blob: 410dd7fedad1a409cb0b98814e480cc55fc6b900 [file] [log] [blame]
//===------- ELF_riscv.cpp -JIT linker implementation for ELF/riscv -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// ELF/riscv jit-link implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/JITLink/ELF_riscv.h"
#include "ELFLinkGraphBuilder.h"
#include "JITLinkGeneric.h"
#include "PerGraphGOTAndPLTStubsBuilder.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/ExecutionEngine/JITLink/JITLink.h"
#include "llvm/ExecutionEngine/JITLink/riscv.h"
#include "llvm/Object/ELF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/Endian.h"
#define DEBUG_TYPE "jitlink"
using namespace llvm;
using namespace llvm::jitlink;
using namespace llvm::jitlink::riscv;
namespace {
class PerGraphGOTAndPLTStubsBuilder_ELF_riscv
: public PerGraphGOTAndPLTStubsBuilder<
PerGraphGOTAndPLTStubsBuilder_ELF_riscv> {
public:
static constexpr size_t StubEntrySize = 16;
static const uint8_t NullGOTEntryContent[8];
static const uint8_t RV64StubContent[StubEntrySize];
static const uint8_t RV32StubContent[StubEntrySize];
using PerGraphGOTAndPLTStubsBuilder<
PerGraphGOTAndPLTStubsBuilder_ELF_riscv>::PerGraphGOTAndPLTStubsBuilder;
bool isRV64() const { return G.getPointerSize() == 8; }
bool isGOTEdgeToFix(Edge &E) const { return E.getKind() == R_RISCV_GOT_HI20; }
Symbol &createGOTEntry(Symbol &Target) {
Block &GOTBlock =
G.createContentBlock(getGOTSection(), getGOTEntryBlockContent(),
orc::ExecutorAddr(), G.getPointerSize(), 0);
GOTBlock.addEdge(isRV64() ? R_RISCV_64 : R_RISCV_32, 0, Target, 0);
return G.addAnonymousSymbol(GOTBlock, 0, G.getPointerSize(), false, false);
}
Symbol &createPLTStub(Symbol &Target) {
Block &StubContentBlock = G.createContentBlock(
getStubsSection(), getStubBlockContent(), orc::ExecutorAddr(), 4, 0);
auto &GOTEntrySymbol = getGOTEntry(Target);
StubContentBlock.addEdge(R_RISCV_CALL, 0, GOTEntrySymbol, 0);
return G.addAnonymousSymbol(StubContentBlock, 0, StubEntrySize, true,
false);
}
void fixGOTEdge(Edge &E, Symbol &GOTEntry) {
// Replace the relocation pair (R_RISCV_GOT_HI20, R_RISCV_PCREL_LO12)
// with (R_RISCV_PCREL_HI20, R_RISCV_PCREL_LO12)
// Therefore, here just change the R_RISCV_GOT_HI20 to R_RISCV_PCREL_HI20
E.setKind(R_RISCV_PCREL_HI20);
E.setTarget(GOTEntry);
}
void fixPLTEdge(Edge &E, Symbol &PLTStubs) {
assert((E.getKind() == R_RISCV_CALL || E.getKind() == R_RISCV_CALL_PLT ||
E.getKind() == CallRelaxable) &&
"Not a PLT edge?");
E.setKind(R_RISCV_CALL);
E.setTarget(PLTStubs);
}
bool isExternalBranchEdge(Edge &E) const {
return (E.getKind() == R_RISCV_CALL || E.getKind() == R_RISCV_CALL_PLT ||
E.getKind() == CallRelaxable) &&
!E.getTarget().isDefined();
}
private:
Section &getGOTSection() const {
if (!GOTSection)
GOTSection = &G.createSection("$__GOT", orc::MemProt::Read);
return *GOTSection;
}
Section &getStubsSection() const {
if (!StubsSection)
StubsSection =
&G.createSection("$__STUBS", orc::MemProt::Read | orc::MemProt::Exec);
return *StubsSection;
}
ArrayRef<char> getGOTEntryBlockContent() {
return {reinterpret_cast<const char *>(NullGOTEntryContent),
G.getPointerSize()};
}
ArrayRef<char> getStubBlockContent() {
auto StubContent = isRV64() ? RV64StubContent : RV32StubContent;
return {reinterpret_cast<const char *>(StubContent), StubEntrySize};
}
mutable Section *GOTSection = nullptr;
mutable Section *StubsSection = nullptr;
};
const uint8_t PerGraphGOTAndPLTStubsBuilder_ELF_riscv::NullGOTEntryContent[8] =
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
const uint8_t
PerGraphGOTAndPLTStubsBuilder_ELF_riscv::RV64StubContent[StubEntrySize] = {
0x17, 0x0e, 0x00, 0x00, // auipc t3, literal
0x03, 0x3e, 0x0e, 0x00, // ld t3, literal(t3)
0x67, 0x00, 0x0e, 0x00, // jr t3
0x13, 0x00, 0x00, 0x00}; // nop
const uint8_t
PerGraphGOTAndPLTStubsBuilder_ELF_riscv::RV32StubContent[StubEntrySize] = {
0x17, 0x0e, 0x00, 0x00, // auipc t3, literal
0x03, 0x2e, 0x0e, 0x00, // lw t3, literal(t3)
0x67, 0x00, 0x0e, 0x00, // jr t3
0x13, 0x00, 0x00, 0x00}; // nop
} // namespace
namespace llvm {
namespace jitlink {
static Expected<const Edge &> getRISCVPCRelHi20(const Edge &E) {
using namespace riscv;
assert((E.getKind() == R_RISCV_PCREL_LO12_I ||
E.getKind() == R_RISCV_PCREL_LO12_S) &&
"Can only have high relocation for R_RISCV_PCREL_LO12_I or "
"R_RISCV_PCREL_LO12_S");
const Symbol &Sym = E.getTarget();
const Block &B = Sym.getBlock();
orc::ExecutorAddrDiff Offset = Sym.getOffset();
struct Comp {
bool operator()(const Edge &Lhs, orc::ExecutorAddrDiff Offset) {
return Lhs.getOffset() < Offset;
}
bool operator()(orc::ExecutorAddrDiff Offset, const Edge &Rhs) {
return Offset < Rhs.getOffset();
}
};
auto Bound =
std::equal_range(B.edges().begin(), B.edges().end(), Offset, Comp{});
for (auto It = Bound.first; It != Bound.second; ++It) {
if (It->getKind() == R_RISCV_PCREL_HI20)
return *It;
}
return make_error<JITLinkError>(
"No HI20 PCREL relocation type be found for LO12 PCREL relocation type");
}
static uint32_t extractBits(uint32_t Num, unsigned Low, unsigned Size) {
return (Num & (((1ULL << Size) - 1) << Low)) >> Low;
}
static inline bool isAlignmentCorrect(uint64_t Value, int N) {
return (Value & (N - 1)) ? false : true;
}
// Requires 0 < N <= 64.
static inline bool isInRangeForImm(int64_t Value, int N) {
return Value == llvm::SignExtend64(Value, N);
}
class ELFJITLinker_riscv : public JITLinker<ELFJITLinker_riscv> {
friend class JITLinker<ELFJITLinker_riscv>;
public:
ELFJITLinker_riscv(std::unique_ptr<JITLinkContext> Ctx,
std::unique_ptr<LinkGraph> G, PassConfiguration PassConfig)
: JITLinker(std::move(Ctx), std::move(G), std::move(PassConfig)) {}
private:
Error applyFixup(LinkGraph &G, Block &B, const Edge &E) const {
using namespace riscv;
using namespace llvm::support;
char *BlockWorkingMem = B.getAlreadyMutableContent().data();
char *FixupPtr = BlockWorkingMem + E.getOffset();
orc::ExecutorAddr FixupAddress = B.getAddress() + E.getOffset();
switch (E.getKind()) {
case R_RISCV_32: {
int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
*(little32_t *)FixupPtr = static_cast<uint32_t>(Value);
break;
}
case R_RISCV_64: {
int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
*(little64_t *)FixupPtr = static_cast<uint64_t>(Value);
break;
}
case R_RISCV_BRANCH: {
int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
if (LLVM_UNLIKELY(!isInRangeForImm(Value >> 1, 12)))
return makeTargetOutOfRangeError(G, B, E);
if (LLVM_UNLIKELY(!isAlignmentCorrect(Value, 2)))
return makeAlignmentError(FixupAddress, Value, 2, E);
uint32_t Imm12 = extractBits(Value, 12, 1) << 31;
uint32_t Imm10_5 = extractBits(Value, 5, 6) << 25;
uint32_t Imm4_1 = extractBits(Value, 1, 4) << 8;
uint32_t Imm11 = extractBits(Value, 11, 1) << 7;
uint32_t RawInstr = *(little32_t *)FixupPtr;
*(little32_t *)FixupPtr =
(RawInstr & 0x1FFF07F) | Imm12 | Imm10_5 | Imm4_1 | Imm11;
break;
}
case R_RISCV_JAL: {
int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
if (LLVM_UNLIKELY(!isInRangeForImm(Value >> 1, 20)))
return makeTargetOutOfRangeError(G, B, E);
if (LLVM_UNLIKELY(!isAlignmentCorrect(Value, 2)))
return makeAlignmentError(FixupAddress, Value, 2, E);
uint32_t Imm20 = extractBits(Value, 20, 1) << 31;
uint32_t Imm10_1 = extractBits(Value, 1, 10) << 21;
uint32_t Imm11 = extractBits(Value, 11, 1) << 20;
uint32_t Imm19_12 = extractBits(Value, 12, 8) << 12;
uint32_t RawInstr = *(little32_t *)FixupPtr;
*(little32_t *)FixupPtr =
(RawInstr & 0xFFF) | Imm20 | Imm10_1 | Imm11 | Imm19_12;
break;
}
case CallRelaxable:
// Treat as R_RISCV_CALL when the relaxation pass did not run
case R_RISCV_CALL_PLT:
case R_RISCV_CALL: {
int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
int64_t Hi = Value + 0x800;
if (LLVM_UNLIKELY(!isInRangeForImm(Hi, 32)))
return makeTargetOutOfRangeError(G, B, E);
int32_t Lo = Value & 0xFFF;
uint32_t RawInstrAuipc = *(little32_t *)FixupPtr;
uint32_t RawInstrJalr = *(little32_t *)(FixupPtr + 4);
*(little32_t *)FixupPtr =
RawInstrAuipc | (static_cast<uint32_t>(Hi & 0xFFFFF000));
*(little32_t *)(FixupPtr + 4) =
RawInstrJalr | (static_cast<uint32_t>(Lo) << 20);
break;
}
// The relocations R_RISCV_CALL_PLT and R_RISCV_GOT_HI20 are handled by
// PerGraphGOTAndPLTStubsBuilder_ELF_riscv and are transformed into
// R_RISCV_CALL and R_RISCV_PCREL_HI20.
case R_RISCV_PCREL_HI20: {
int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
int64_t Hi = Value + 0x800;
if (LLVM_UNLIKELY(!isInRangeForImm(Hi, 32)))
return makeTargetOutOfRangeError(G, B, E);
uint32_t RawInstr = *(little32_t *)FixupPtr;
*(little32_t *)FixupPtr =
(RawInstr & 0xFFF) | (static_cast<uint32_t>(Hi & 0xFFFFF000));
break;
}
case R_RISCV_PCREL_LO12_I: {
// FIXME: We assume that R_RISCV_PCREL_HI20 is present in object code and
// pairs with current relocation R_RISCV_PCREL_LO12_I. So here may need a
// check.
auto RelHI20 = getRISCVPCRelHi20(E);
if (!RelHI20)
return RelHI20.takeError();
int64_t Value = RelHI20->getTarget().getAddress() +
RelHI20->getAddend() - E.getTarget().getAddress();
int64_t Lo = Value & 0xFFF;
uint32_t RawInstr = *(little32_t *)FixupPtr;
*(little32_t *)FixupPtr =
(RawInstr & 0xFFFFF) | (static_cast<uint32_t>(Lo & 0xFFF) << 20);
break;
}
case R_RISCV_PCREL_LO12_S: {
// FIXME: We assume that R_RISCV_PCREL_HI20 is present in object code and
// pairs with current relocation R_RISCV_PCREL_LO12_S. So here may need a
// check.
auto RelHI20 = getRISCVPCRelHi20(E);
if (!RelHI20)
return RelHI20.takeError();
int64_t Value = RelHI20->getTarget().getAddress() +
RelHI20->getAddend() - E.getTarget().getAddress();
int64_t Lo = Value & 0xFFF;
uint32_t Imm11_5 = extractBits(Lo, 5, 7) << 25;
uint32_t Imm4_0 = extractBits(Lo, 0, 5) << 7;
uint32_t RawInstr = *(little32_t *)FixupPtr;
*(little32_t *)FixupPtr = (RawInstr & 0x1FFF07F) | Imm11_5 | Imm4_0;
break;
}
case R_RISCV_HI20: {
int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
int64_t Hi = Value + 0x800;
if (LLVM_UNLIKELY(!isInRangeForImm(Hi, 32)))
return makeTargetOutOfRangeError(G, B, E);
uint32_t RawInstr = *(little32_t *)FixupPtr;
*(little32_t *)FixupPtr =
(RawInstr & 0xFFF) | (static_cast<uint32_t>(Hi & 0xFFFFF000));
break;
}
case R_RISCV_LO12_I: {
// FIXME: We assume that R_RISCV_HI20 is present in object code and pairs
// with current relocation R_RISCV_LO12_I. So here may need a check.
int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
int32_t Lo = Value & 0xFFF;
uint32_t RawInstr = *(little32_t *)FixupPtr;
*(little32_t *)FixupPtr =
(RawInstr & 0xFFFFF) | (static_cast<uint32_t>(Lo & 0xFFF) << 20);
break;
}
case R_RISCV_LO12_S: {
// FIXME: We assume that R_RISCV_HI20 is present in object code and pairs
// with current relocation R_RISCV_LO12_S. So here may need a check.
int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
int64_t Lo = Value & 0xFFF;
uint32_t Imm11_5 = extractBits(Lo, 5, 7) << 25;
uint32_t Imm4_0 = extractBits(Lo, 0, 5) << 7;
uint32_t RawInstr = *(little32_t *)FixupPtr;
*(little32_t *)FixupPtr = (RawInstr & 0x1FFF07F) | Imm11_5 | Imm4_0;
break;
}
case R_RISCV_ADD8: {
int64_t Value =
(E.getTarget().getAddress() +
*(reinterpret_cast<const uint8_t *>(FixupPtr)) + E.getAddend())
.getValue();
*FixupPtr = static_cast<uint8_t>(Value);
break;
}
case R_RISCV_ADD16: {
int64_t Value = (E.getTarget().getAddress() +
support::endian::read16le(FixupPtr) + E.getAddend())
.getValue();
*(little16_t *)FixupPtr = static_cast<uint16_t>(Value);
break;
}
case R_RISCV_ADD32: {
int64_t Value = (E.getTarget().getAddress() +
support::endian::read32le(FixupPtr) + E.getAddend())
.getValue();
*(little32_t *)FixupPtr = static_cast<uint32_t>(Value);
break;
}
case R_RISCV_ADD64: {
int64_t Value = (E.getTarget().getAddress() +
support::endian::read64le(FixupPtr) + E.getAddend())
.getValue();
*(little64_t *)FixupPtr = static_cast<uint64_t>(Value);
break;
}
case R_RISCV_SUB8: {
int64_t Value = *(reinterpret_cast<const uint8_t *>(FixupPtr)) -
E.getTarget().getAddress().getValue() - E.getAddend();
*FixupPtr = static_cast<uint8_t>(Value);
break;
}
case R_RISCV_SUB16: {
int64_t Value = support::endian::read16le(FixupPtr) -
E.getTarget().getAddress().getValue() - E.getAddend();
*(little16_t *)FixupPtr = static_cast<uint32_t>(Value);
break;
}
case R_RISCV_SUB32: {
int64_t Value = support::endian::read32le(FixupPtr) -
E.getTarget().getAddress().getValue() - E.getAddend();
*(little32_t *)FixupPtr = static_cast<uint32_t>(Value);
break;
}
case R_RISCV_SUB64: {
int64_t Value = support::endian::read64le(FixupPtr) -
E.getTarget().getAddress().getValue() - E.getAddend();
*(little64_t *)FixupPtr = static_cast<uint64_t>(Value);
break;
}
case R_RISCV_RVC_BRANCH: {
int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
if (LLVM_UNLIKELY(!isInRangeForImm(Value >> 1, 8)))
return makeTargetOutOfRangeError(G, B, E);
if (LLVM_UNLIKELY(!isAlignmentCorrect(Value, 2)))
return makeAlignmentError(FixupAddress, Value, 2, E);
uint16_t Imm8 = extractBits(Value, 8, 1) << 12;
uint16_t Imm4_3 = extractBits(Value, 3, 2) << 10;
uint16_t Imm7_6 = extractBits(Value, 6, 2) << 5;
uint16_t Imm2_1 = extractBits(Value, 1, 2) << 3;
uint16_t Imm5 = extractBits(Value, 5, 1) << 2;
uint16_t RawInstr = *(little16_t *)FixupPtr;
*(little16_t *)FixupPtr =
(RawInstr & 0xE383) | Imm8 | Imm4_3 | Imm7_6 | Imm2_1 | Imm5;
break;
}
case R_RISCV_RVC_JUMP: {
int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
if (LLVM_UNLIKELY(!isInRangeForImm(Value >> 1, 11)))
return makeTargetOutOfRangeError(G, B, E);
if (LLVM_UNLIKELY(!isAlignmentCorrect(Value, 2)))
return makeAlignmentError(FixupAddress, Value, 2, E);
uint16_t Imm11 = extractBits(Value, 11, 1) << 12;
uint16_t Imm4 = extractBits(Value, 4, 1) << 11;
uint16_t Imm9_8 = extractBits(Value, 8, 2) << 9;
uint16_t Imm10 = extractBits(Value, 10, 1) << 8;
uint16_t Imm6 = extractBits(Value, 6, 1) << 7;
uint16_t Imm7 = extractBits(Value, 7, 1) << 6;
uint16_t Imm3_1 = extractBits(Value, 1, 3) << 3;
uint16_t Imm5 = extractBits(Value, 5, 1) << 2;
uint16_t RawInstr = *(little16_t *)FixupPtr;
*(little16_t *)FixupPtr = (RawInstr & 0xE003) | Imm11 | Imm4 | Imm9_8 |
Imm10 | Imm6 | Imm7 | Imm3_1 | Imm5;
break;
}
case R_RISCV_SUB6: {
int64_t Value = *(reinterpret_cast<const uint8_t *>(FixupPtr)) & 0x3f;
Value -= E.getTarget().getAddress().getValue() - E.getAddend();
*FixupPtr = (*FixupPtr & 0xc0) | (static_cast<uint8_t>(Value) & 0x3f);
break;
}
case R_RISCV_SET6: {
int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
uint32_t RawData = *(little32_t *)FixupPtr;
int64_t Word6 = Value & 0x3f;
*(little32_t *)FixupPtr = (RawData & 0xffffffc0) | Word6;
break;
}
case R_RISCV_SET8: {
int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
uint32_t RawData = *(little32_t *)FixupPtr;
int64_t Word8 = Value & 0xff;
*(little32_t *)FixupPtr = (RawData & 0xffffff00) | Word8;
break;
}
case R_RISCV_SET16: {
int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
uint32_t RawData = *(little32_t *)FixupPtr;
int64_t Word16 = Value & 0xffff;
*(little32_t *)FixupPtr = (RawData & 0xffff0000) | Word16;
break;
}
case R_RISCV_SET32: {
int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
int64_t Word32 = Value & 0xffffffff;
*(little32_t *)FixupPtr = Word32;
break;
}
case R_RISCV_32_PCREL: {
int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
int64_t Word32 = Value & 0xffffffff;
*(little32_t *)FixupPtr = Word32;
break;
}
case AlignRelaxable:
// Ignore when the relaxation pass did not run
break;
}
return Error::success();
}
};
namespace {
struct SymbolAnchor {
uint64_t Offset;
Symbol *Sym;
bool End; // true for the anchor of getOffset() + getSize()
};
struct BlockRelaxAux {
// This records symbol start and end offsets which will be adjusted according
// to the nearest RelocDeltas element.
SmallVector<SymbolAnchor, 0> Anchors;
// All edges that either 1) are R_RISCV_ALIGN or 2) have a R_RISCV_RELAX edge
// at the same offset.
SmallVector<Edge *, 0> RelaxEdges;
// For RelaxEdges[I], the actual offset is RelaxEdges[I]->getOffset() - (I ?
// RelocDeltas[I - 1] : 0).
SmallVector<uint32_t, 0> RelocDeltas;
// For RelaxEdges[I], the actual type is EdgeKinds[I].
SmallVector<Edge::Kind, 0> EdgeKinds;
// List of rewritten instructions. Contains one raw encoded instruction per
// element in EdgeKinds that isn't Invalid or R_RISCV_ALIGN.
SmallVector<uint32_t, 0> Writes;
};
struct RelaxConfig {
bool IsRV32;
bool HasRVC;
};
struct RelaxAux {
RelaxConfig Config;
DenseMap<Block *, BlockRelaxAux> Blocks;
};
} // namespace
static bool shouldRelax(const Section &S) {
return (S.getMemProt() & orc::MemProt::Exec) != orc::MemProt::None;
}
static bool isRelaxable(const Edge &E) {
switch (E.getKind()) {
default:
return false;
case CallRelaxable:
case AlignRelaxable:
return true;
}
}
static RelaxAux initRelaxAux(LinkGraph &G) {
RelaxAux Aux;
Aux.Config.IsRV32 = G.getTargetTriple().isRISCV32();
const auto &Features = G.getFeatures().getFeatures();
Aux.Config.HasRVC =
std::find(Features.begin(), Features.end(), "+c") != Features.end();
for (auto &S : G.sections()) {
if (!shouldRelax(S))
continue;
for (auto *B : S.blocks()) {
auto BlockEmplaceResult = Aux.Blocks.try_emplace(B);
assert(BlockEmplaceResult.second && "Block encountered twice");
auto &BlockAux = BlockEmplaceResult.first->second;
for (auto &E : B->edges())
if (isRelaxable(E))
BlockAux.RelaxEdges.push_back(&E);
if (BlockAux.RelaxEdges.empty()) {
Aux.Blocks.erase(BlockEmplaceResult.first);
continue;
}
const auto NumEdges = BlockAux.RelaxEdges.size();
BlockAux.RelocDeltas.resize(NumEdges, 0);
BlockAux.EdgeKinds.resize_for_overwrite(NumEdges);
// Store anchors (offset and offset+size) for symbols.
for (auto *Sym : S.symbols()) {
if (!Sym->isDefined() || &Sym->getBlock() != B)
continue;
BlockAux.Anchors.push_back({Sym->getOffset(), Sym, false});
BlockAux.Anchors.push_back(
{Sym->getOffset() + Sym->getSize(), Sym, true});
}
}
}
// Sort anchors by offset so that we can find the closest relocation
// efficiently. For a zero size symbol, ensure that its start anchor precedes
// its end anchor. For two symbols with anchors at the same offset, their
// order does not matter.
for (auto &BlockAuxIter : Aux.Blocks) {
llvm::sort(BlockAuxIter.second.Anchors, [](auto &A, auto &B) {
return std::make_pair(A.Offset, A.End) < std::make_pair(B.Offset, B.End);
});
}
return Aux;
}
static void relaxAlign(orc::ExecutorAddr Loc, const Edge &E, uint32_t &Remove,
Edge::Kind &NewEdgeKind) {
// E points to the start of the padding bytes.
// E + Addend points to the instruction to be aligned by removing padding.
// Alignment is the smallest power of 2 strictly greater than Addend.
const auto Align = NextPowerOf2(E.getAddend());
const auto DestLoc = alignTo(Loc.getValue(), Align);
const auto SrcLoc = Loc.getValue() + E.getAddend();
Remove = SrcLoc - DestLoc;
assert(static_cast<int32_t>(Remove) >= 0 &&
"R_RISCV_ALIGN needs expanding the content");
NewEdgeKind = AlignRelaxable;
}
static void relaxCall(const Block &B, BlockRelaxAux &Aux,
const RelaxConfig &Config, orc::ExecutorAddr Loc,
const Edge &E, uint32_t &Remove,
Edge::Kind &NewEdgeKind) {
const auto JALR =
support::endian::read32le(B.getContent().data() + E.getOffset() + 4);
const auto RD = extractBits(JALR, 7, 5);
const auto Dest = E.getTarget().getAddress() + E.getAddend();
const auto Displace = Dest - Loc;
if (Config.HasRVC && isInt<12>(Displace) && RD == 0) {
NewEdgeKind = R_RISCV_RVC_JUMP;
Aux.Writes.push_back(0xa001); // c.j
Remove = 6;
} else if (Config.HasRVC && Config.IsRV32 && isInt<12>(Displace) && RD == 1) {
NewEdgeKind = R_RISCV_RVC_JUMP;
Aux.Writes.push_back(0x2001); // c.jal
Remove = 6;
} else if (isInt<21>(Displace)) {
NewEdgeKind = R_RISCV_JAL;
Aux.Writes.push_back(0x6f | RD << 7); // jal
Remove = 4;
} else {
// Not relaxable
NewEdgeKind = R_RISCV_CALL_PLT;
Remove = 0;
}
}
static bool relaxBlock(LinkGraph &G, Block &Block, BlockRelaxAux &Aux,
const RelaxConfig &Config) {
const auto BlockAddr = Block.getAddress();
bool Changed = false;
ArrayRef<SymbolAnchor> SA = ArrayRef(Aux.Anchors);
uint32_t Delta = 0;
Aux.EdgeKinds.assign(Aux.EdgeKinds.size(), Edge::Invalid);
Aux.Writes.clear();
for (auto [I, E] : llvm::enumerate(Aux.RelaxEdges)) {
const auto Loc = BlockAddr + E->getOffset() - Delta;
auto &Cur = Aux.RelocDeltas[I];
uint32_t Remove = 0;
switch (E->getKind()) {
case AlignRelaxable:
relaxAlign(Loc, *E, Remove, Aux.EdgeKinds[I]);
break;
case CallRelaxable:
relaxCall(Block, Aux, Config, Loc, *E, Remove, Aux.EdgeKinds[I]);
break;
default:
llvm_unreachable("Unexpected relaxable edge kind");
}
// For all anchors whose offsets are <= E->getOffset(), they are preceded by
// the previous relocation whose RelocDeltas value equals Delta.
// Decrease their offset and update their size.
for (; SA.size() && SA[0].Offset <= E->getOffset(); SA = SA.slice(1)) {
if (SA[0].End)
SA[0].Sym->setSize(SA[0].Offset - Delta - SA[0].Sym->getOffset());
else
SA[0].Sym->setOffset(SA[0].Offset - Delta);
}
Delta += Remove;
if (Delta != Cur) {
Cur = Delta;
Changed = true;
}
}
for (const SymbolAnchor &A : SA) {
if (A.End)
A.Sym->setSize(A.Offset - Delta - A.Sym->getOffset());
else
A.Sym->setOffset(A.Offset - Delta);
}
return Changed;
}
static bool relaxOnce(LinkGraph &G, RelaxAux &Aux) {
bool Changed = false;
for (auto &[B, BlockAux] : Aux.Blocks)
Changed |= relaxBlock(G, *B, BlockAux, Aux.Config);
return Changed;
}
static void finalizeBlockRelax(LinkGraph &G, Block &Block, BlockRelaxAux &Aux) {
auto Contents = Block.getAlreadyMutableContent();
auto *Dest = Contents.data();
auto NextWrite = Aux.Writes.begin();
uint32_t Offset = 0;
uint32_t Delta = 0;
// Update section content: remove NOPs for R_RISCV_ALIGN and rewrite
// instructions for relaxed relocations.
for (auto [I, E] : llvm::enumerate(Aux.RelaxEdges)) {
uint32_t Remove = Aux.RelocDeltas[I] - Delta;
Delta = Aux.RelocDeltas[I];
if (Remove == 0 && Aux.EdgeKinds[I] == Edge::Invalid)
continue;
// Copy from last location to the current relocated location.
const auto Size = E->getOffset() - Offset;
std::memmove(Dest, Contents.data() + Offset, Size);
Dest += Size;
uint32_t Skip = 0;
switch (Aux.EdgeKinds[I]) {
case Edge::Invalid:
break;
case AlignRelaxable:
// For R_RISCV_ALIGN, we will place Offset in a location (among NOPs) to
// satisfy the alignment requirement. If both Remove and E->getAddend()
// are multiples of 4, it is as if we have skipped some NOPs. Otherwise we
// are in the middle of a 4-byte NOP, and we need to rewrite the NOP
// sequence.
if (Remove % 4 || E->getAddend() % 4) {
Skip = E->getAddend() - Remove;
uint32_t J = 0;
for (; J + 4 <= Skip; J += 4)
support::endian::write32le(Dest + J, 0x00000013); // nop
if (J != Skip) {
assert(J + 2 == Skip);
support::endian::write16le(Dest + J, 0x0001); // c.nop
}
}
break;
case R_RISCV_RVC_JUMP:
Skip = 2;
support::endian::write16le(Dest, *NextWrite++);
break;
case R_RISCV_JAL:
Skip = 4;
support::endian::write32le(Dest, *NextWrite++);
break;
}
Dest += Skip;
Offset = E->getOffset() + Skip + Remove;
}
std::memmove(Dest, Contents.data() + Offset, Contents.size() - Offset);
// Fixup edge offsets and kinds.
Delta = 0;
size_t I = 0;
for (auto &E : Block.edges()) {
E.setOffset(E.getOffset() - Delta);
if (I < Aux.RelaxEdges.size() && Aux.RelaxEdges[I] == &E) {
if (Aux.EdgeKinds[I] != Edge::Invalid)
E.setKind(Aux.EdgeKinds[I]);
Delta = Aux.RelocDeltas[I];
++I;
}
}
// Remove AlignRelaxable edges: all other relaxable edges got modified and
// will be used later while linking. Alignment is entirely handled here so we
// don't need these edges anymore.
for (auto IE = Block.edges().begin(); IE != Block.edges().end();) {
if (IE->getKind() == AlignRelaxable)
IE = Block.removeEdge(IE);
else
++IE;
}
}
static void finalizeRelax(LinkGraph &G, RelaxAux &Aux) {
for (auto &[B, BlockAux] : Aux.Blocks)
finalizeBlockRelax(G, *B, BlockAux);
}
static Error relax(LinkGraph &G) {
auto Aux = initRelaxAux(G);
while (relaxOnce(G, Aux)) {
}
finalizeRelax(G, Aux);
return Error::success();
}
template <typename ELFT>
class ELFLinkGraphBuilder_riscv : public ELFLinkGraphBuilder<ELFT> {
private:
static Expected<riscv::EdgeKind_riscv>
getRelocationKind(const uint32_t Type) {
using namespace riscv;
switch (Type) {
case ELF::R_RISCV_32:
return EdgeKind_riscv::R_RISCV_32;
case ELF::R_RISCV_64:
return EdgeKind_riscv::R_RISCV_64;
case ELF::R_RISCV_BRANCH:
return EdgeKind_riscv::R_RISCV_BRANCH;
case ELF::R_RISCV_JAL:
return EdgeKind_riscv::R_RISCV_JAL;
case ELF::R_RISCV_CALL:
return EdgeKind_riscv::R_RISCV_CALL;
case ELF::R_RISCV_CALL_PLT:
return EdgeKind_riscv::R_RISCV_CALL_PLT;
case ELF::R_RISCV_GOT_HI20:
return EdgeKind_riscv::R_RISCV_GOT_HI20;
case ELF::R_RISCV_PCREL_HI20:
return EdgeKind_riscv::R_RISCV_PCREL_HI20;
case ELF::R_RISCV_PCREL_LO12_I:
return EdgeKind_riscv::R_RISCV_PCREL_LO12_I;
case ELF::R_RISCV_PCREL_LO12_S:
return EdgeKind_riscv::R_RISCV_PCREL_LO12_S;
case ELF::R_RISCV_HI20:
return EdgeKind_riscv::R_RISCV_HI20;
case ELF::R_RISCV_LO12_I:
return EdgeKind_riscv::R_RISCV_LO12_I;
case ELF::R_RISCV_LO12_S:
return EdgeKind_riscv::R_RISCV_LO12_S;
case ELF::R_RISCV_ADD8:
return EdgeKind_riscv::R_RISCV_ADD8;
case ELF::R_RISCV_ADD16:
return EdgeKind_riscv::R_RISCV_ADD16;
case ELF::R_RISCV_ADD32:
return EdgeKind_riscv::R_RISCV_ADD32;
case ELF::R_RISCV_ADD64:
return EdgeKind_riscv::R_RISCV_ADD64;
case ELF::R_RISCV_SUB8:
return EdgeKind_riscv::R_RISCV_SUB8;
case ELF::R_RISCV_SUB16:
return EdgeKind_riscv::R_RISCV_SUB16;
case ELF::R_RISCV_SUB32:
return EdgeKind_riscv::R_RISCV_SUB32;
case ELF::R_RISCV_SUB64:
return EdgeKind_riscv::R_RISCV_SUB64;
case ELF::R_RISCV_RVC_BRANCH:
return EdgeKind_riscv::R_RISCV_RVC_BRANCH;
case ELF::R_RISCV_RVC_JUMP:
return EdgeKind_riscv::R_RISCV_RVC_JUMP;
case ELF::R_RISCV_SUB6:
return EdgeKind_riscv::R_RISCV_SUB6;
case ELF::R_RISCV_SET6:
return EdgeKind_riscv::R_RISCV_SET6;
case ELF::R_RISCV_SET8:
return EdgeKind_riscv::R_RISCV_SET8;
case ELF::R_RISCV_SET16:
return EdgeKind_riscv::R_RISCV_SET16;
case ELF::R_RISCV_SET32:
return EdgeKind_riscv::R_RISCV_SET32;
case ELF::R_RISCV_32_PCREL:
return EdgeKind_riscv::R_RISCV_32_PCREL;
case ELF::R_RISCV_ALIGN:
return EdgeKind_riscv::AlignRelaxable;
}
return make_error<JITLinkError>(
"Unsupported riscv relocation:" + formatv("{0:d}: ", Type) +
object::getELFRelocationTypeName(ELF::EM_RISCV, Type));
}
EdgeKind_riscv getRelaxableRelocationKind(EdgeKind_riscv Kind) {
switch (Kind) {
default:
// Just ignore unsupported relaxations
return Kind;
case R_RISCV_CALL:
case R_RISCV_CALL_PLT:
return CallRelaxable;
}
}
Error addRelocations() override {
LLVM_DEBUG(dbgs() << "Processing relocations:\n");
using Base = ELFLinkGraphBuilder<ELFT>;
using Self = ELFLinkGraphBuilder_riscv<ELFT>;
for (const auto &RelSect : Base::Sections)
if (Error Err = Base::forEachRelaRelocation(RelSect, this,
&Self::addSingleRelocation))
return Err;
return Error::success();
}
Error addSingleRelocation(const typename ELFT::Rela &Rel,
const typename ELFT::Shdr &FixupSect,
Block &BlockToFix) {
using Base = ELFLinkGraphBuilder<ELFT>;
uint32_t Type = Rel.getType(false);
int64_t Addend = Rel.r_addend;
if (Type == ELF::R_RISCV_RELAX) {
if (BlockToFix.edges_empty())
return make_error<StringError>(
"R_RISCV_RELAX without preceding relocation",
inconvertibleErrorCode());
auto &PrevEdge = *std::prev(BlockToFix.edges().end());
auto Kind = static_cast<EdgeKind_riscv>(PrevEdge.getKind());
PrevEdge.setKind(getRelaxableRelocationKind(Kind));
return Error::success();
}
Expected<riscv::EdgeKind_riscv> Kind = getRelocationKind(Type);
if (!Kind)
return Kind.takeError();
uint32_t SymbolIndex = Rel.getSymbol(false);
auto ObjSymbol = Base::Obj.getRelocationSymbol(Rel, Base::SymTabSec);
if (!ObjSymbol)
return ObjSymbol.takeError();
Symbol *GraphSymbol = Base::getGraphSymbol(SymbolIndex);
if (!GraphSymbol)
return make_error<StringError>(
formatv("Could not find symbol at given index, did you add it to "
"JITSymbolTable? index: {0}, shndx: {1} Size of table: {2}",
SymbolIndex, (*ObjSymbol)->st_shndx,
Base::GraphSymbols.size()),
inconvertibleErrorCode());
auto FixupAddress = orc::ExecutorAddr(FixupSect.sh_addr) + Rel.r_offset;
Edge::OffsetT Offset = FixupAddress - BlockToFix.getAddress();
Edge GE(*Kind, Offset, *GraphSymbol, Addend);
LLVM_DEBUG({
dbgs() << " ";
printEdge(dbgs(), BlockToFix, GE, riscv::getEdgeKindName(*Kind));
dbgs() << "\n";
});
BlockToFix.addEdge(std::move(GE));
return Error::success();
}
public:
ELFLinkGraphBuilder_riscv(StringRef FileName,
const object::ELFFile<ELFT> &Obj, Triple TT,
SubtargetFeatures Features)
: ELFLinkGraphBuilder<ELFT>(Obj, std::move(TT), std::move(Features),
FileName, riscv::getEdgeKindName) {}
};
Expected<std::unique_ptr<LinkGraph>>
createLinkGraphFromELFObject_riscv(MemoryBufferRef ObjectBuffer) {
LLVM_DEBUG({
dbgs() << "Building jitlink graph for new input "
<< ObjectBuffer.getBufferIdentifier() << "...\n";
});
auto ELFObj = object::ObjectFile::createELFObjectFile(ObjectBuffer);
if (!ELFObj)
return ELFObj.takeError();
auto Features = (*ELFObj)->getFeatures();
if (!Features)
return Features.takeError();
if ((*ELFObj)->getArch() == Triple::riscv64) {
auto &ELFObjFile = cast<object::ELFObjectFile<object::ELF64LE>>(**ELFObj);
return ELFLinkGraphBuilder_riscv<object::ELF64LE>(
(*ELFObj)->getFileName(), ELFObjFile.getELFFile(),
(*ELFObj)->makeTriple(), std::move(*Features))
.buildGraph();
} else {
assert((*ELFObj)->getArch() == Triple::riscv32 &&
"Invalid triple for RISCV ELF object file");
auto &ELFObjFile = cast<object::ELFObjectFile<object::ELF32LE>>(**ELFObj);
return ELFLinkGraphBuilder_riscv<object::ELF32LE>(
(*ELFObj)->getFileName(), ELFObjFile.getELFFile(),
(*ELFObj)->makeTriple(), std::move(*Features))
.buildGraph();
}
}
void link_ELF_riscv(std::unique_ptr<LinkGraph> G,
std::unique_ptr<JITLinkContext> Ctx) {
PassConfiguration Config;
const Triple &TT = G->getTargetTriple();
if (Ctx->shouldAddDefaultTargetPasses(TT)) {
if (auto MarkLive = Ctx->getMarkLivePass(TT))
Config.PrePrunePasses.push_back(std::move(MarkLive));
else
Config.PrePrunePasses.push_back(markAllSymbolsLive);
Config.PostPrunePasses.push_back(
PerGraphGOTAndPLTStubsBuilder_ELF_riscv::asPass);
Config.PostAllocationPasses.push_back(relax);
}
if (auto Err = Ctx->modifyPassConfig(*G, Config))
return Ctx->notifyFailed(std::move(Err));
ELFJITLinker_riscv::link(std::move(Ctx), std::move(G), std::move(Config));
}
LinkGraphPassFunction createRelaxationPass_ELF_riscv() { return relax; }
} // namespace jitlink
} // namespace llvm