blob: 281719c12e7032ab5ceb64e8951399e9f88e3c8d [file] [log] [blame]
//===---- RISCVISelDAGToDAG.h - A dag to dag inst selector for RISC-V -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the RISC-V target.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_RISCV_RISCVISELDAGTODAG_H
#define LLVM_LIB_TARGET_RISCV_RISCVISELDAGTODAG_H
#include "RISCV.h"
#include "RISCVTargetMachine.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Support/KnownBits.h"
// RISC-V specific code to select RISC-V machine instructions for
// SelectionDAG operations.
namespace llvm {
class RISCVDAGToDAGISel : public SelectionDAGISel {
const RISCVSubtarget *Subtarget = nullptr;
public:
static char ID;
RISCVDAGToDAGISel() = delete;
explicit RISCVDAGToDAGISel(RISCVTargetMachine &TargetMachine,
CodeGenOpt::Level OptLevel)
: SelectionDAGISel(ID, TargetMachine, OptLevel) {}
bool runOnMachineFunction(MachineFunction &MF) override {
Subtarget = &MF.getSubtarget<RISCVSubtarget>();
return SelectionDAGISel::runOnMachineFunction(MF);
}
void PreprocessISelDAG() override;
void PostprocessISelDAG() override;
void Select(SDNode *Node) override;
bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
std::vector<SDValue> &OutOps) override;
bool SelectAddrFrameIndex(SDValue Addr, SDValue &Base, SDValue &Offset);
bool SelectFrameAddrRegImm(SDValue Addr, SDValue &Base, SDValue &Offset);
bool SelectAddrRegImm(SDValue Addr, SDValue &Base, SDValue &Offset,
bool IsINX = false);
bool SelectAddrRegImmINX(SDValue Addr, SDValue &Base, SDValue &Offset) {
return SelectAddrRegImm(Addr, Base, Offset, true);
}
bool SelectAddrRegRegScale(SDValue Addr, unsigned MaxShiftAmount,
SDValue &Base, SDValue &Index, SDValue &Scale);
template <unsigned MaxShift>
bool SelectAddrRegRegScale(SDValue Addr, SDValue &Base, SDValue &Index,
SDValue &Scale) {
return SelectAddrRegRegScale(Addr, MaxShift, Base, Index, Scale);
}
template <unsigned MaxShift, unsigned Bits>
bool SelectAddrRegZextRegScale(SDValue Addr, SDValue &Base, SDValue &Index,
SDValue &Scale) {
if (SelectAddrRegRegScale(Addr, MaxShift, Base, Index, Scale)) {
if (Index.getOpcode() == ISD::AND) {
auto *C = dyn_cast<ConstantSDNode>(Index.getOperand(1));
if (C && C->getZExtValue() == maskTrailingOnes<uint64_t>(Bits)) {
Index = Index.getOperand(0);
return true;
}
}
}
return false;
}
bool tryShrinkShlLogicImm(SDNode *Node);
bool trySignedBitfieldExtract(SDNode *Node);
bool tryIndexedLoad(SDNode *Node);
bool selectShiftMask(SDValue N, unsigned ShiftWidth, SDValue &ShAmt);
bool selectShiftMaskXLen(SDValue N, SDValue &ShAmt) {
return selectShiftMask(N, Subtarget->getXLen(), ShAmt);
}
bool selectShiftMask32(SDValue N, SDValue &ShAmt) {
return selectShiftMask(N, 32, ShAmt);
}
bool selectSETCC(SDValue N, ISD::CondCode ExpectedCCVal, SDValue &Val);
bool selectSETNE(SDValue N, SDValue &Val) {
return selectSETCC(N, ISD::SETNE, Val);
}
bool selectSETEQ(SDValue N, SDValue &Val) {
return selectSETCC(N, ISD::SETEQ, Val);
}
bool selectSExtBits(SDValue N, unsigned Bits, SDValue &Val);
template <unsigned Bits> bool selectSExtBits(SDValue N, SDValue &Val) {
return selectSExtBits(N, Bits, Val);
}
bool selectZExtBits(SDValue N, unsigned Bits, SDValue &Val);
template <unsigned Bits> bool selectZExtBits(SDValue N, SDValue &Val) {
return selectZExtBits(N, Bits, Val);
}
bool selectSHXADDOp(SDValue N, unsigned ShAmt, SDValue &Val);
template <unsigned ShAmt> bool selectSHXADDOp(SDValue N, SDValue &Val) {
return selectSHXADDOp(N, ShAmt, Val);
}
bool selectSHXADD_UWOp(SDValue N, unsigned ShAmt, SDValue &Val);
template <unsigned ShAmt> bool selectSHXADD_UWOp(SDValue N, SDValue &Val) {
return selectSHXADD_UWOp(N, ShAmt, Val);
}
bool hasAllNBitUsers(SDNode *Node, unsigned Bits,
const unsigned Depth = 0) const;
bool hasAllHUsers(SDNode *Node) const { return hasAllNBitUsers(Node, 16); }
bool hasAllWUsers(SDNode *Node) const { return hasAllNBitUsers(Node, 32); }
bool selectSimm5Shl2(SDValue N, SDValue &Simm5, SDValue &Shl2);
bool selectVLOp(SDValue N, SDValue &VL);
bool selectVSplat(SDValue N, SDValue &SplatVal);
bool selectVSplatSimm5(SDValue N, SDValue &SplatVal);
bool selectVSplatUimm(SDValue N, unsigned Bits, SDValue &SplatVal);
template <unsigned Bits> bool selectVSplatUimmBits(SDValue N, SDValue &Val) {
return selectVSplatUimm(N, Bits, Val);
}
bool selectVSplatSimm5Plus1(SDValue N, SDValue &SplatVal);
bool selectVSplatSimm5Plus1NonZero(SDValue N, SDValue &SplatVal);
bool selectExtOneUseVSplat(SDValue N, SDValue &SplatVal);
bool selectFPImm(SDValue N, SDValue &Imm);
bool selectRVVSimm5(SDValue N, unsigned Width, SDValue &Imm);
template <unsigned Width> bool selectRVVSimm5(SDValue N, SDValue &Imm) {
return selectRVVSimm5(N, Width, Imm);
}
void addVectorLoadStoreOperands(SDNode *Node, unsigned SEWImm,
const SDLoc &DL, unsigned CurOp,
bool IsMasked, bool IsStridedOrIndexed,
SmallVectorImpl<SDValue> &Operands,
bool IsLoad = false, MVT *IndexVT = nullptr);
void selectVLSEG(SDNode *Node, bool IsMasked, bool IsStrided);
void selectVLSEGFF(SDNode *Node, bool IsMasked);
void selectVLXSEG(SDNode *Node, bool IsMasked, bool IsOrdered);
void selectVSSEG(SDNode *Node, bool IsMasked, bool IsStrided);
void selectVSXSEG(SDNode *Node, bool IsMasked, bool IsOrdered);
void selectVSETVLI(SDNode *Node);
// Return the RISC-V condition code that matches the given DAG integer
// condition code. The CondCode must be one of those supported by the RISC-V
// ISA (see translateSetCCForBranch).
static RISCVCC::CondCode getRISCVCCForIntCC(ISD::CondCode CC) {
switch (CC) {
default:
llvm_unreachable("Unsupported CondCode");
case ISD::SETEQ:
return RISCVCC::COND_EQ;
case ISD::SETNE:
return RISCVCC::COND_NE;
case ISD::SETLT:
return RISCVCC::COND_LT;
case ISD::SETGE:
return RISCVCC::COND_GE;
case ISD::SETULT:
return RISCVCC::COND_LTU;
case ISD::SETUGE:
return RISCVCC::COND_GEU;
}
}
// Include the pieces autogenerated from the target description.
#include "RISCVGenDAGISel.inc"
private:
bool doPeepholeSExtW(SDNode *Node);
bool doPeepholeMaskedRVV(SDNode *Node);
bool doPeepholeMergeVVMFold();
bool performVMergeToVMv(SDNode *N);
bool performCombineVMergeAndVOps(SDNode *N);
};
namespace RISCV {
struct VLSEGPseudo {
uint16_t NF : 4;
uint16_t Masked : 1;
uint16_t Strided : 1;
uint16_t FF : 1;
uint16_t Log2SEW : 3;
uint16_t LMUL : 3;
uint16_t Pseudo;
};
struct VLXSEGPseudo {
uint16_t NF : 4;
uint16_t Masked : 1;
uint16_t Ordered : 1;
uint16_t Log2SEW : 3;
uint16_t LMUL : 3;
uint16_t IndexLMUL : 3;
uint16_t Pseudo;
};
struct VSSEGPseudo {
uint16_t NF : 4;
uint16_t Masked : 1;
uint16_t Strided : 1;
uint16_t Log2SEW : 3;
uint16_t LMUL : 3;
uint16_t Pseudo;
};
struct VSXSEGPseudo {
uint16_t NF : 4;
uint16_t Masked : 1;
uint16_t Ordered : 1;
uint16_t Log2SEW : 3;
uint16_t LMUL : 3;
uint16_t IndexLMUL : 3;
uint16_t Pseudo;
};
struct VLEPseudo {
uint16_t Masked : 1;
uint16_t Strided : 1;
uint16_t FF : 1;
uint16_t Log2SEW : 3;
uint16_t LMUL : 3;
uint16_t Pseudo;
};
struct VSEPseudo {
uint16_t Masked :1;
uint16_t Strided : 1;
uint16_t Log2SEW : 3;
uint16_t LMUL : 3;
uint16_t Pseudo;
};
struct VLX_VSXPseudo {
uint16_t Masked : 1;
uint16_t Ordered : 1;
uint16_t Log2SEW : 3;
uint16_t LMUL : 3;
uint16_t IndexLMUL : 3;
uint16_t Pseudo;
};
struct RISCVMaskedPseudoInfo {
uint16_t MaskedPseudo;
uint16_t UnmaskedPseudo;
uint8_t MaskOpIdx;
};
#define GET_RISCVVSSEGTable_DECL
#define GET_RISCVVLSEGTable_DECL
#define GET_RISCVVLXSEGTable_DECL
#define GET_RISCVVSXSEGTable_DECL
#define GET_RISCVVLETable_DECL
#define GET_RISCVVSETable_DECL
#define GET_RISCVVLXTable_DECL
#define GET_RISCVVSXTable_DECL
#define GET_RISCVMaskedPseudosTable_DECL
#include "RISCVGenSearchableTables.inc"
} // namespace RISCV
} // namespace llvm
#endif