blob: c10ffebc166640424095950a4605598f49eea373 [file] [log] [blame]
//===- ARM.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Filesystem.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::support;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
using namespace llvm::object;
namespace {
class ARM final : public TargetInfo {
public:
ARM();
uint32_t calcEFlags() const override;
RelExpr getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const override;
RelType getDynRel(RelType type) const override;
int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
void addPltSymbols(InputSection &isec, uint64_t off) const override;
void addPltHeaderSymbols(InputSection &isd) const override;
bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
uint64_t branchAddr, const Symbol &s,
int64_t a) const override;
uint32_t getThunkSectionSpacing() const override;
bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
void relocate(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
};
enum class CodeState { Data = 0, Thumb = 2, Arm = 4 };
} // namespace
static DenseMap<InputSection *, SmallVector<const Defined *, 0>> sectionMap{};
ARM::ARM() {
copyRel = R_ARM_COPY;
relativeRel = R_ARM_RELATIVE;
iRelativeRel = R_ARM_IRELATIVE;
gotRel = R_ARM_GLOB_DAT;
pltRel = R_ARM_JUMP_SLOT;
symbolicRel = R_ARM_ABS32;
tlsGotRel = R_ARM_TLS_TPOFF32;
tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
tlsOffsetRel = R_ARM_TLS_DTPOFF32;
pltHeaderSize = 32;
pltEntrySize = 16;
ipltEntrySize = 16;
trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
needsThunks = true;
defaultMaxPageSize = 65536;
}
uint32_t ARM::calcEFlags() const {
// The ABIFloatType is used by loaders to detect the floating point calling
// convention.
uint32_t abiFloatType = 0;
// Set the EF_ARM_BE8 flag in the ELF header, if ELF file is big-endian
// with BE-8 code.
uint32_t armBE8 = 0;
if (config->armVFPArgs == ARMVFPArgKind::Base ||
config->armVFPArgs == ARMVFPArgKind::Default)
abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
else if (config->armVFPArgs == ARMVFPArgKind::VFP)
abiFloatType = EF_ARM_ABI_FLOAT_HARD;
if (!config->isLE && config->armBe8)
armBE8 = EF_ARM_BE8;
// We don't currently use any features incompatible with EF_ARM_EABI_VER5,
// but we don't have any firm guarantees of conformance. Linux AArch64
// kernels (as of 2016) require an EABI version to be set.
return EF_ARM_EABI_VER5 | abiFloatType | armBE8;
}
RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const {
switch (type) {
case R_ARM_ABS32:
case R_ARM_MOVW_ABS_NC:
case R_ARM_MOVT_ABS:
case R_ARM_THM_MOVW_ABS_NC:
case R_ARM_THM_MOVT_ABS:
case R_ARM_THM_ALU_ABS_G0_NC:
case R_ARM_THM_ALU_ABS_G1_NC:
case R_ARM_THM_ALU_ABS_G2_NC:
case R_ARM_THM_ALU_ABS_G3:
return R_ABS;
case R_ARM_THM_JUMP8:
case R_ARM_THM_JUMP11:
return R_PC;
case R_ARM_CALL:
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_PREL31:
case R_ARM_THM_JUMP19:
case R_ARM_THM_JUMP24:
case R_ARM_THM_CALL:
return R_PLT_PC;
case R_ARM_GOTOFF32:
// (S + A) - GOT_ORG
return R_GOTREL;
case R_ARM_GOT_BREL:
// GOT(S) + A - GOT_ORG
return R_GOT_OFF;
case R_ARM_GOT_PREL:
case R_ARM_TLS_IE32:
// GOT(S) + A - P
return R_GOT_PC;
case R_ARM_SBREL32:
return R_ARM_SBREL;
case R_ARM_TARGET1:
return config->target1Rel ? R_PC : R_ABS;
case R_ARM_TARGET2:
if (config->target2 == Target2Policy::Rel)
return R_PC;
if (config->target2 == Target2Policy::Abs)
return R_ABS;
return R_GOT_PC;
case R_ARM_TLS_GD32:
return R_TLSGD_PC;
case R_ARM_TLS_LDM32:
return R_TLSLD_PC;
case R_ARM_TLS_LDO32:
return R_DTPREL;
case R_ARM_BASE_PREL:
// B(S) + A - P
// FIXME: currently B(S) assumed to be .got, this may not hold for all
// platforms.
return R_GOTONLY_PC;
case R_ARM_MOVW_PREL_NC:
case R_ARM_MOVT_PREL:
case R_ARM_REL32:
case R_ARM_THM_MOVW_PREL_NC:
case R_ARM_THM_MOVT_PREL:
return R_PC;
case R_ARM_ALU_PC_G0:
case R_ARM_ALU_PC_G0_NC:
case R_ARM_ALU_PC_G1:
case R_ARM_ALU_PC_G1_NC:
case R_ARM_ALU_PC_G2:
case R_ARM_LDR_PC_G0:
case R_ARM_LDR_PC_G1:
case R_ARM_LDR_PC_G2:
case R_ARM_LDRS_PC_G0:
case R_ARM_LDRS_PC_G1:
case R_ARM_LDRS_PC_G2:
case R_ARM_THM_ALU_PREL_11_0:
case R_ARM_THM_PC8:
case R_ARM_THM_PC12:
return R_ARM_PCA;
case R_ARM_MOVW_BREL_NC:
case R_ARM_MOVW_BREL:
case R_ARM_MOVT_BREL:
case R_ARM_THM_MOVW_BREL_NC:
case R_ARM_THM_MOVW_BREL:
case R_ARM_THM_MOVT_BREL:
return R_ARM_SBREL;
case R_ARM_NONE:
return R_NONE;
case R_ARM_TLS_LE32:
return R_TPREL;
case R_ARM_V4BX:
// V4BX is just a marker to indicate there's a "bx rN" instruction at the
// given address. It can be used to implement a special linker mode which
// rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
// not ARMv4 output, we can just ignore it.
return R_NONE;
default:
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
") against symbol " + toString(s));
return R_NONE;
}
}
RelType ARM::getDynRel(RelType type) const {
if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
return R_ARM_ABS32;
return R_ARM_NONE;
}
void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
write32(buf, in.plt->getVA());
}
void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
// An ARM entry is the address of the ifunc resolver function.
write32(buf, s.getVA());
}
// Long form PLT Header that does not have any restrictions on the displacement
// of the .plt from the .got.plt.
static void writePltHeaderLong(uint8_t *buf) {
write32(buf + 0, 0xe52de004); // str lr, [sp,#-4]!
write32(buf + 4, 0xe59fe004); // ldr lr, L2
write32(buf + 8, 0xe08fe00e); // L1: add lr, pc, lr
write32(buf + 12, 0xe5bef008); // ldr pc, [lr, #8]
write32(buf + 16, 0x00000000); // L2: .word &(.got.plt) - L1 - 8
write32(buf + 20, 0xd4d4d4d4); // Pad to 32-byte boundary
write32(buf + 24, 0xd4d4d4d4); // Pad to 32-byte boundary
write32(buf + 28, 0xd4d4d4d4);
uint64_t gotPlt = in.gotPlt->getVA();
uint64_t l1 = in.plt->getVA() + 8;
write32(buf + 16, gotPlt - l1 - 8);
}
// The default PLT header requires the .got.plt to be within 128 Mb of the
// .plt in the positive direction.
void ARM::writePltHeader(uint8_t *buf) const {
// Use a similar sequence to that in writePlt(), the difference is the calling
// conventions mean we use lr instead of ip. The PLT entry is responsible for
// saving lr on the stack, the dynamic loader is responsible for reloading
// it.
const uint32_t pltData[] = {
0xe52de004, // L1: str lr, [sp,#-4]!
0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4)
0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4)
0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
};
uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
if (!llvm::isUInt<27>(offset)) {
// We cannot encode the Offset, use the long form.
writePltHeaderLong(buf);
return;
}
write32(buf + 0, pltData[0]);
write32(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
write32(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
write32(buf + 12, pltData[3] | (offset & 0xfff));
memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
memcpy(buf + 20, trapInstr.data(), 4);
memcpy(buf + 24, trapInstr.data(), 4);
memcpy(buf + 28, trapInstr.data(), 4);
}
void ARM::addPltHeaderSymbols(InputSection &isec) const {
addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
}
// Long form PLT entries that do not have any restrictions on the displacement
// of the .plt from the .got.plt.
static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
uint64_t pltEntryAddr) {
write32(buf + 0, 0xe59fc004); // ldr ip, L2
write32(buf + 4, 0xe08cc00f); // L1: add ip, ip, pc
write32(buf + 8, 0xe59cf000); // ldr pc, [ip]
write32(buf + 12, 0x00000000); // L2: .word Offset(&(.got.plt) - L1 - 8
uint64_t l1 = pltEntryAddr + 4;
write32(buf + 12, gotPltEntryAddr - l1 - 8);
}
// The default PLT entries require the .got.plt to be within 128 Mb of the
// .plt in the positive direction.
void ARM::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
// The PLT entry is similar to the example given in Appendix A of ELF for
// the Arm Architecture. Instead of using the Group Relocations to find the
// optimal rotation for the 8-bit immediate used in the add instructions we
// hard code the most compact rotations for simplicity. This saves a load
// instruction over the long plt sequences.
const uint32_t pltData[] = {
0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.got.plt) - L1 - 8
0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.got.plt) - L1 - 8
0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.got.plt) - L1 - 8
};
uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
if (!llvm::isUInt<27>(offset)) {
// We cannot encode the Offset, use the long form.
writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
return;
}
write32(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
write32(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
write32(buf + 8, pltData[2] | (offset & 0xfff));
memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
}
void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
}
bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
uint64_t branchAddr, const Symbol &s,
int64_t a) const {
// If s is an undefined weak symbol and does not have a PLT entry then it will
// be resolved as a branch to the next instruction. If it is hidden, its
// binding has been converted to local, so we just check isUndefined() here. A
// undefined non-weak symbol will have been errored.
if (s.isUndefined() && !s.isInPlt())
return false;
// A state change from ARM to Thumb and vice versa must go through an
// interworking thunk if the relocation type is not R_ARM_CALL or
// R_ARM_THM_CALL.
switch (type) {
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_JUMP24:
// Source is ARM, all PLT entries are ARM so no interworking required.
// Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
return true;
[[fallthrough]];
case R_ARM_CALL: {
uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
return !inBranchRange(type, branchAddr, dst + a) ||
(!config->armHasBlx && (s.getVA() & 1));
}
case R_ARM_THM_JUMP19:
case R_ARM_THM_JUMP24:
// Source is Thumb, all PLT entries are ARM so interworking is required.
// Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
return true;
[[fallthrough]];
case R_ARM_THM_CALL: {
uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
return !inBranchRange(type, branchAddr, dst + a) ||
(!config->armHasBlx && (s.getVA() & 1) == 0);;
}
}
return false;
}
uint32_t ARM::getThunkSectionSpacing() const {
// The placing of pre-created ThunkSections is controlled by the value
// thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
// place the ThunkSection such that all branches from the InputSections
// prior to the ThunkSection can reach a Thunk placed at the end of the
// ThunkSection. Graphically:
// | up to thunkSectionSpacing .text input sections |
// | ThunkSection |
// | up to thunkSectionSpacing .text input sections |
// | ThunkSection |
// Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
// is to match the most common expected case of a Thumb 2 encoded BL, BLX or
// B.W:
// ARM B, BL, BLX range +/- 32MiB
// Thumb B.W, BL, BLX range +/- 16MiB
// Thumb B<cc>.W range +/- 1MiB
// If a branch cannot reach a pre-created ThunkSection a new one will be
// created so we can handle the rare cases of a Thumb 2 conditional branch.
// We intentionally use a lower size for thunkSectionSpacing than the maximum
// branch range so the end of the ThunkSection is more likely to be within
// range of the branch instruction that is furthest away. The value we shorten
// thunkSectionSpacing by is set conservatively to allow us to create 16,384
// 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
// one of the Thunks going out of range.
// On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
// range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
// ARMv6T2) the range is +/- 4MiB.
return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
: 0x400000 - 0x7500;
}
bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
if ((dst & 0x1) == 0)
// Destination is ARM, if ARM caller then Src is already 4-byte aligned.
// If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
// destination will be 4 byte aligned.
src &= ~0x3;
else
// Bit 0 == 1 denotes Thumb state, it is not part of the range.
dst &= ~0x1;
int64_t offset = dst - src;
switch (type) {
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_JUMP24:
case R_ARM_CALL:
return llvm::isInt<26>(offset);
case R_ARM_THM_JUMP19:
return llvm::isInt<21>(offset);
case R_ARM_THM_JUMP24:
case R_ARM_THM_CALL:
return config->armJ1J2BranchEncoding ? llvm::isInt<25>(offset)
: llvm::isInt<23>(offset);
default:
return true;
}
}
// Helper to produce message text when LLD detects that a CALL relocation to
// a non STT_FUNC symbol that may result in incorrect interworking between ARM
// or Thumb.
static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) {
assert(!s.isFunc());
const ErrorPlace place = getErrorPlace(loc);
std::string hint;
if (!place.srcLoc.empty())
hint = "; " + place.srcLoc;
if (s.isSection()) {
// Section symbols must be defined and in a section. Users cannot change
// the type. Use the section name as getName() returns an empty string.
warn(place.loc + "branch and link relocation: " + toString(relt) +
" to STT_SECTION symbol " + cast<Defined>(s).section->name +
" ; interworking not performed" + hint);
} else {
// Warn with hint on how to alter the symbol type.
warn(getErrorLocation(loc) + "branch and link relocation: " +
toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
" interworking not performed; consider using directive '.type " +
s.getName() +
", %function' to give symbol type STT_FUNC if interworking between "
"ARM and Thumb is required" +
hint);
}
}
// Rotate a 32-bit unsigned value right by a specified amt of bits.
static uint32_t rotr32(uint32_t val, uint32_t amt) {
assert(amt < 32 && "Invalid rotate amount");
return (val >> amt) | (val << ((32 - amt) & 31));
}
static std::pair<uint32_t, uint32_t> getRemAndLZForGroup(unsigned group,
uint32_t val) {
uint32_t rem, lz;
do {
lz = llvm::countl_zero(val) & ~1;
rem = val;
if (lz == 32) // implies rem == 0
break;
val &= 0xffffff >> lz;
} while (group--);
return {rem, lz};
}
static void encodeAluGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
int group, bool check) {
// ADD/SUB (immediate) add = bit23, sub = bit22
// immediate field carries is a 12-bit modified immediate, made up of a 4-bit
// even rotate right and an 8-bit immediate.
uint32_t opcode = 0x00800000;
if (val >> 63) {
opcode = 0x00400000;
val = -val;
}
uint32_t imm, lz;
std::tie(imm, lz) = getRemAndLZForGroup(group, val);
uint32_t rot = 0;
if (lz < 24) {
imm = rotr32(imm, 24 - lz);
rot = (lz + 8) << 7;
}
if (check && imm > 0xff)
error(getErrorLocation(loc) + "unencodeable immediate " + Twine(val).str() +
" for relocation " + toString(rel.type));
write32(loc, (read32(loc) & 0xff3ff000) | opcode | rot | (imm & 0xff));
}
static void encodeLdrGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
int group) {
// R_ARM_LDR_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
// bottom bit to recover S + A - P.
if (rel.sym->isFunc())
val &= ~0x1;
// LDR (literal) u = bit23
uint32_t opcode = 0x00800000;
if (val >> 63) {
opcode = 0x0;
val = -val;
}
uint32_t imm = getRemAndLZForGroup(group, val).first;
checkUInt(loc, imm, 12, rel);
write32(loc, (read32(loc) & 0xff7ff000) | opcode | imm);
}
static void encodeLdrsGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
int group) {
// R_ARM_LDRS_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
// bottom bit to recover S + A - P.
if (rel.sym->isFunc())
val &= ~0x1;
// LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23
uint32_t opcode = 0x00800000;
if (val >> 63) {
opcode = 0x0;
val = -val;
}
uint32_t imm = getRemAndLZForGroup(group, val).first;
checkUInt(loc, imm, 8, rel);
write32(loc, (read32(loc) & 0xff7ff0f0) | opcode | ((imm & 0xf0) << 4) |
(imm & 0xf));
}
void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
switch (rel.type) {
case R_ARM_ABS32:
case R_ARM_BASE_PREL:
case R_ARM_GOTOFF32:
case R_ARM_GOT_BREL:
case R_ARM_GOT_PREL:
case R_ARM_REL32:
case R_ARM_RELATIVE:
case R_ARM_SBREL32:
case R_ARM_TARGET1:
case R_ARM_TARGET2:
case R_ARM_TLS_GD32:
case R_ARM_TLS_IE32:
case R_ARM_TLS_LDM32:
case R_ARM_TLS_LDO32:
case R_ARM_TLS_LE32:
case R_ARM_TLS_TPOFF32:
case R_ARM_TLS_DTPOFF32:
write32(loc, val);
break;
case R_ARM_PREL31:
checkInt(loc, val, 31, rel);
write32(loc, (read32(loc) & 0x80000000) | (val & ~0x80000000));
break;
case R_ARM_CALL: {
// R_ARM_CALL is used for BL and BLX instructions, for symbols of type
// STT_FUNC we choose whether to write a BL or BLX depending on the
// value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
// not of type STT_FUNC then we must preserve the original instruction.
// PLT entries are always ARM state so we know we don't need to interwork.
assert(rel.sym); // R_ARM_CALL is always reached via relocate().
bool bit0Thumb = val & 1;
bool isBlx = (read32(loc) & 0xfe000000) == 0xfa000000;
// lld 10.0 and before always used bit0Thumb when deciding to write a BLX
// even when type not STT_FUNC.
if (!rel.sym->isFunc() && isBlx != bit0Thumb)
stateChangeWarning(loc, rel.type, *rel.sym);
if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
// The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
checkInt(loc, val, 26, rel);
write32(loc, 0xfa000000 | // opcode
((val & 2) << 23) | // H
((val >> 2) & 0x00ffffff)); // imm24
break;
}
// BLX (always unconditional) instruction to an ARM Target, select an
// unconditional BL.
write32(loc, 0xeb000000 | (read32(loc) & 0x00ffffff));
// fall through as BL encoding is shared with B
}
[[fallthrough]];
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
checkInt(loc, val, 26, rel);
write32(loc, (read32(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
break;
case R_ARM_THM_JUMP8:
// We do a 9 bit check because val is right-shifted by 1 bit.
checkInt(loc, val, 9, rel);
write16(loc, (read32(loc) & 0xff00) | ((val >> 1) & 0x00ff));
break;
case R_ARM_THM_JUMP11:
// We do a 12 bit check because val is right-shifted by 1 bit.
checkInt(loc, val, 12, rel);
write16(loc, (read32(loc) & 0xf800) | ((val >> 1) & 0x07ff));
break;
case R_ARM_THM_JUMP19:
// Encoding T3: Val = S:J2:J1:imm6:imm11:0
checkInt(loc, val, 21, rel);
write16(loc,
(read16(loc) & 0xfbc0) | // opcode cond
((val >> 10) & 0x0400) | // S
((val >> 12) & 0x003f)); // imm6
write16(loc + 2,
0x8000 | // opcode
((val >> 8) & 0x0800) | // J2
((val >> 5) & 0x2000) | // J1
((val >> 1) & 0x07ff)); // imm11
break;
case R_ARM_THM_CALL: {
// R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
// STT_FUNC we choose whether to write a BL or BLX depending on the
// value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
// not of type STT_FUNC then we must preserve the original instruction.
// PLT entries are always ARM state so we know we need to interwork.
assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
bool bit0Thumb = val & 1;
bool isBlx = (read16(loc + 2) & 0x1000) == 0;
// lld 10.0 and before always used bit0Thumb when deciding to write a BLX
// even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb)
stateChangeWarning(loc, rel.type, *rel.sym);
if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) {
// We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
// the BLX instruction may only be two byte aligned. This must be done
// before overflow check.
val = alignTo(val, 4);
write16(loc + 2, read16(loc + 2) & ~0x1000);
} else {
write16(loc + 2, (read16(loc + 2) & ~0x1000) | 1 << 12);
}
if (!config->armJ1J2BranchEncoding) {
// Older Arm architectures do not support R_ARM_THM_JUMP24 and have
// different encoding rules and range due to J1 and J2 always being 1.
checkInt(loc, val, 23, rel);
write16(loc,
0xf000 | // opcode
((val >> 12) & 0x07ff)); // imm11
write16(loc + 2,
(read16(loc + 2) & 0xd000) | // opcode
0x2800 | // J1 == J2 == 1
((val >> 1) & 0x07ff)); // imm11
break;
}
}
// Fall through as rest of encoding is the same as B.W
[[fallthrough]];
case R_ARM_THM_JUMP24:
// Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
checkInt(loc, val, 25, rel);
write16(loc,
0xf000 | // opcode
((val >> 14) & 0x0400) | // S
((val >> 12) & 0x03ff)); // imm10
write16(loc + 2,
(read16(loc + 2) & 0xd000) | // opcode
(((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
(((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
((val >> 1) & 0x07ff)); // imm11
break;
case R_ARM_MOVW_ABS_NC:
case R_ARM_MOVW_PREL_NC:
case R_ARM_MOVW_BREL_NC:
write32(loc, (read32(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
(val & 0x0fff));
break;
case R_ARM_MOVT_ABS:
case R_ARM_MOVT_PREL:
case R_ARM_MOVT_BREL:
write32(loc, (read32(loc) & ~0x000f0fff) |
(((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
break;
case R_ARM_THM_MOVT_ABS:
case R_ARM_THM_MOVT_PREL:
case R_ARM_THM_MOVT_BREL:
// Encoding T1: A = imm4:i:imm3:imm8
write16(loc,
0xf2c0 | // opcode
((val >> 17) & 0x0400) | // i
((val >> 28) & 0x000f)); // imm4
write16(loc + 2,
(read16(loc + 2) & 0x8f00) | // opcode
((val >> 12) & 0x7000) | // imm3
((val >> 16) & 0x00ff)); // imm8
break;
case R_ARM_THM_MOVW_ABS_NC:
case R_ARM_THM_MOVW_PREL_NC:
case R_ARM_THM_MOVW_BREL_NC:
// Encoding T3: A = imm4:i:imm3:imm8
write16(loc,
0xf240 | // opcode
((val >> 1) & 0x0400) | // i
((val >> 12) & 0x000f)); // imm4
write16(loc + 2,
(read16(loc + 2) & 0x8f00) | // opcode
((val << 4) & 0x7000) | // imm3
(val & 0x00ff)); // imm8
break;
case R_ARM_THM_ALU_ABS_G3:
write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 24) & 0x00ff));
break;
case R_ARM_THM_ALU_ABS_G2_NC:
write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 16) & 0x00ff));
break;
case R_ARM_THM_ALU_ABS_G1_NC:
write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 8) & 0x00ff));
break;
case R_ARM_THM_ALU_ABS_G0_NC:
write16(loc, (read16(loc) &~ 0x00ff) | (val & 0x00ff));
break;
case R_ARM_ALU_PC_G0:
encodeAluGroup(loc, rel, val, 0, true);
break;
case R_ARM_ALU_PC_G0_NC:
encodeAluGroup(loc, rel, val, 0, false);
break;
case R_ARM_ALU_PC_G1:
encodeAluGroup(loc, rel, val, 1, true);
break;
case R_ARM_ALU_PC_G1_NC:
encodeAluGroup(loc, rel, val, 1, false);
break;
case R_ARM_ALU_PC_G2:
encodeAluGroup(loc, rel, val, 2, true);
break;
case R_ARM_LDR_PC_G0:
encodeLdrGroup(loc, rel, val, 0);
break;
case R_ARM_LDR_PC_G1:
encodeLdrGroup(loc, rel, val, 1);
break;
case R_ARM_LDR_PC_G2:
encodeLdrGroup(loc, rel, val, 2);
break;
case R_ARM_LDRS_PC_G0:
encodeLdrsGroup(loc, rel, val, 0);
break;
case R_ARM_LDRS_PC_G1:
encodeLdrsGroup(loc, rel, val, 1);
break;
case R_ARM_LDRS_PC_G2:
encodeLdrsGroup(loc, rel, val, 2);
break;
case R_ARM_THM_ALU_PREL_11_0: {
// ADR encoding T2 (sub), T3 (add) i:imm3:imm8
int64_t imm = val;
uint16_t sub = 0;
if (imm < 0) {
imm = -imm;
sub = 0x00a0;
}
checkUInt(loc, imm, 12, rel);
write16(loc, (read16(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
write16(loc + 2,
(read16(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff));
break;
}
case R_ARM_THM_PC8:
// ADR and LDR literal encoding T1 positive offset only imm8:00
// R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
// bottom bit to recover S + A - Pa.
if (rel.sym->isFunc())
val &= ~0x1;
checkUInt(loc, val, 10, rel);
checkAlignment(loc, val, 4, rel);
write16(loc, (read16(loc) & 0xff00) | (val & 0x3fc) >> 2);
break;
case R_ARM_THM_PC12: {
// LDR (literal) encoding T2, add = (U == '1') imm12
// imm12 is unsigned
// R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
// bottom bit to recover S + A - Pa.
if (rel.sym->isFunc())
val &= ~0x1;
int64_t imm12 = val;
uint16_t u = 0x0080;
if (imm12 < 0) {
imm12 = -imm12;
u = 0;
}
checkUInt(loc, imm12, 12, rel);
write16(loc, read16(loc) | u);
write16(loc + 2, (read16(loc + 2) & 0xf000) | imm12);
break;
}
default:
llvm_unreachable("unknown relocation");
}
}
int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
switch (type) {
default:
internalLinkerError(getErrorLocation(buf),
"cannot read addend for relocation " + toString(type));
return 0;
case R_ARM_ABS32:
case R_ARM_BASE_PREL:
case R_ARM_GLOB_DAT:
case R_ARM_GOTOFF32:
case R_ARM_GOT_BREL:
case R_ARM_GOT_PREL:
case R_ARM_IRELATIVE:
case R_ARM_REL32:
case R_ARM_RELATIVE:
case R_ARM_SBREL32:
case R_ARM_TARGET1:
case R_ARM_TARGET2:
case R_ARM_TLS_DTPMOD32:
case R_ARM_TLS_DTPOFF32:
case R_ARM_TLS_GD32:
case R_ARM_TLS_IE32:
case R_ARM_TLS_LDM32:
case R_ARM_TLS_LE32:
case R_ARM_TLS_LDO32:
case R_ARM_TLS_TPOFF32:
return SignExtend64<32>(read32(buf));
case R_ARM_PREL31:
return SignExtend64<31>(read32(buf));
case R_ARM_CALL:
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
return SignExtend64<26>(read32(buf) << 2);
case R_ARM_THM_JUMP8:
return SignExtend64<9>(read16(buf) << 1);
case R_ARM_THM_JUMP11:
return SignExtend64<12>(read16(buf) << 1);
case R_ARM_THM_JUMP19: {
// Encoding T3: A = S:J2:J1:imm10:imm6:0
uint16_t hi = read16(buf);
uint16_t lo = read16(buf + 2);
return SignExtend64<20>(((hi & 0x0400) << 10) | // S
((lo & 0x0800) << 8) | // J2
((lo & 0x2000) << 5) | // J1
((hi & 0x003f) << 12) | // imm6
((lo & 0x07ff) << 1)); // imm11:0
}
case R_ARM_THM_CALL:
if (!config->armJ1J2BranchEncoding) {
// Older Arm architectures do not support R_ARM_THM_JUMP24 and have
// different encoding rules and range due to J1 and J2 always being 1.
uint16_t hi = read16(buf);
uint16_t lo = read16(buf + 2);
return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
((lo & 0x7ff) << 1)); // imm11:0
break;
}
[[fallthrough]];
case R_ARM_THM_JUMP24: {
// Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
// I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
uint16_t hi = read16(buf);
uint16_t lo = read16(buf + 2);
return SignExtend64<24>(((hi & 0x0400) << 14) | // S
(~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
(~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
((hi & 0x003ff) << 12) | // imm0
((lo & 0x007ff) << 1)); // imm11:0
}
// ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
// MOVT is in the range -32768 <= A < 32768
case R_ARM_MOVW_ABS_NC:
case R_ARM_MOVT_ABS:
case R_ARM_MOVW_PREL_NC:
case R_ARM_MOVT_PREL:
case R_ARM_MOVW_BREL_NC:
case R_ARM_MOVT_BREL: {
uint64_t val = read32(buf) & 0x000f0fff;
return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
}
case R_ARM_THM_MOVW_ABS_NC:
case R_ARM_THM_MOVT_ABS:
case R_ARM_THM_MOVW_PREL_NC:
case R_ARM_THM_MOVT_PREL:
case R_ARM_THM_MOVW_BREL_NC:
case R_ARM_THM_MOVT_BREL: {
// Encoding T3: A = imm4:i:imm3:imm8
uint16_t hi = read16(buf);
uint16_t lo = read16(buf + 2);
return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
((hi & 0x0400) << 1) | // i
((lo & 0x7000) >> 4) | // imm3
(lo & 0x00ff)); // imm8
}
case R_ARM_THM_ALU_ABS_G0_NC:
case R_ARM_THM_ALU_ABS_G1_NC:
case R_ARM_THM_ALU_ABS_G2_NC:
case R_ARM_THM_ALU_ABS_G3:
return read16(buf) & 0xff;
case R_ARM_ALU_PC_G0:
case R_ARM_ALU_PC_G0_NC:
case R_ARM_ALU_PC_G1:
case R_ARM_ALU_PC_G1_NC:
case R_ARM_ALU_PC_G2: {
// 12-bit immediate is a modified immediate made up of a 4-bit even
// right rotation and 8-bit constant. After the rotation the value
// is zero-extended. When bit 23 is set the instruction is an add, when
// bit 22 is set it is a sub.
uint32_t instr = read32(buf);
uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
return (instr & 0x00400000) ? -val : val;
}
case R_ARM_LDR_PC_G0:
case R_ARM_LDR_PC_G1:
case R_ARM_LDR_PC_G2: {
// ADR (literal) add = bit23, sub = bit22
// LDR (literal) u = bit23 unsigned imm12
bool u = read32(buf) & 0x00800000;
uint32_t imm12 = read32(buf) & 0xfff;
return u ? imm12 : -imm12;
}
case R_ARM_LDRS_PC_G0:
case R_ARM_LDRS_PC_G1:
case R_ARM_LDRS_PC_G2: {
// LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 unsigned imm8
uint32_t opcode = read32(buf);
bool u = opcode & 0x00800000;
uint32_t imm4l = opcode & 0xf;
uint32_t imm4h = (opcode & 0xf00) >> 4;
return u ? (imm4h | imm4l) : -(imm4h | imm4l);
}
case R_ARM_THM_ALU_PREL_11_0: {
// Thumb2 ADR, which is an alias for a sub or add instruction with an
// unsigned immediate.
// ADR encoding T2 (sub), T3 (add) i:imm3:imm8
uint16_t hi = read16(buf);
uint16_t lo = read16(buf + 2);
uint64_t imm = (hi & 0x0400) << 1 | // i
(lo & 0x7000) >> 4 | // imm3
(lo & 0x00ff); // imm8
// For sub, addend is negative, add is positive.
return (hi & 0x00f0) ? -imm : imm;
}
case R_ARM_THM_PC8:
// ADR and LDR (literal) encoding T1
// From ELF for the ARM Architecture the initial signed addend is formed
// from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) ā€“ 4)
// this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
return ((((read16(buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
case R_ARM_THM_PC12: {
// LDR (literal) encoding T2, add = (U == '1') imm12
bool u = read16(buf) & 0x0080;
uint64_t imm12 = read16(buf + 2) & 0x0fff;
return u ? imm12 : -imm12;
}
case R_ARM_NONE:
case R_ARM_V4BX:
case R_ARM_JUMP_SLOT:
// These relocations are defined as not having an implicit addend.
return 0;
}
}
static bool isArmMapSymbol(const Symbol *b) {
return b->getName() == "$a" || b->getName().startswith("$a.");
}
static bool isThumbMapSymbol(const Symbol *s) {
return s->getName() == "$t" || s->getName().startswith("$t.");
}
static bool isDataMapSymbol(const Symbol *b) {
return b->getName() == "$d" || b->getName().startswith("$d.");
}
void elf::sortArmMappingSymbols() {
// For each input section make sure the mapping symbols are sorted in
// ascending order.
for (auto &kv : sectionMap) {
SmallVector<const Defined *, 0> &mapSyms = kv.second;
llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
return a->value < b->value;
});
}
}
void elf::addArmInputSectionMappingSymbols() {
// Collect mapping symbols for every executable input sections.
// The linker generated mapping symbols for all the synthetic
// sections are adding into the sectionmap through the function
// addArmSyntheitcSectionMappingSymbol.
for (ELFFileBase *file : ctx.objectFiles) {
for (Symbol *sym : file->getLocalSymbols()) {
auto *def = dyn_cast<Defined>(sym);
if (!def)
continue;
if (!isArmMapSymbol(def) && !isDataMapSymbol(def) &&
!isThumbMapSymbol(def))
continue;
if (auto *sec = cast_if_present<InputSection>(def->section))
if (sec->flags & SHF_EXECINSTR)
sectionMap[sec].push_back(def);
}
}
}
// Synthetic sections are not backed by an ELF file where we can access the
// symbol table, instead mapping symbols added to synthetic sections are stored
// in the synthetic symbol table. Due to the presence of strip (--strip-all),
// we can not rely on the synthetic symbol table retaining the mapping symbols.
// Instead we record the mapping symbols locally.
void elf::addArmSyntheticSectionMappingSymbol(Defined *sym) {
if (!isArmMapSymbol(sym) && !isDataMapSymbol(sym) && !isThumbMapSymbol(sym))
return;
if (auto *sec = cast_if_present<InputSection>(sym->section))
if (sec->flags & SHF_EXECINSTR)
sectionMap[sec].push_back(sym);
}
static void toLittleEndianInstructions(uint8_t *buf, uint64_t start,
uint64_t end, uint64_t width) {
CodeState curState = static_cast<CodeState>(width);
if (curState == CodeState::Arm)
for (uint64_t i = start; i < end; i += width)
write32le(buf + i, read32(buf + i));
if (curState == CodeState::Thumb)
for (uint64_t i = start; i < end; i += width)
write16le(buf + i, read16(buf + i));
}
// Arm BE8 big endian format requires instructions to be little endian, with
// the initial contents big-endian. Convert the big-endian instructions to
// little endian leaving literal data untouched. We use mapping symbols to
// identify half open intervals of Arm code [$a, non $a) and Thumb code
// [$t, non $t) and convert these to little endian a word or half word at a
// time respectively.
void elf::convertArmInstructionstoBE8(InputSection *sec, uint8_t *buf) {
if (!sectionMap.contains(sec))
return;
SmallVector<const Defined *, 0> &mapSyms = sectionMap[sec];
if (mapSyms.empty())
return;
CodeState curState = CodeState::Data;
uint64_t start = 0, width = 0, size = sec->getSize();
for (auto &msym : mapSyms) {
CodeState newState = CodeState::Data;
if (isThumbMapSymbol(msym))
newState = CodeState::Thumb;
else if (isArmMapSymbol(msym))
newState = CodeState::Arm;
if (newState == curState)
continue;
if (curState != CodeState::Data) {
width = static_cast<uint64_t>(curState);
toLittleEndianInstructions(buf, start, msym->value, width);
}
start = msym->value;
curState = newState;
}
// Passed last mapping symbol, may need to reverse
// up to end of section.
if (curState != CodeState::Data) {
width = static_cast<uint64_t>(curState);
toLittleEndianInstructions(buf, start, size, width);
}
}
// The Arm Cortex-M Security Extensions (CMSE) splits a system into two parts;
// the non-secure and secure states with the secure state inaccessible from the
// non-secure state, apart from an area of memory in secure state called the
// secure gateway which is accessible from non-secure state. The secure gateway
// contains one or more entry points which must start with a landing pad
// instruction SG. Arm recommends that the secure gateway consists only of
// secure gateway veneers, which are made up of a SG instruction followed by a
// branch to the destination in secure state. Full details can be found in Arm
// v8-M Security Extensions Requirements on Development Tools.
//
// The CMSE model of software development requires the non-secure and secure
// states to be developed as two separate programs. The non-secure developer is
// provided with an import library defining symbols describing the entry points
// in the secure gateway. No additional linker support is required for the
// non-secure state.
//
// Development of the secure state requires linker support to manage the secure
// gateway veneers. The management consists of:
// - Creation of new secure gateway veneers based on symbol conventions.
// - Checking the address of existing secure gateway veneers.
// - Warning when existing secure gateway veneers removed.
//
// The secure gateway veneers are created in an import library, which is just an
// ELF object with a symbol table. The import library is controlled by two
// command line options:
// --in-implib (specify an input import library from a previous revision of the
// program).
// --out-implib (specify an output import library to be created by the linker).
//
// The input import library is used to manage consistency of the secure entry
// points. The output import library is for new and updated secure entry points.
//
// The symbol convention that identifies secure entry functions is the prefix
// __acle_se_ for a symbol called name the linker is expected to create a secure
// gateway veneer if symbols __acle_se_name and name have the same address.
// After creating a secure gateway veneer the symbol name labels the secure
// gateway veneer and the __acle_se_name labels the function definition.
//
// The LLD implementation:
// - Reads an existing import library with importCmseSymbols().
// - Determines which new secure gateway veneers to create and redirects calls
// within the secure state to the __acle_se_ prefixed symbol with
// processArmCmseSymbols().
// - Models the SG veneers as a synthetic section.
// Initialize symbols. symbols is a parallel array to the corresponding ELF
// symbol table.
template <class ELFT> void ObjFile<ELFT>::importCmseSymbols() {
ArrayRef<Elf_Sym> eSyms = getELFSyms<ELFT>();
// Error for local symbols. The symbol at index 0 is LOCAL. So skip it.
for (size_t i = 1, end = firstGlobal; i != end; ++i) {
errorOrWarn("CMSE symbol '" + CHECK(eSyms[i].getName(stringTable), this) +
"' in import library '" + toString(this) + "' is not global");
}
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
const Elf_Sym &eSym = eSyms[i];
Defined *sym = reinterpret_cast<Defined *>(make<SymbolUnion>());
// Initialize symbol fields.
memset(sym, 0, sizeof(Symbol));
sym->setName(CHECK(eSyms[i].getName(stringTable), this));
sym->value = eSym.st_value;
sym->size = eSym.st_size;
sym->type = eSym.getType();
sym->binding = eSym.getBinding();
sym->stOther = eSym.st_other;
if (eSym.st_shndx != SHN_ABS) {
error("CMSE symbol '" + sym->getName() + "' in import library '" +
toString(this) + "' is not absolute");
continue;
}
if (!(eSym.st_value & 1) || (eSym.getType() != STT_FUNC)) {
error("CMSE symbol '" + sym->getName() + "' in import library '" +
toString(this) + "' is not a Thumb function definition");
continue;
}
if (symtab.cmseImportLib.count(sym->getName())) {
error("CMSE symbol '" + sym->getName() +
"' is multiply defined in import library '" + toString(this) + "'");
continue;
}
if (eSym.st_size != ACLESESYM_SIZE) {
warn("CMSE symbol '" + sym->getName() + "' in import library '" +
toString(this) + "' does not have correct size of " +
Twine(ACLESESYM_SIZE) + " bytes");
}
symtab.cmseImportLib[sym->getName()] = sym;
}
}
// Check symbol attributes of the acleSeSym, sym pair.
// Both symbols should be global/weak Thumb code symbol definitions.
static std::string checkCmseSymAttributes(Symbol *acleSeSym, Symbol *sym) {
auto check = [](Symbol *s, StringRef type) -> std::optional<std::string> {
auto d = dyn_cast_or_null<Defined>(s);
if (!(d && d->isFunc() && (d->value & 1)))
return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" +
s->getName() + "' is not a Thumb function definition")
.str();
if (!d->section)
return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" +
s->getName() + "' cannot be an absolute symbol")
.str();
return std::nullopt;
};
for (auto [sym, type] :
{std::make_pair(acleSeSym, "special"), std::make_pair(sym, "entry")})
if (auto err = check(sym, type))
return *err;
return "";
}
// Look for [__acle_se_<sym>, <sym>] pairs, as specified in the Cortex-M
// Security Extensions specification.
// 1) <sym> : A standard function name.
// 2) __acle_se_<sym> : A special symbol that prefixes the standard function
// name with __acle_se_.
// Both these symbols are Thumb function symbols with external linkage.
// <sym> may be redefined in .gnu.sgstubs.
void elf::processArmCmseSymbols() {
if (!config->cmseImplib)
return;
// Only symbols with external linkage end up in symtab, so no need to do
// linkage checks. Only check symbol type.
for (Symbol *acleSeSym : symtab.getSymbols()) {
if (!acleSeSym->getName().startswith(ACLESESYM_PREFIX))
continue;
// If input object build attributes do not support CMSE, error and disable
// further scanning for <sym>, __acle_se_<sym> pairs.
if (!config->armCMSESupport) {
error("CMSE is only supported by ARMv8-M architecture or later");
config->cmseImplib = false;
break;
}
// Try to find the associated symbol definition.
// Symbol must have external linkage.
StringRef name = acleSeSym->getName().substr(std::strlen(ACLESESYM_PREFIX));
Symbol *sym = symtab.find(name);
if (!sym) {
error(toString(acleSeSym->file) + ": cmse special symbol '" +
acleSeSym->getName() +
"' detected, but no associated entry function definition '" + name +
"' with external linkage found");
continue;
}
std::string errMsg = checkCmseSymAttributes(acleSeSym, sym);
if (!errMsg.empty()) {
error(errMsg);
continue;
}
// <sym> may be redefined later in the link in .gnu.sgstubs
symtab.cmseSymMap[name] = {acleSeSym, sym};
}
// If this is an Arm CMSE secure app, replace references to entry symbol <sym>
// with its corresponding special symbol __acle_se_<sym>.
parallelForEach(ctx.objectFiles, [&](InputFile *file) {
MutableArrayRef<Symbol *> syms = file->getMutableSymbols();
for (size_t i = 0, e = syms.size(); i != e; ++i) {
StringRef symName = syms[i]->getName();
if (symtab.cmseSymMap.count(symName))
syms[i] = symtab.cmseSymMap[symName].acleSeSym;
}
});
}
class elf::ArmCmseSGVeneer {
public:
ArmCmseSGVeneer(Symbol *sym, Symbol *acleSeSym,
std::optional<uint64_t> addr = std::nullopt)
: sym(sym), acleSeSym(acleSeSym), entAddr{addr} {}
static const size_t size{ACLESESYM_SIZE};
const std::optional<uint64_t> getAddr() const { return entAddr; };
Symbol *sym;
Symbol *acleSeSym;
uint64_t offset = 0;
private:
const std::optional<uint64_t> entAddr;
};
ArmCmseSGSection::ArmCmseSGSection()
: SyntheticSection(llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_EXECINSTR,
llvm::ELF::SHT_PROGBITS,
/*alignment=*/32, ".gnu.sgstubs") {
entsize = ACLESESYM_SIZE;
// The range of addresses used in the CMSE import library should be fixed.
for (auto &[_, sym] : symtab.cmseImportLib) {
if (impLibMaxAddr <= sym->value)
impLibMaxAddr = sym->value + sym->size;
}
if (symtab.cmseSymMap.empty())
return;
addMappingSymbol();
for (auto &[_, entryFunc] : symtab.cmseSymMap)
addSGVeneer(cast<Defined>(entryFunc.acleSeSym),
cast<Defined>(entryFunc.sym));
for (auto &[_, sym] : symtab.cmseImportLib) {
if (!symtab.inCMSEOutImpLib.count(sym->getName()))
warn("entry function '" + sym->getName() +
"' from CMSE import library is not present in secure application");
}
if (!symtab.cmseImportLib.empty() && config->cmseOutputLib.empty()) {
for (auto &[_, entryFunc] : symtab.cmseSymMap) {
Symbol *sym = entryFunc.sym;
if (!symtab.inCMSEOutImpLib.count(sym->getName()))
warn("new entry function '" + sym->getName() +
"' introduced but no output import library specified");
}
}
}
void ArmCmseSGSection::addSGVeneer(Symbol *acleSeSym, Symbol *sym) {
entries.emplace_back(acleSeSym, sym);
if (symtab.cmseImportLib.count(sym->getName()))
symtab.inCMSEOutImpLib[sym->getName()] = true;
// Symbol addresses different, nothing to do.
if (acleSeSym->file != sym->file ||
cast<Defined>(*acleSeSym).value != cast<Defined>(*sym).value)
return;
// Only secure symbols with values equal to that of it's non-secure
// counterpart needs to be in the .gnu.sgstubs section.
ArmCmseSGVeneer *ss = nullptr;
if (symtab.cmseImportLib.count(sym->getName())) {
Defined *impSym = symtab.cmseImportLib[sym->getName()];
ss = make<ArmCmseSGVeneer>(sym, acleSeSym, impSym->value);
} else {
ss = make<ArmCmseSGVeneer>(sym, acleSeSym);
++newEntries;
}
sgVeneers.emplace_back(ss);
}
void ArmCmseSGSection::writeTo(uint8_t *buf) {
for (ArmCmseSGVeneer *s : sgVeneers) {
uint8_t *p = buf + s->offset;
write16(p + 0, 0xe97f); // SG
write16(p + 2, 0xe97f);
write16(p + 4, 0xf000); // B.W S
write16(p + 6, 0xb000);
target->relocateNoSym(p + 4, R_ARM_THM_JUMP24,
s->acleSeSym->getVA() -
(getVA() + s->offset + s->size));
}
}
void ArmCmseSGSection::addMappingSymbol() {
addSyntheticLocal("$t", STT_NOTYPE, /*off=*/0, /*size=*/0, *this);
}
size_t ArmCmseSGSection::getSize() const {
if (sgVeneers.empty())
return (impLibMaxAddr ? impLibMaxAddr - getVA() : 0) + newEntries * entsize;
return entries.size() * entsize;
}
void ArmCmseSGSection::finalizeContents() {
if (sgVeneers.empty())
return;
auto it =
std::stable_partition(sgVeneers.begin(), sgVeneers.end(),
[](auto *i) { return i->getAddr().has_value(); });
std::sort(sgVeneers.begin(), it, [](auto *a, auto *b) {
return a->getAddr().value() < b->getAddr().value();
});
// This is the partition of the veneers with fixed addresses.
uint64_t addr = (*sgVeneers.begin())->getAddr().has_value()
? (*sgVeneers.begin())->getAddr().value()
: getVA();
// Check if the start address of '.gnu.sgstubs' correspond to the
// linker-synthesized veneer with the lowest address.
if ((getVA() & ~1) != (addr & ~1)) {
error("start address of '.gnu.sgstubs' is different from previous link");
return;
}
for (size_t i = 0; i < sgVeneers.size(); ++i) {
ArmCmseSGVeneer *s = sgVeneers[i];
s->offset = i * s->size;
Defined(file, StringRef(), s->sym->binding, s->sym->stOther, s->sym->type,
s->offset | 1, s->size, this)
.overwrite(*s->sym);
}
}
// Write the CMSE import library to disk.
// The CMSE import library is a relocatable object with only a symbol table.
// The symbols are copies of the (absolute) symbols of the secure gateways
// in the executable output by this link.
// See ArmĀ® v8-M Security Extensions: Requirements on Development Tools
// https://developer.arm.com/documentation/ecm0359818/latest
template <typename ELFT> void elf::writeARMCmseImportLib() {
StringTableSection *shstrtab =
make<StringTableSection>(".shstrtab", /*dynamic=*/false);
StringTableSection *strtab =
make<StringTableSection>(".strtab", /*dynamic=*/false);
SymbolTableBaseSection *impSymTab = make<SymbolTableSection<ELFT>>(*strtab);
SmallVector<std::pair<OutputSection *, SyntheticSection *>, 0> osIsPairs;
osIsPairs.emplace_back(make<OutputSection>(strtab->name, 0, 0), strtab);
osIsPairs.emplace_back(make<OutputSection>(impSymTab->name, 0, 0), impSymTab);
osIsPairs.emplace_back(make<OutputSection>(shstrtab->name, 0, 0), shstrtab);
std::sort(symtab.cmseSymMap.begin(), symtab.cmseSymMap.end(),
[](const auto &a, const auto &b) -> bool {
return a.second.sym->getVA() < b.second.sym->getVA();
});
// Copy the secure gateway entry symbols to the import library symbol table.
for (auto &p : symtab.cmseSymMap) {
Defined *d = cast<Defined>(p.second.sym);
impSymTab->addSymbol(makeDefined(nullptr, d->getName(), d->computeBinding(),
/*stOther=*/0, STT_FUNC, d->getVA(),
d->getSize(), nullptr));
}
size_t idx = 0;
uint64_t off = sizeof(typename ELFT::Ehdr);
for (auto &[osec, isec] : osIsPairs) {
osec->sectionIndex = ++idx;
osec->recordSection(isec);
osec->finalizeInputSections();
osec->shName = shstrtab->addString(osec->name);
osec->size = isec->getSize();
isec->finalizeContents();
osec->offset = alignToPowerOf2(off, osec->addralign);
off = osec->offset + osec->size;
}
const uint64_t sectionHeaderOff = alignToPowerOf2(off, config->wordsize);
const auto shnum = osIsPairs.size() + 1;
const uint64_t fileSize =
sectionHeaderOff + shnum * sizeof(typename ELFT::Shdr);
const unsigned flags =
config->mmapOutputFile ? 0 : (unsigned)FileOutputBuffer::F_no_mmap;
unlinkAsync(config->cmseOutputLib);
Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
FileOutputBuffer::create(config->cmseOutputLib, fileSize, flags);
if (!bufferOrErr) {
error("failed to open " + config->cmseOutputLib + ": " +
llvm::toString(bufferOrErr.takeError()));
return;
}
// Write the ELF Header
std::unique_ptr<FileOutputBuffer> &buffer = *bufferOrErr;
uint8_t *const buf = buffer->getBufferStart();
memcpy(buf, "\177ELF", 4);
auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
eHdr->e_type = ET_REL;
eHdr->e_entry = 0;
eHdr->e_shoff = sectionHeaderOff;
eHdr->e_ident[EI_CLASS] = ELFCLASS32;
eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
eHdr->e_ident[EI_VERSION] = EV_CURRENT;
eHdr->e_ident[EI_OSABI] = config->osabi;
eHdr->e_ident[EI_ABIVERSION] = 0;
eHdr->e_machine = EM_ARM;
eHdr->e_version = EV_CURRENT;
eHdr->e_flags = config->eflags;
eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
eHdr->e_phnum = 0;
eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
eHdr->e_phoff = 0;
eHdr->e_phentsize = 0;
eHdr->e_shnum = shnum;
eHdr->e_shstrndx = shstrtab->getParent()->sectionIndex;
// Write the section header table.
auto *sHdrs = reinterpret_cast<typename ELFT::Shdr *>(buf + eHdr->e_shoff);
for (auto &[osec, _] : osIsPairs)
osec->template writeHeaderTo<ELFT>(++sHdrs);
// Write section contents to a mmap'ed file.
{
parallel::TaskGroup tg;
for (auto &[osec, _] : osIsPairs)
osec->template writeTo<ELFT>(buf + osec->offset, tg);
}
if (auto e = buffer->commit())
fatal("failed to write output '" + buffer->getPath() +
"': " + toString(std::move(e)));
}
TargetInfo *elf::getARMTargetInfo() {
static ARM target;
return &target;
}
template void elf::writeARMCmseImportLib<ELF32LE>();
template void elf::writeARMCmseImportLib<ELF32BE>();
template void elf::writeARMCmseImportLib<ELF64LE>();
template void elf::writeARMCmseImportLib<ELF64BE>();
template void ObjFile<ELF32LE>::importCmseSymbols();
template void ObjFile<ELF32BE>::importCmseSymbols();
template void ObjFile<ELF64LE>::importCmseSymbols();
template void ObjFile<ELF64BE>::importCmseSymbols();