PR8330
multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
string mnemonic, Format RegMRM, Format MemMRM,
SDNode opnode, bit CommutableRR,
bit ConvertibleToThreeAddress> {
let Uses = [EFLAGS], Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst" in {
let isCommutable = CommutableRR in {
def NAME#8rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
} // isConvertibleToThreeAddress
} // isCommutable
def NAME#8rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi8>;
def NAME#16rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi16>;
def NAME#32rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi32>;
def NAME#64rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi64>;
def NAME#8rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>;
def NAME#16rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>;
def NAME#32rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>;
def NAME#64rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>;
def NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress, hasSideEffects = 0 in {
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, RegMRM>;
def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, RegMRM>;
def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, RegMRM>;
def NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>;
def NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>;
def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>;
}
} // Constraints = "$src1 = $dst"
def NAME#8mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>;
def NAME#16mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>;
// NOTE: These are order specific, we want the mi8 forms to be listed
// first so that they are slightly preferred to the mi forms.
let mayLoad = 1, mayStore = 1, hasSideEffects = 0 in {
def NAME#16mi8 : BinOpMI8_RMW_FF<mnemonic, Xi16, MemMRM>;
def NAME#32mi8 : BinOpMI8_RMW_FF<mnemonic, Xi32, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi8 : BinOpMI8_RMW_FF<mnemonic, Xi64, MemMRM>;
def NAME#8mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi8 , opnode, MemMRM>;
def NAME#16mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi16, opnode, MemMRM>;
def NAME#32mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi32, opnode, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi32 : BinOpMI_RMW_FF<0x80, mnemonic, Xi64, opnode, MemMRM>;
}
// These are for the disassembler since 0x82 opcode behaves like 0x80, but
// not in 64-bit mode.
let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
hasSideEffects = 0 in {
let Constraints = "$src1 = $dst" in
def NAME#8ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi8, RegMRM>;
let mayLoad = 1, mayStore = 1 in
def NAME#8mi8 : BinOpMI8_RMW_FF<mnemonic, Xi8, MemMRM>;
}
} // Uses = [EFLAGS], Defs = [EFLAGS]
def NAME#8i8 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi8 , AL,
"{$src, %al|al, $src}">;
def NAME#16i16 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi16, AX,
"{$src, %ax|ax, $src}">;
def NAME#32i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi32, EAX,
"{$src, %eax|eax, $src}">;
def NAME#64i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi64, RAX,
"{$src, %rax|rax, $src}">;
}
/// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
/// defined with "(set EFLAGS, (...". It would be really nice to find a way
/// to factor this with the other ArithBinOp_*.
///
multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
string mnemonic, Format RegMRM, Format MemMRM,
SDNode opnode,
bit CommutableRR, bit ConvertibleToThreeAddress> {
let Defs = [EFLAGS] in {
let isCommutable = CommutableRR in {
def NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
}
} // isCommutable
def NAME#8rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>;
def NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>;
def NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>;
def NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>;
def NAME#8rm : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
def NAME#16rm : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>;
def NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
def NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
def NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress, hasSideEffects = 0 in {
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, RegMRM>;
def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, RegMRM>;
def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, RegMRM>;
def NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
def NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
}
def NAME#8mr : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
def NAME#16mr : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32mr : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64mr : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;
// NOTE: These are order specific, we want the mi8 forms to be listed
// first so that they are slightly preferred to the mi forms.
let mayLoad = 1, hasSideEffects = 0 in {
def NAME#16mi8 : BinOpMI8_F<mnemonic, Xi16, MemMRM>;
def NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, MemMRM>;
def NAME#8mi : BinOpMI_F<0x80, mnemonic, Xi8 , opnode, MemMRM>;
def NAME#16mi : BinOpMI_F<0x80, mnemonic, Xi16, opnode, MemMRM>;
def NAME#32mi : BinOpMI_F<0x80, mnemonic, Xi32, opnode, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi32 : BinOpMI_F<0x80, mnemonic, Xi64, opnode, MemMRM>;
}
// These are for the disassembler since 0x82 opcode behaves like 0x80, but
// not in 64-bit mode.
let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
hasSideEffects = 0 in {
def NAME#8ri8 : BinOpRI8_F<0x82, mnemonic, Xi8, RegMRM>;
let mayLoad = 1 in
def NAME#8mi8 : BinOpMI8_F<mnemonic, Xi8, MemMRM>;
}
} // Defs = [EFLAGS]
def NAME#8i8 : BinOpAI_F<BaseOpc4, mnemonic, Xi8 , AL,
"{$src, %al|al, $src}">;
def NAME#16i16 : BinOpAI_F<BaseOpc4, mnemonic, Xi16, AX,
"{$src, %ax|ax, $src}">;
def NAME#32i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi32, EAX,
"{$src, %eax|eax, $src}">;
def NAME#64i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi64, RAX,
"{$src, %rax|rax, $src}">;
}
defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m,
X86and_flag, and, 1, 0, 0>;
defm OR : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m,
X86or_flag, or, 1, 0, 0>;
defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m,
X86xor_flag, xor, 1, 0, 0>;
defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m,
X86add_flag, add, 1, 1, 1>;
let isCompare = 1 in {
defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m,
X86sub_flag, sub, 0, 1, 0>;
}
// Version of XOR8rr_NOREX that use GR8_NOREX. This is used by the handling of
// __builtin_parity where the last step xors an h-register with an l-register.
let isCodeGenOnly = 1, hasSideEffects = 0, Constraints = "$src1 = $dst",
Defs = [EFLAGS], isCommutable = 1 in
def XOR8rr_NOREX : I<0x30, MRMDestReg, (outs GR8_NOREX:$dst),
(ins GR8_NOREX:$src1, GR8_NOREX:$src2),
"xor{b}\t{$src2, $dst|$dst, $src2}", []>,
Sched<[WriteALU]>;
// Arithmetic.
defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag,
1, 0>;
defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag,
0, 0>;
let isCompare = 1 in {
defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
}
// Patterns to recognize loads on the LHS of an ADC. We can't make X86adc_flag
// commutable since it has EFLAGs as an input.
def : Pat<(X86adc_flag (loadi8 addr:$src2), GR8:$src1, EFLAGS),
(ADC8rm GR8:$src1, addr:$src2)>;
def : Pat<(X86adc_flag (loadi16 addr:$src2), GR16:$src1, EFLAGS),
(ADC16rm GR16:$src1, addr:$src2)>;
def : Pat<(X86adc_flag (loadi32 addr:$src2), GR32:$src1, EFLAGS),
(ADC32rm GR32:$src1, addr:$src2)>;
def : Pat<(X86adc_flag (loadi64 addr:$src2), GR64:$src1, EFLAGS),
(ADC64rm GR64:$src1, addr:$src2)>;
// Patterns to recognize RMW ADC with loads in operand 1.
def : Pat<(store (X86adc_flag GR8:$src, (loadi8 addr:$dst), EFLAGS),
addr:$dst),
(ADC8mr addr:$dst, GR8:$src)>;
def : Pat<(store (X86adc_flag GR16:$src, (loadi16 addr:$dst), EFLAGS),
addr:$dst),
(ADC16mr addr:$dst, GR16:$src)>;
def : Pat<(store (X86adc_flag GR32:$src, (loadi32 addr:$dst), EFLAGS),
addr:$dst),
(ADC32mr addr:$dst, GR32:$src)>;
def : Pat<(store (X86adc_flag GR64:$src, (loadi64 addr:$dst), EFLAGS),
addr:$dst),
(ADC64mr addr:$dst, GR64:$src)>;
// Patterns for basic arithmetic ops with relocImm for the immediate field.
multiclass ArithBinOp_RF_relocImm_Pats<SDNode OpNodeFlag, SDNode OpNode> {
def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2),
(!cast<Instruction>(NAME#"8ri") GR8:$src1, relocImm8_su:$src2)>;
def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2),
(!cast<Instruction>(NAME#"16ri") GR16:$src1, relocImm16_su:$src2)>;
def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2),
(!cast<Instruction>(NAME#"32ri") GR32:$src1, relocImm32_su:$src2)>;
def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2),
(!cast<Instruction>(NAME#"64ri32") GR64:$src1, i64relocImmSExt32_su:$src2)>;
def : Pat<(store (OpNode (load addr:$dst), relocImm8_su:$src), addr:$dst),
(!cast<Instruction>(NAME#"8mi") addr:$dst, relocImm8_su:$src)>;
def : Pat<(store (OpNode (load addr:$dst), relocImm16_su:$src), addr:$dst),
(!cast<Instruction>(NAME#"16mi") addr:$dst, relocImm16_su:$src)>;
def : Pat<(store (OpNode (load addr:$dst), relocImm32_su:$src), addr:$dst),
(!cast<Instruction>(NAME#"32mi") addr:$dst, relocImm32_su:$src)>;
def : Pat<(store (OpNode (load addr:$dst), i64relocImmSExt32_su:$src), addr:$dst),
(!cast<Instruction>(NAME#"64mi32") addr:$dst, i64relocImmSExt32_su:$src)>;
}
multiclass ArithBinOp_RFF_relocImm_Pats<SDNode OpNodeFlag> {
def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2, EFLAGS),
(!cast<Instruction>(NAME#"8ri") GR8:$src1, relocImm8_su:$src2)>;
def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2, EFLAGS),
(!cast<Instruction>(NAME#"16ri") GR16:$src1, relocImm16_su:$src2)>;
def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2, EFLAGS),
(!cast<Instruction>(NAME#"32ri") GR32:$src1, relocImm32_su:$src2)>;
def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2, EFLAGS),
(!cast<Instruction>(NAME#"64ri32") GR64:$src1, i64relocImmSExt32_su:$src2)>;
def : Pat<(store (OpNodeFlag (load addr:$dst), relocImm8_su:$src, EFLAGS), addr:$dst),
(!cast<Instruction>(NAME#"8mi") addr:$dst, relocImm8_su:$src)>;
def : Pat<(store (OpNodeFlag (load addr:$dst), relocImm16_su:$src, EFLAGS), addr:$dst),
(!cast<Instruction>(NAME#"16mi") addr:$dst, relocImm16_su:$src)>;
def : Pat<(store (OpNodeFlag (load addr:$dst), relocImm32_su:$src, EFLAGS), addr:$dst),
(!cast<Instruction>(NAME#"32mi") addr:$dst, relocImm32_su:$src)>;
def : Pat<(store (OpNodeFlag (load addr:$dst), i64relocImmSExt32_su:$src, EFLAGS), addr:$dst),
(!cast<Instruction>(NAME#"64mi32") addr:$dst, i64relocImmSExt32_su:$src)>;
}
multiclass ArithBinOp_F_relocImm_Pats<SDNode OpNodeFlag> {
def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2),
(!cast<Instruction>(NAME#"8ri") GR8:$src1, relocImm8_su:$src2)>;
def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2),
(!cast<Instruction>(NAME#"16ri") GR16:$src1, relocImm16_su:$src2)>;
def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2),
(!cast<Instruction>(NAME#"32ri") GR32:$src1, relocImm32_su:$src2)>;
def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2),
(!cast<Instruction>(NAME#"64ri32") GR64:$src1, i64relocImmSExt32_su:$src2)>;
def : Pat<(OpNodeFlag (loadi8 addr:$src1), relocImm8_su:$src2),
(!cast<Instruction>(NAME#"8mi") addr:$src1, relocImm8_su:$src2)>;
def : Pat<(OpNodeFlag (loadi16 addr:$src1), relocImm16_su:$src2),
(!cast<Instruction>(NAME#"16mi") addr:$src1, relocImm16_su:$src2)>;
def : Pat<(OpNodeFlag (loadi32 addr:$src1), relocImm32_su:$src2),
(!cast<Instruction>(NAME#"32mi") addr:$src1, relocImm32_su:$src2)>;
def : Pat<(OpNodeFlag (loadi64 addr:$src1), i64relocImmSExt32_su:$src2),
(!cast<Instruction>(NAME#"64mi32") addr:$src1, i64relocImmSExt32_su:$src2)>;
}
defm AND : ArithBinOp_RF_relocImm_Pats<X86and_flag, and>;
defm OR : ArithBinOp_RF_relocImm_Pats<X86or_flag, or>;
defm XOR : ArithBinOp_RF_relocImm_Pats<X86xor_flag, xor>;
defm ADD : ArithBinOp_RF_relocImm_Pats<X86add_flag, add>;
defm SUB : ArithBinOp_RF_relocImm_Pats<X86sub_flag, sub>;
defm ADC : ArithBinOp_RFF_relocImm_Pats<X86adc_flag>;
defm SBB : ArithBinOp_RFF_relocImm_Pats<X86sbb_flag>;
defm CMP : ArithBinOp_F_relocImm_Pats<X86cmp>;
// ADC is commutable, but we can't indicate that to tablegen. So manually
// reverse the operands.
def : Pat<(X86adc_flag GR8:$src1, relocImm8_su:$src2, EFLAGS),
(ADC8ri relocImm8_su:$src2, GR8:$src1)>;
def : Pat<(X86adc_flag i16relocImmSExt8_su:$src2, GR16:$src1, EFLAGS),
(ADC16ri8 GR16:$src1, i16relocImmSExt8_su:$src2)>;
def : Pat<(X86adc_flag relocImm16_su:$src2, GR16:$src1, EFLAGS),
(ADC16ri GR16:$src1, relocImm16_su:$src2)>;
def : Pat<(X86adc_flag i32relocImmSExt8_su:$src2, GR32:$src1, EFLAGS),
(ADC32ri8 GR32:$src1, i32relocImmSExt8_su:$src2)>;
def : Pat<(X86adc_flag relocImm32_su:$src2, GR32:$src1, EFLAGS),
(ADC32ri GR32:$src1, relocImm32_su:$src2)>;
def : Pat<(X86adc_flag i64relocImmSExt8_su:$src2, GR64:$src1, EFLAGS),
(ADC64ri8 GR64:$src1, i64relocImmSExt8_su:$src2)>;
def : Pat<(X86adc_flag i64relocImmSExt32_su:$src2, GR64:$src1, EFLAGS),
(ADC64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>;
def : Pat<(store (X86adc_flag relocImm8_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC8mi addr:$dst, relocImm8_su:$src)>;
def : Pat<(store (X86adc_flag i16relocImmSExt8_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC16mi8 addr:$dst, i16relocImmSExt8_su:$src)>;
def : Pat<(store (X86adc_flag relocImm16_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC16mi addr:$dst, relocImm16_su:$src)>;
def : Pat<(store (X86adc_flag i32relocImmSExt8_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC32mi8 addr:$dst, i32relocImmSExt8_su:$src)>;
def : Pat<(store (X86adc_flag relocImm32_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC32mi addr:$dst, relocImm32_su:$src)>;
def : Pat<(store (X86adc_flag i64relocImmSExt8_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC64mi8 addr:$dst, i64relocImmSExt8_su:$src)>;
def : Pat<(store (X86adc_flag i64relocImmSExt32_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC64mi32 addr:$dst, i64relocImmSExt32_su:$src)>;
//===----------------------------------------------------------------------===//
// Semantically, test instructions are similar like AND, except they don't
// generate a result. From an encoding perspective, they are very different:
// they don't have all the usual imm8 and REV forms, and are encoded into a
// different space.
def X86testpat : PatFrag<(ops node:$lhs, node:$rhs),
(X86cmp (and_su node:$lhs, node:$rhs), 0)>;
let isCompare = 1 in {
let Defs = [EFLAGS] in {
let isCommutable = 1 in {
// Avoid selecting these and instead use a test+and. Post processing will
// combine them. This gives bunch of other patterns that start with
// and a chance to match.
def TEST8rr : BinOpRR_F<0x84, "test", Xi8 , null_frag>;
def TEST16rr : BinOpRR_F<0x84, "test", Xi16, null_frag>;
def TEST32rr : BinOpRR_F<0x84, "test", Xi32, null_frag>;
def TEST64rr : BinOpRR_F<0x84, "test", Xi64, null_frag>;
} // isCommutable
let hasSideEffects = 0, mayLoad = 1 in {
def TEST8mr : BinOpMR_F<0x84, "test", Xi8 , null_frag>;
def TEST16mr : BinOpMR_F<0x84, "test", Xi16, null_frag>;
def TEST32mr : BinOpMR_F<0x84, "test", Xi32, null_frag>;
def TEST64mr : BinOpMR_F<0x84, "test", Xi64, null_frag>;
}
def TEST8ri : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
def TEST16ri : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>;
def TEST32ri : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
def TEST8mi : BinOpMI_F<0xF6, "test", Xi8 , X86testpat, MRM0m>;
def TEST16mi : BinOpMI_F<0xF6, "test", Xi16, X86testpat, MRM0m>;
def TEST32mi : BinOpMI_F<0xF6, "test", Xi32, X86testpat, MRM0m>;
let Predicates = [In64BitMode] in
def TEST64mi32 : BinOpMI_F<0xF6, "test", Xi64, X86testpat, MRM0m>;
} // Defs = [EFLAGS]
def TEST8i8 : BinOpAI_F<0xA8, "test", Xi8 , AL,
"{$src, %al|al, $src}">;
def TEST16i16 : BinOpAI_F<0xA8, "test", Xi16, AX,
"{$src, %ax|ax, $src}">;
def TEST32i32 : BinOpAI_F<0xA8, "test", Xi32, EAX,
"{$src, %eax|eax, $src}">;
def TEST64i32 : BinOpAI_F<0xA8, "test", Xi64, RAX,
"{$src, %rax|rax, $src}">;
} // isCompare
// Patterns to match a relocImm into the immediate field.
def : Pat<(X86testpat GR8:$src1, relocImm8_su:$src2),
(TEST8ri GR8:$src1, relocImm8_su:$src2)>;
def : Pat<(X86testpat GR16:$src1, relocImm16_su:$src2),
(TEST16ri GR16:$src1, relocImm16_su:$src2)>;
def : Pat<(X86testpat GR32:$src1, relocImm32_su:$src2),
(TEST32ri GR32:$src1, relocImm32_su:$src2)>;
def : Pat<(X86testpat GR64:$src1, i64relocImmSExt32_su:$src2),
(TEST64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>;
def : Pat<(X86testpat (loadi8 addr:$src1), relocImm8_su:$src2),
(TEST8mi addr:$src1, relocImm8_su:$src2)>;
def : Pat<(X86testpat (loadi16 addr:$src1), relocImm16_su:$src2),
(TEST16mi addr:$src1, relocImm16_su:$src2)>;
def : Pat<(X86testpat (loadi32 addr:$src1), relocImm32_su:$src2),
(TEST32mi addr:$src1, relocImm32_su:$src2)>;
def : Pat<(X86testpat (loadi64 addr:$src1), i64relocImmSExt32_su:$src2),
(TEST64mi32 addr:$src1, i64relocImmSExt32_su:$src2)>;
//===----------------------------------------------------------------------===//
// ANDN Instruction
//
multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
PatFrag ld_frag, X86FoldableSchedWrite sched> {
def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))]>,
Sched<[sched]>;
def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, EFLAGS,
(X86and_flag (not RC:$src1), (ld_frag addr:$src2)))]>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
// Complexity is reduced to give and with immediate a chance to match first.
let Predicates = [HasBMI], Defs = [EFLAGS], AddedComplexity = -6 in {
defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32, WriteALU>, T8PS, VEX_4V;
defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64, WriteALU>, T8PS, VEX_4V, REX_W;
}
let Predicates = [HasBMI], AddedComplexity = -6 in {
def : Pat<(and (not GR32:$src1), GR32:$src2),
(ANDN32rr GR32:$src1, GR32:$src2)>;
def : Pat<(and (not GR64:$src1), GR64:$src2),
(ANDN64rr GR64:$src1, GR64:$src2)>;
def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)),
(ANDN32rm GR32:$src1, addr:$src2)>;
def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)),
(ANDN64rm GR64:$src1, addr:$src2)>;
}
//===----------------------------------------------------------------------===//
// MULX Instruction
//
multiclass bmi_mulx<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
X86FoldableSchedWrite sched> {
let hasSideEffects = 0 in {
def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src),
!strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
[]>, T8XD, VEX_4V, Sched<[WriteIMulH, sched]>;
let mayLoad = 1 in
def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src),
!strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
[]>, T8XD, VEX_4V,
Sched<[WriteIMulHLd, sched.Folded,
// Memory operand.
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
// Implicit read of EDX/RDX
sched.ReadAfterFold]>;
// Pseudo instructions to be used when the low result isn't used. The
// instruction is defined to keep the high if both destinations are the same.
def Hrr : PseudoI<(outs RC:$dst), (ins RC:$src),
[]>, Sched<[sched]>;
let mayLoad = 1 in
def Hrm : PseudoI<(outs RC:$dst), (ins x86memop:$src),
[]>, Sched<[sched.Folded]>;
}
}
let Predicates = [HasBMI2] in {
let Uses = [EDX] in
defm MULX32 : bmi_mulx<"mulx{l}", GR32, i32mem, WriteMULX32>;
let Uses = [RDX] in
defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem, WriteMULX64>, REX_W;
}
//===----------------------------------------------------------------------===//
// ADCX and ADOX Instructions
//
// We don't have patterns for these as there is no advantage over ADC for
// most code.
class ADCOXOpRR <bits<8> opcode, string mnemonic, X86TypeInfo info>
: BinOpRR_C<opcode, MRMSrcReg, mnemonic, info, []>{
let Opcode = opcode;
let OpSize = OpSizeFixed;
}
class ADCOXOpRM <bits<8> opcode, string mnemonic, X86TypeInfo info>
: BinOpRM_C<opcode, MRMSrcMem, mnemonic, info, []>{
let Opcode = opcode;
let OpSize = OpSizeFixed;
}
let Predicates = [HasADX], Defs = [EFLAGS], Uses = [EFLAGS],
Constraints = "$src1 = $dst", hasSideEffects = 0 in {
let SchedRW = [WriteADC], isCommutable = 1 in {
def ADCX32rr : ADCOXOpRR<0xF6, "adcx", Xi32>, T8PD;
def ADCX64rr : ADCOXOpRR<0xF6, "adcx", Xi64>, T8PD;
def ADOX32rr : ADCOXOpRR<0xF6, "adox", Xi32>, T8XS;
def ADOX64rr : ADCOXOpRR<0xF6, "adox", Xi64>, T8XS;
} // SchedRW
let mayLoad = 1,
SchedRW = [WriteADC.Folded, WriteADC.ReadAfterFold,
// Memory operand.
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
// Implicit read of EFLAGS
WriteADC.ReadAfterFold] in {
def ADCX32rm : ADCOXOpRM<0xF6, "adcx", Xi32>, T8PD;
def ADCX64rm : ADCOXOpRM<0xF6, "adcx", Xi64>, T8PD;
def ADOX32rm : ADCOXOpRM<0xF6, "adox", Xi32>, T8XS;
def ADOX64rm : ADCOXOpRM<0xF6, "adox", Xi64>, T8XS;
} // mayLoad, SchedRW
}