blob: 89efdc269c466c2e51b13e5b3cb55bbd4d55f07e [file] [log] [blame]
#![recursion_limit = "256"]
#![deny(rustc::untranslatable_diagnostic)]
#![deny(rustc::diagnostic_outside_of_impl)]
use rustc_ast as ast;
use rustc_ast::util::parser::{self, AssocOp, Fixity};
use rustc_ast_pretty::pp::Breaks::{Consistent, Inconsistent};
use rustc_ast_pretty::pp::{self, Breaks};
use rustc_ast_pretty::pprust::{Comments, PrintState};
use rustc_hir as hir;
use rustc_hir::LifetimeParamKind;
use rustc_hir::{BindingAnnotation, ByRef, GenericArg, GenericParam, GenericParamKind, Node, Term};
use rustc_hir::{GenericBound, PatKind, RangeEnd, TraitBoundModifier};
use rustc_span::source_map::SourceMap;
use rustc_span::symbol::{kw, Ident, IdentPrinter, Symbol};
use rustc_span::{self, FileName};
use rustc_target::spec::abi::Abi;
use std::cell::Cell;
use std::vec;
pub fn id_to_string(map: &dyn rustc_hir::intravisit::Map<'_>, hir_id: hir::HirId) -> String {
to_string(&map, |s| s.print_node(map.find(hir_id).unwrap()))
}
pub enum AnnNode<'a> {
Name(&'a Symbol),
Block(&'a hir::Block<'a>),
Item(&'a hir::Item<'a>),
SubItem(hir::HirId),
Expr(&'a hir::Expr<'a>),
Pat(&'a hir::Pat<'a>),
Arm(&'a hir::Arm<'a>),
}
pub enum Nested {
Item(hir::ItemId),
TraitItem(hir::TraitItemId),
ImplItem(hir::ImplItemId),
ForeignItem(hir::ForeignItemId),
Body(hir::BodyId),
BodyParamPat(hir::BodyId, usize),
}
pub trait PpAnn {
fn nested(&self, _state: &mut State<'_>, _nested: Nested) {}
fn pre(&self, _state: &mut State<'_>, _node: AnnNode<'_>) {}
fn post(&self, _state: &mut State<'_>, _node: AnnNode<'_>) {}
}
pub struct NoAnn;
impl PpAnn for NoAnn {}
pub const NO_ANN: &dyn PpAnn = &NoAnn;
/// Identical to the `PpAnn` implementation for `hir::Crate`,
/// except it avoids creating a dependency on the whole crate.
impl PpAnn for &dyn rustc_hir::intravisit::Map<'_> {
fn nested(&self, state: &mut State<'_>, nested: Nested) {
match nested {
Nested::Item(id) => state.print_item(self.item(id)),
Nested::TraitItem(id) => state.print_trait_item(self.trait_item(id)),
Nested::ImplItem(id) => state.print_impl_item(self.impl_item(id)),
Nested::ForeignItem(id) => state.print_foreign_item(self.foreign_item(id)),
Nested::Body(id) => state.print_expr(&self.body(id).value),
Nested::BodyParamPat(id, i) => state.print_pat(self.body(id).params[i].pat),
}
}
}
pub struct State<'a> {
pub s: pp::Printer,
comments: Option<Comments<'a>>,
attrs: &'a dyn Fn(hir::HirId) -> &'a [ast::Attribute],
ann: &'a (dyn PpAnn + 'a),
}
impl<'a> State<'a> {
pub fn print_node(&mut self, node: Node<'_>) {
match node {
Node::Param(a) => self.print_param(a),
Node::Item(a) => self.print_item(a),
Node::ForeignItem(a) => self.print_foreign_item(a),
Node::TraitItem(a) => self.print_trait_item(a),
Node::ImplItem(a) => self.print_impl_item(a),
Node::Variant(a) => self.print_variant(a),
Node::AnonConst(a) => self.print_anon_const(a),
Node::ConstBlock(a) => self.print_inline_const(a),
Node::Expr(a) => self.print_expr(a),
Node::ExprField(a) => self.print_expr_field(&a),
Node::Stmt(a) => self.print_stmt(a),
Node::PathSegment(a) => self.print_path_segment(a),
Node::Ty(a) => self.print_type(a),
Node::TypeBinding(a) => self.print_type_binding(a),
Node::TraitRef(a) => self.print_trait_ref(a),
Node::Pat(a) => self.print_pat(a),
Node::PatField(a) => self.print_patfield(&a),
Node::Arm(a) => self.print_arm(a),
Node::Infer(_) => self.word("_"),
Node::Block(a) => {
// Containing cbox, will be closed by print-block at `}`.
self.cbox(INDENT_UNIT);
// Head-ibox, will be closed by print-block after `{`.
self.ibox(0);
self.print_block(a);
}
Node::Lifetime(a) => self.print_lifetime(a),
Node::GenericParam(_) => panic!("cannot print Node::GenericParam"),
Node::Field(_) => panic!("cannot print Node::Field"),
// These cases do not carry enough information in the
// `hir_map` to reconstruct their full structure for pretty
// printing.
Node::Ctor(..) => panic!("cannot print isolated Ctor"),
Node::Local(a) => self.print_local_decl(a),
Node::Crate(..) => panic!("cannot print Crate"),
}
}
}
impl std::ops::Deref for State<'_> {
type Target = pp::Printer;
fn deref(&self) -> &Self::Target {
&self.s
}
}
impl std::ops::DerefMut for State<'_> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.s
}
}
impl<'a> PrintState<'a> for State<'a> {
fn comments(&mut self) -> &mut Option<Comments<'a>> {
&mut self.comments
}
fn print_ident(&mut self, ident: Ident) {
self.word(IdentPrinter::for_ast_ident(ident, ident.is_raw_guess()).to_string());
self.ann.post(self, AnnNode::Name(&ident.name))
}
fn print_generic_args(&mut self, _: &ast::GenericArgs, _colons_before_params: bool) {
panic!("AST generic args printed by HIR pretty-printer");
}
}
pub const INDENT_UNIT: isize = 4;
/// Requires you to pass an input filename and reader so that
/// it can scan the input text for comments to copy forward.
pub fn print_crate<'a>(
sm: &'a SourceMap,
krate: &hir::Mod<'_>,
filename: FileName,
input: String,
attrs: &'a dyn Fn(hir::HirId) -> &'a [ast::Attribute],
ann: &'a dyn PpAnn,
) -> String {
let mut s = State::new_from_input(sm, filename, input, attrs, ann);
// When printing the AST, we sometimes need to inject `#[no_std]` here.
// Since you can't compile the HIR, it's not necessary.
s.print_mod(krate, (*attrs)(hir::CRATE_HIR_ID));
s.print_remaining_comments();
s.s.eof()
}
impl<'a> State<'a> {
pub fn new_from_input(
sm: &'a SourceMap,
filename: FileName,
input: String,
attrs: &'a dyn Fn(hir::HirId) -> &'a [ast::Attribute],
ann: &'a dyn PpAnn,
) -> State<'a> {
State {
s: pp::Printer::new(),
comments: Some(Comments::new(sm, filename, input)),
attrs,
ann,
}
}
fn attrs(&self, id: hir::HirId) -> &'a [ast::Attribute] {
(self.attrs)(id)
}
}
pub fn to_string<F>(ann: &dyn PpAnn, f: F) -> String
where
F: FnOnce(&mut State<'_>),
{
let mut printer = State { s: pp::Printer::new(), comments: None, attrs: &|_| &[], ann };
f(&mut printer);
printer.s.eof()
}
pub fn generic_params_to_string(generic_params: &[GenericParam<'_>]) -> String {
to_string(NO_ANN, |s| s.print_generic_params(generic_params))
}
pub fn bounds_to_string<'b>(bounds: impl IntoIterator<Item = &'b hir::GenericBound<'b>>) -> String {
to_string(NO_ANN, |s| s.print_bounds("", bounds))
}
pub fn ty_to_string(ty: &hir::Ty<'_>) -> String {
to_string(NO_ANN, |s| s.print_type(ty))
}
pub fn path_segment_to_string(segment: &hir::PathSegment<'_>) -> String {
to_string(NO_ANN, |s| s.print_path_segment(segment))
}
pub fn path_to_string(segment: &hir::Path<'_>) -> String {
to_string(NO_ANN, |s| s.print_path(segment, false))
}
pub fn qpath_to_string(segment: &hir::QPath<'_>) -> String {
to_string(NO_ANN, |s| s.print_qpath(segment, false))
}
pub fn fn_to_string(
decl: &hir::FnDecl<'_>,
header: hir::FnHeader,
name: Option<Symbol>,
generics: &hir::Generics<'_>,
arg_names: &[Ident],
body_id: Option<hir::BodyId>,
) -> String {
to_string(NO_ANN, |s| s.print_fn(decl, header, name, generics, arg_names, body_id))
}
pub fn enum_def_to_string(
enum_definition: &hir::EnumDef<'_>,
generics: &hir::Generics<'_>,
name: Symbol,
span: rustc_span::Span,
) -> String {
to_string(NO_ANN, |s| s.print_enum_def(enum_definition, generics, name, span))
}
impl<'a> State<'a> {
pub fn bclose_maybe_open(&mut self, span: rustc_span::Span, close_box: bool) {
self.maybe_print_comment(span.hi());
self.break_offset_if_not_bol(1, -INDENT_UNIT);
self.word("}");
if close_box {
self.end(); // close the outer-box
}
}
pub fn bclose(&mut self, span: rustc_span::Span) {
self.bclose_maybe_open(span, true)
}
pub fn commasep_cmnt<T, F, G>(&mut self, b: Breaks, elts: &[T], mut op: F, mut get_span: G)
where
F: FnMut(&mut State<'_>, &T),
G: FnMut(&T) -> rustc_span::Span,
{
self.rbox(0, b);
let len = elts.len();
let mut i = 0;
for elt in elts {
self.maybe_print_comment(get_span(elt).hi());
op(self, elt);
i += 1;
if i < len {
self.word(",");
self.maybe_print_trailing_comment(get_span(elt), Some(get_span(&elts[i]).hi()));
self.space_if_not_bol();
}
}
self.end();
}
pub fn commasep_exprs(&mut self, b: Breaks, exprs: &[hir::Expr<'_>]) {
self.commasep_cmnt(b, exprs, |s, e| s.print_expr(e), |e| e.span);
}
pub fn print_mod(&mut self, _mod: &hir::Mod<'_>, attrs: &[ast::Attribute]) {
self.print_inner_attributes(attrs);
for &item_id in _mod.item_ids {
self.ann.nested(self, Nested::Item(item_id));
}
}
pub fn print_opt_lifetime(&mut self, lifetime: &hir::Lifetime) {
if !lifetime.is_elided() {
self.print_lifetime(lifetime);
self.nbsp();
}
}
pub fn print_type(&mut self, ty: &hir::Ty<'_>) {
self.maybe_print_comment(ty.span.lo());
self.ibox(0);
match ty.kind {
hir::TyKind::Slice(ty) => {
self.word("[");
self.print_type(ty);
self.word("]");
}
hir::TyKind::Ptr(ref mt) => {
self.word("*");
self.print_mt(mt, true);
}
hir::TyKind::Ref(ref lifetime, ref mt) => {
self.word("&");
self.print_opt_lifetime(lifetime);
self.print_mt(mt, false);
}
hir::TyKind::Never => {
self.word("!");
}
hir::TyKind::Tup(elts) => {
self.popen();
self.commasep(Inconsistent, elts, |s, ty| s.print_type(ty));
if elts.len() == 1 {
self.word(",");
}
self.pclose();
}
hir::TyKind::BareFn(f) => {
self.print_ty_fn(f.abi, f.unsafety, f.decl, None, f.generic_params, f.param_names);
}
hir::TyKind::OpaqueDef(..) => self.word("/*impl Trait*/"),
hir::TyKind::Path(ref qpath) => self.print_qpath(qpath, false),
hir::TyKind::TraitObject(bounds, ref lifetime, syntax) => {
if syntax == ast::TraitObjectSyntax::Dyn {
self.word_space("dyn");
}
let mut first = true;
for bound in bounds {
if first {
first = false;
} else {
self.nbsp();
self.word_space("+");
}
self.print_poly_trait_ref(bound);
}
if !lifetime.is_elided() {
self.nbsp();
self.word_space("+");
self.print_lifetime(lifetime);
}
}
hir::TyKind::Array(ty, ref length) => {
self.word("[");
self.print_type(ty);
self.word("; ");
self.print_array_length(length);
self.word("]");
}
hir::TyKind::Typeof(ref e) => {
self.word("typeof(");
self.print_anon_const(e);
self.word(")");
}
hir::TyKind::Err(_) => {
self.popen();
self.word("/*ERROR*/");
self.pclose();
}
hir::TyKind::Infer => {
self.word("_");
}
}
self.end()
}
pub fn print_foreign_item(&mut self, item: &hir::ForeignItem<'_>) {
self.hardbreak_if_not_bol();
self.maybe_print_comment(item.span.lo());
self.print_outer_attributes(self.attrs(item.hir_id()));
match item.kind {
hir::ForeignItemKind::Fn(decl, arg_names, generics) => {
self.head("");
self.print_fn(
decl,
hir::FnHeader {
unsafety: hir::Unsafety::Normal,
constness: hir::Constness::NotConst,
abi: Abi::Rust,
asyncness: hir::IsAsync::NotAsync,
},
Some(item.ident.name),
generics,
arg_names,
None,
);
self.end(); // end head-ibox
self.word(";");
self.end() // end the outer fn box
}
hir::ForeignItemKind::Static(t, m) => {
self.head("static");
if m.is_mut() {
self.word_space("mut");
}
self.print_ident(item.ident);
self.word_space(":");
self.print_type(t);
self.word(";");
self.end(); // end the head-ibox
self.end() // end the outer cbox
}
hir::ForeignItemKind::Type => {
self.head("type");
self.print_ident(item.ident);
self.word(";");
self.end(); // end the head-ibox
self.end() // end the outer cbox
}
}
}
fn print_associated_const(
&mut self,
ident: Ident,
generics: &hir::Generics<'_>,
ty: &hir::Ty<'_>,
default: Option<hir::BodyId>,
) {
self.word_space("const");
self.print_ident(ident);
self.print_generic_params(generics.params);
self.word_space(":");
self.print_type(ty);
if let Some(expr) = default {
self.space();
self.word_space("=");
self.ann.nested(self, Nested::Body(expr));
}
self.print_where_clause(generics);
self.word(";")
}
fn print_associated_type(
&mut self,
ident: Ident,
generics: &hir::Generics<'_>,
bounds: Option<hir::GenericBounds<'_>>,
ty: Option<&hir::Ty<'_>>,
) {
self.word_space("type");
self.print_ident(ident);
self.print_generic_params(generics.params);
if let Some(bounds) = bounds {
self.print_bounds(":", bounds);
}
self.print_where_clause(generics);
if let Some(ty) = ty {
self.space();
self.word_space("=");
self.print_type(ty);
}
self.word(";")
}
fn print_item_type(
&mut self,
item: &hir::Item<'_>,
generics: &hir::Generics<'_>,
inner: impl Fn(&mut Self),
) {
self.head("type");
self.print_ident(item.ident);
self.print_generic_params(generics.params);
self.end(); // end the inner ibox
self.print_where_clause(generics);
self.space();
inner(self);
self.word(";");
self.end(); // end the outer ibox
}
/// Pretty-print an item
pub fn print_item(&mut self, item: &hir::Item<'_>) {
self.hardbreak_if_not_bol();
self.maybe_print_comment(item.span.lo());
let attrs = self.attrs(item.hir_id());
self.print_outer_attributes(attrs);
self.ann.pre(self, AnnNode::Item(item));
match item.kind {
hir::ItemKind::ExternCrate(orig_name) => {
self.head("extern crate");
if let Some(orig_name) = orig_name {
self.print_name(orig_name);
self.space();
self.word("as");
self.space();
}
self.print_ident(item.ident);
self.word(";");
self.end(); // end inner head-block
self.end(); // end outer head-block
}
hir::ItemKind::Use(path, kind) => {
self.head("use");
self.print_path(path, false);
match kind {
hir::UseKind::Single => {
if path.segments.last().unwrap().ident != item.ident {
self.space();
self.word_space("as");
self.print_ident(item.ident);
}
self.word(";");
}
hir::UseKind::Glob => self.word("::*;"),
hir::UseKind::ListStem => self.word("::{};"),
}
self.end(); // end inner head-block
self.end(); // end outer head-block
}
hir::ItemKind::Static(ty, m, expr) => {
self.head("static");
if m.is_mut() {
self.word_space("mut");
}
self.print_ident(item.ident);
self.word_space(":");
self.print_type(ty);
self.space();
self.end(); // end the head-ibox
self.word_space("=");
self.ann.nested(self, Nested::Body(expr));
self.word(";");
self.end(); // end the outer cbox
}
hir::ItemKind::Const(ty, generics, expr) => {
self.head("const");
self.print_ident(item.ident);
self.print_generic_params(generics.params);
self.word_space(":");
self.print_type(ty);
self.space();
self.end(); // end the head-ibox
self.word_space("=");
self.ann.nested(self, Nested::Body(expr));
self.print_where_clause(generics);
self.word(";");
self.end(); // end the outer cbox
}
hir::ItemKind::Fn(ref sig, param_names, body) => {
self.head("");
self.print_fn(
sig.decl,
sig.header,
Some(item.ident.name),
param_names,
&[],
Some(body),
);
self.word(" ");
self.end(); // need to close a box
self.end(); // need to close a box
self.ann.nested(self, Nested::Body(body));
}
hir::ItemKind::Macro(ref macro_def, _) => {
self.print_mac_def(macro_def, &item.ident, item.span, |_| {});
}
hir::ItemKind::Mod(ref _mod) => {
self.head("mod");
self.print_ident(item.ident);
self.nbsp();
self.bopen();
self.print_mod(_mod, attrs);
self.bclose(item.span);
}
hir::ItemKind::ForeignMod { abi, items } => {
self.head("extern");
self.word_nbsp(abi.to_string());
self.bopen();
self.print_inner_attributes(self.attrs(item.hir_id()));
for item in items {
self.ann.nested(self, Nested::ForeignItem(item.id));
}
self.bclose(item.span);
}
hir::ItemKind::GlobalAsm(asm) => {
self.head("global_asm!");
self.print_inline_asm(asm);
self.end()
}
hir::ItemKind::TyAlias(ty, generics) => {
self.print_item_type(item, generics, |state| {
state.word_space("=");
state.print_type(ty);
});
}
hir::ItemKind::OpaqueTy(ref opaque_ty) => {
self.print_item_type(item, opaque_ty.generics, |state| {
let mut real_bounds = Vec::with_capacity(opaque_ty.bounds.len());
for b in opaque_ty.bounds {
if let GenericBound::Trait(ptr, hir::TraitBoundModifier::Maybe) = b {
state.space();
state.word_space("for ?");
state.print_trait_ref(&ptr.trait_ref);
} else {
real_bounds.push(b);
}
}
state.print_bounds("= impl", real_bounds);
});
}
hir::ItemKind::Enum(ref enum_definition, params) => {
self.print_enum_def(enum_definition, params, item.ident.name, item.span);
}
hir::ItemKind::Struct(ref struct_def, generics) => {
self.head("struct");
self.print_struct(struct_def, generics, item.ident.name, item.span, true);
}
hir::ItemKind::Union(ref struct_def, generics) => {
self.head("union");
self.print_struct(struct_def, generics, item.ident.name, item.span, true);
}
hir::ItemKind::Impl(&hir::Impl {
unsafety,
polarity,
defaultness,
defaultness_span: _,
generics,
ref of_trait,
self_ty,
items,
}) => {
self.head("");
self.print_defaultness(defaultness);
self.print_unsafety(unsafety);
self.word_nbsp("impl");
if !generics.params.is_empty() {
self.print_generic_params(generics.params);
self.space();
}
if let hir::ImplPolarity::Negative(_) = polarity {
self.word("!");
}
if let Some(t) = of_trait {
self.print_trait_ref(t);
self.space();
self.word_space("for");
}
self.print_type(self_ty);
self.print_where_clause(generics);
self.space();
self.bopen();
self.print_inner_attributes(attrs);
for impl_item in items {
self.ann.nested(self, Nested::ImplItem(impl_item.id));
}
self.bclose(item.span);
}
hir::ItemKind::Trait(is_auto, unsafety, generics, bounds, trait_items) => {
self.head("");
self.print_is_auto(is_auto);
self.print_unsafety(unsafety);
self.word_nbsp("trait");
self.print_ident(item.ident);
self.print_generic_params(generics.params);
let mut real_bounds = Vec::with_capacity(bounds.len());
for b in bounds {
if let GenericBound::Trait(ptr, hir::TraitBoundModifier::Maybe) = b {
self.space();
self.word_space("for ?");
self.print_trait_ref(&ptr.trait_ref);
} else {
real_bounds.push(b);
}
}
self.print_bounds(":", real_bounds);
self.print_where_clause(generics);
self.word(" ");
self.bopen();
for trait_item in trait_items {
self.ann.nested(self, Nested::TraitItem(trait_item.id));
}
self.bclose(item.span);
}
hir::ItemKind::TraitAlias(generics, bounds) => {
self.head("trait");
self.print_ident(item.ident);
self.print_generic_params(generics.params);
self.nbsp();
self.print_bounds("=", bounds);
self.print_where_clause(generics);
self.word(";");
self.end(); // end inner head-block
self.end(); // end outer head-block
}
}
self.ann.post(self, AnnNode::Item(item))
}
pub fn print_trait_ref(&mut self, t: &hir::TraitRef<'_>) {
self.print_path(t.path, false);
}
fn print_formal_generic_params(&mut self, generic_params: &[hir::GenericParam<'_>]) {
if !generic_params.is_empty() {
self.word("for");
self.print_generic_params(generic_params);
self.nbsp();
}
}
fn print_poly_trait_ref(&mut self, t: &hir::PolyTraitRef<'_>) {
self.print_formal_generic_params(t.bound_generic_params);
self.print_trait_ref(&t.trait_ref);
}
pub fn print_enum_def(
&mut self,
enum_definition: &hir::EnumDef<'_>,
generics: &hir::Generics<'_>,
name: Symbol,
span: rustc_span::Span,
) {
self.head("enum");
self.print_name(name);
self.print_generic_params(generics.params);
self.print_where_clause(generics);
self.space();
self.print_variants(enum_definition.variants, span);
}
pub fn print_variants(&mut self, variants: &[hir::Variant<'_>], span: rustc_span::Span) {
self.bopen();
for v in variants {
self.space_if_not_bol();
self.maybe_print_comment(v.span.lo());
self.print_outer_attributes(self.attrs(v.hir_id));
self.ibox(INDENT_UNIT);
self.print_variant(v);
self.word(",");
self.end();
self.maybe_print_trailing_comment(v.span, None);
}
self.bclose(span)
}
pub fn print_defaultness(&mut self, defaultness: hir::Defaultness) {
match defaultness {
hir::Defaultness::Default { .. } => self.word_nbsp("default"),
hir::Defaultness::Final => (),
}
}
pub fn print_struct(
&mut self,
struct_def: &hir::VariantData<'_>,
generics: &hir::Generics<'_>,
name: Symbol,
span: rustc_span::Span,
print_finalizer: bool,
) {
self.print_name(name);
self.print_generic_params(generics.params);
match struct_def {
hir::VariantData::Tuple(..) | hir::VariantData::Unit(..) => {
if let hir::VariantData::Tuple(..) = struct_def {
self.popen();
self.commasep(Inconsistent, struct_def.fields(), |s, field| {
s.maybe_print_comment(field.span.lo());
s.print_outer_attributes(s.attrs(field.hir_id));
s.print_type(field.ty);
});
self.pclose();
}
self.print_where_clause(generics);
if print_finalizer {
self.word(";");
}
self.end();
self.end() // close the outer-box
}
hir::VariantData::Struct(..) => {
self.print_where_clause(generics);
self.nbsp();
self.bopen();
self.hardbreak_if_not_bol();
for field in struct_def.fields() {
self.hardbreak_if_not_bol();
self.maybe_print_comment(field.span.lo());
self.print_outer_attributes(self.attrs(field.hir_id));
self.print_ident(field.ident);
self.word_nbsp(":");
self.print_type(field.ty);
self.word(",");
}
self.bclose(span)
}
}
}
pub fn print_variant(&mut self, v: &hir::Variant<'_>) {
self.head("");
let generics = hir::Generics::empty();
self.print_struct(&v.data, generics, v.ident.name, v.span, false);
if let Some(ref d) = v.disr_expr {
self.space();
self.word_space("=");
self.print_anon_const(d);
}
}
pub fn print_method_sig(
&mut self,
ident: Ident,
m: &hir::FnSig<'_>,
generics: &hir::Generics<'_>,
arg_names: &[Ident],
body_id: Option<hir::BodyId>,
) {
self.print_fn(m.decl, m.header, Some(ident.name), generics, arg_names, body_id);
}
pub fn print_trait_item(&mut self, ti: &hir::TraitItem<'_>) {
self.ann.pre(self, AnnNode::SubItem(ti.hir_id()));
self.hardbreak_if_not_bol();
self.maybe_print_comment(ti.span.lo());
self.print_outer_attributes(self.attrs(ti.hir_id()));
match ti.kind {
hir::TraitItemKind::Const(ty, default) => {
self.print_associated_const(ti.ident, ti.generics, ty, default);
}
hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Required(arg_names)) => {
self.print_method_sig(ti.ident, sig, ti.generics, arg_names, None);
self.word(";");
}
hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
self.head("");
self.print_method_sig(ti.ident, sig, ti.generics, &[], Some(body));
self.nbsp();
self.end(); // need to close a box
self.end(); // need to close a box
self.ann.nested(self, Nested::Body(body));
}
hir::TraitItemKind::Type(bounds, default) => {
self.print_associated_type(ti.ident, ti.generics, Some(bounds), default);
}
}
self.ann.post(self, AnnNode::SubItem(ti.hir_id()))
}
pub fn print_impl_item(&mut self, ii: &hir::ImplItem<'_>) {
self.ann.pre(self, AnnNode::SubItem(ii.hir_id()));
self.hardbreak_if_not_bol();
self.maybe_print_comment(ii.span.lo());
self.print_outer_attributes(self.attrs(ii.hir_id()));
match ii.kind {
hir::ImplItemKind::Const(ty, expr) => {
self.print_associated_const(ii.ident, ii.generics, ty, Some(expr));
}
hir::ImplItemKind::Fn(ref sig, body) => {
self.head("");
self.print_method_sig(ii.ident, sig, ii.generics, &[], Some(body));
self.nbsp();
self.end(); // need to close a box
self.end(); // need to close a box
self.ann.nested(self, Nested::Body(body));
}
hir::ImplItemKind::Type(ty) => {
self.print_associated_type(ii.ident, ii.generics, None, Some(ty));
}
}
self.ann.post(self, AnnNode::SubItem(ii.hir_id()))
}
pub fn print_local(
&mut self,
init: Option<&hir::Expr<'_>>,
els: Option<&hir::Block<'_>>,
decl: impl Fn(&mut Self),
) {
self.space_if_not_bol();
self.ibox(INDENT_UNIT);
self.word_nbsp("let");
self.ibox(INDENT_UNIT);
decl(self);
self.end();
if let Some(init) = init {
self.nbsp();
self.word_space("=");
self.print_expr(init);
}
if let Some(els) = els {
self.nbsp();
self.word_space("else");
// containing cbox, will be closed by print-block at `}`
self.cbox(0);
// head-box, will be closed by print-block after `{`
self.ibox(0);
self.print_block(els);
}
self.end()
}
pub fn print_stmt(&mut self, st: &hir::Stmt<'_>) {
self.maybe_print_comment(st.span.lo());
match st.kind {
hir::StmtKind::Local(loc) => {
self.print_local(loc.init, loc.els, |this| this.print_local_decl(loc));
}
hir::StmtKind::Item(item) => self.ann.nested(self, Nested::Item(item)),
hir::StmtKind::Expr(expr) => {
self.space_if_not_bol();
self.print_expr(expr);
}
hir::StmtKind::Semi(expr) => {
self.space_if_not_bol();
self.print_expr(expr);
self.word(";");
}
}
if stmt_ends_with_semi(&st.kind) {
self.word(";");
}
self.maybe_print_trailing_comment(st.span, None)
}
pub fn print_block(&mut self, blk: &hir::Block<'_>) {
self.print_block_with_attrs(blk, &[])
}
pub fn print_block_unclosed(&mut self, blk: &hir::Block<'_>) {
self.print_block_maybe_unclosed(blk, &[], false)
}
pub fn print_block_with_attrs(&mut self, blk: &hir::Block<'_>, attrs: &[ast::Attribute]) {
self.print_block_maybe_unclosed(blk, attrs, true)
}
pub fn print_block_maybe_unclosed(
&mut self,
blk: &hir::Block<'_>,
attrs: &[ast::Attribute],
close_box: bool,
) {
match blk.rules {
hir::BlockCheckMode::UnsafeBlock(..) => self.word_space("unsafe"),
hir::BlockCheckMode::DefaultBlock => (),
}
self.maybe_print_comment(blk.span.lo());
self.ann.pre(self, AnnNode::Block(blk));
self.bopen();
self.print_inner_attributes(attrs);
for st in blk.stmts {
self.print_stmt(st);
}
if let Some(expr) = blk.expr {
self.space_if_not_bol();
self.print_expr(expr);
self.maybe_print_trailing_comment(expr.span, Some(blk.span.hi()));
}
self.bclose_maybe_open(blk.span, close_box);
self.ann.post(self, AnnNode::Block(blk))
}
fn print_else(&mut self, els: Option<&hir::Expr<'_>>) {
if let Some(els_inner) = els {
match els_inner.kind {
// Another `else if` block.
hir::ExprKind::If(i, then, e) => {
self.cbox(INDENT_UNIT - 1);
self.ibox(0);
self.word(" else if ");
self.print_expr_as_cond(i);
self.space();
self.print_expr(then);
self.print_else(e);
}
// Final `else` block.
hir::ExprKind::Block(b, _) => {
self.cbox(INDENT_UNIT - 1);
self.ibox(0);
self.word(" else ");
self.print_block(b);
}
// Constraints would be great here!
_ => {
panic!("print_if saw if with weird alternative");
}
}
}
}
pub fn print_if(
&mut self,
test: &hir::Expr<'_>,
blk: &hir::Expr<'_>,
elseopt: Option<&hir::Expr<'_>>,
) {
self.head("if");
self.print_expr_as_cond(test);
self.space();
self.print_expr(blk);
self.print_else(elseopt)
}
pub fn print_array_length(&mut self, len: &hir::ArrayLen) {
match len {
hir::ArrayLen::Infer(_, _) => self.word("_"),
hir::ArrayLen::Body(ct) => self.print_anon_const(ct),
}
}
pub fn print_anon_const(&mut self, constant: &hir::AnonConst) {
self.ann.nested(self, Nested::Body(constant.body))
}
fn print_call_post(&mut self, args: &[hir::Expr<'_>]) {
self.popen();
self.commasep_exprs(Inconsistent, args);
self.pclose()
}
fn print_expr_maybe_paren(&mut self, expr: &hir::Expr<'_>, prec: i8) {
self.print_expr_cond_paren(expr, expr.precedence().order() < prec)
}
/// Prints an expr using syntax that's acceptable in a condition position, such as the `cond` in
/// `if cond { ... }`.
pub fn print_expr_as_cond(&mut self, expr: &hir::Expr<'_>) {
self.print_expr_cond_paren(expr, Self::cond_needs_par(expr))
}
/// Prints `expr` or `(expr)` when `needs_par` holds.
fn print_expr_cond_paren(&mut self, expr: &hir::Expr<'_>, needs_par: bool) {
if needs_par {
self.popen();
}
if let hir::ExprKind::DropTemps(actual_expr) = expr.kind {
self.print_expr(actual_expr);
} else {
self.print_expr(expr);
}
if needs_par {
self.pclose();
}
}
/// Print a `let pat = expr` expression.
fn print_let(&mut self, pat: &hir::Pat<'_>, ty: Option<&hir::Ty<'_>>, init: &hir::Expr<'_>) {
self.word_space("let");
self.print_pat(pat);
if let Some(ty) = ty {
self.word_space(":");
self.print_type(ty);
}
self.space();
self.word_space("=");
let npals = || parser::needs_par_as_let_scrutinee(init.precedence().order());
self.print_expr_cond_paren(init, Self::cond_needs_par(init) || npals())
}
// Does `expr` need parentheses when printed in a condition position?
//
// These cases need parens due to the parse error observed in #26461: `if return {}`
// parses as the erroneous construct `if (return {})`, not `if (return) {}`.
fn cond_needs_par(expr: &hir::Expr<'_>) -> bool {
match expr.kind {
hir::ExprKind::Break(..) | hir::ExprKind::Closure { .. } | hir::ExprKind::Ret(..) => {
true
}
_ => contains_exterior_struct_lit(expr),
}
}
fn print_expr_vec(&mut self, exprs: &[hir::Expr<'_>]) {
self.ibox(INDENT_UNIT);
self.word("[");
self.commasep_exprs(Inconsistent, exprs);
self.word("]");
self.end()
}
fn print_inline_const(&mut self, constant: &hir::ConstBlock) {
self.ibox(INDENT_UNIT);
self.word_space("const");
self.ann.nested(self, Nested::Body(constant.body));
self.end()
}
fn print_expr_repeat(&mut self, element: &hir::Expr<'_>, count: &hir::ArrayLen) {
self.ibox(INDENT_UNIT);
self.word("[");
self.print_expr(element);
self.word_space(";");
self.print_array_length(count);
self.word("]");
self.end()
}
fn print_expr_struct(
&mut self,
qpath: &hir::QPath<'_>,
fields: &[hir::ExprField<'_>],
wth: Option<&hir::Expr<'_>>,
) {
self.print_qpath(qpath, true);
self.word("{");
self.commasep_cmnt(Consistent, fields, |s, field| s.print_expr_field(field), |f| f.span);
if let Some(expr) = wth {
self.ibox(INDENT_UNIT);
if !fields.is_empty() {
self.word(",");
self.space();
}
self.word("..");
self.print_expr(expr);
self.end();
} else if !fields.is_empty() {
self.word(",");
}
self.word("}");
}
fn print_expr_field(&mut self, field: &hir::ExprField<'_>) {
if self.attrs(field.hir_id).is_empty() {
self.space();
}
self.cbox(INDENT_UNIT);
self.print_outer_attributes(&self.attrs(field.hir_id));
if !field.is_shorthand {
self.print_ident(field.ident);
self.word_space(":");
}
self.print_expr(&field.expr);
self.end()
}
fn print_expr_tup(&mut self, exprs: &[hir::Expr<'_>]) {
self.popen();
self.commasep_exprs(Inconsistent, exprs);
if exprs.len() == 1 {
self.word(",");
}
self.pclose()
}
fn print_expr_call(&mut self, func: &hir::Expr<'_>, args: &[hir::Expr<'_>]) {
let prec = match func.kind {
hir::ExprKind::Field(..) => parser::PREC_FORCE_PAREN,
_ => parser::PREC_POSTFIX,
};
self.print_expr_maybe_paren(func, prec);
self.print_call_post(args)
}
fn print_expr_method_call(
&mut self,
segment: &hir::PathSegment<'_>,
receiver: &hir::Expr<'_>,
args: &[hir::Expr<'_>],
) {
let base_args = args;
self.print_expr_maybe_paren(&receiver, parser::PREC_POSTFIX);
self.word(".");
self.print_ident(segment.ident);
let generic_args = segment.args();
if !generic_args.args.is_empty() || !generic_args.bindings.is_empty() {
self.print_generic_args(generic_args, true);
}
self.print_call_post(base_args)
}
fn print_expr_binary(&mut self, op: hir::BinOp, lhs: &hir::Expr<'_>, rhs: &hir::Expr<'_>) {
let assoc_op = bin_op_to_assoc_op(op.node);
let prec = assoc_op.precedence() as i8;
let fixity = assoc_op.fixity();
let (left_prec, right_prec) = match fixity {
Fixity::Left => (prec, prec + 1),
Fixity::Right => (prec + 1, prec),
Fixity::None => (prec + 1, prec + 1),
};
let left_prec = match (&lhs.kind, op.node) {
// These cases need parens: `x as i32 < y` has the parser thinking that `i32 < y` is
// the beginning of a path type. It starts trying to parse `x as (i32 < y ...` instead
// of `(x as i32) < ...`. We need to convince it _not_ to do that.
(&hir::ExprKind::Cast { .. }, hir::BinOpKind::Lt | hir::BinOpKind::Shl) => {
parser::PREC_FORCE_PAREN
}
(&hir::ExprKind::Let { .. }, _) if !parser::needs_par_as_let_scrutinee(prec) => {
parser::PREC_FORCE_PAREN
}
_ => left_prec,
};
self.print_expr_maybe_paren(lhs, left_prec);
self.space();
self.word_space(op.node.as_str());
self.print_expr_maybe_paren(rhs, right_prec)
}
fn print_expr_unary(&mut self, op: hir::UnOp, expr: &hir::Expr<'_>) {
self.word(op.as_str());
self.print_expr_maybe_paren(expr, parser::PREC_PREFIX)
}
fn print_expr_addr_of(
&mut self,
kind: hir::BorrowKind,
mutability: hir::Mutability,
expr: &hir::Expr<'_>,
) {
self.word("&");
match kind {
hir::BorrowKind::Ref => self.print_mutability(mutability, false),
hir::BorrowKind::Raw => {
self.word_nbsp("raw");
self.print_mutability(mutability, true);
}
}
self.print_expr_maybe_paren(expr, parser::PREC_PREFIX)
}
fn print_literal(&mut self, lit: &hir::Lit) {
self.maybe_print_comment(lit.span.lo());
self.word(lit.node.to_string())
}
fn print_inline_asm(&mut self, asm: &hir::InlineAsm<'_>) {
enum AsmArg<'a> {
Template(String),
Operand(&'a hir::InlineAsmOperand<'a>),
Options(ast::InlineAsmOptions),
}
let mut args = vec![AsmArg::Template(ast::InlineAsmTemplatePiece::to_string(asm.template))];
args.extend(asm.operands.iter().map(|(o, _)| AsmArg::Operand(o)));
if !asm.options.is_empty() {
args.push(AsmArg::Options(asm.options));
}
self.popen();
self.commasep(Consistent, &args, |s, arg| match *arg {
AsmArg::Template(ref template) => s.print_string(template, ast::StrStyle::Cooked),
AsmArg::Operand(op) => match *op {
hir::InlineAsmOperand::In { reg, ref expr } => {
s.word("in");
s.popen();
s.word(format!("{reg}"));
s.pclose();
s.space();
s.print_expr(expr);
}
hir::InlineAsmOperand::Out { reg, late, ref expr } => {
s.word(if late { "lateout" } else { "out" });
s.popen();
s.word(format!("{reg}"));
s.pclose();
s.space();
match expr {
Some(expr) => s.print_expr(expr),
None => s.word("_"),
}
}
hir::InlineAsmOperand::InOut { reg, late, ref expr } => {
s.word(if late { "inlateout" } else { "inout" });
s.popen();
s.word(format!("{reg}"));
s.pclose();
s.space();
s.print_expr(expr);
}
hir::InlineAsmOperand::SplitInOut { reg, late, ref in_expr, ref out_expr } => {
s.word(if late { "inlateout" } else { "inout" });
s.popen();
s.word(format!("{reg}"));
s.pclose();
s.space();
s.print_expr(in_expr);
s.space();
s.word_space("=>");
match out_expr {
Some(out_expr) => s.print_expr(out_expr),
None => s.word("_"),
}
}
hir::InlineAsmOperand::Const { ref anon_const } => {
s.word("const");
s.space();
s.print_anon_const(anon_const);
}
hir::InlineAsmOperand::SymFn { ref anon_const } => {
s.word("sym_fn");
s.space();
s.print_anon_const(anon_const);
}
hir::InlineAsmOperand::SymStatic { ref path, def_id: _ } => {
s.word("sym_static");
s.space();
s.print_qpath(path, true);
}
},
AsmArg::Options(opts) => {
s.word("options");
s.popen();
let mut options = vec![];
if opts.contains(ast::InlineAsmOptions::PURE) {
options.push("pure");
}
if opts.contains(ast::InlineAsmOptions::NOMEM) {
options.push("nomem");
}
if opts.contains(ast::InlineAsmOptions::READONLY) {
options.push("readonly");
}
if opts.contains(ast::InlineAsmOptions::PRESERVES_FLAGS) {
options.push("preserves_flags");
}
if opts.contains(ast::InlineAsmOptions::NORETURN) {
options.push("noreturn");
}
if opts.contains(ast::InlineAsmOptions::NOSTACK) {
options.push("nostack");
}
if opts.contains(ast::InlineAsmOptions::ATT_SYNTAX) {
options.push("att_syntax");
}
if opts.contains(ast::InlineAsmOptions::RAW) {
options.push("raw");
}
if opts.contains(ast::InlineAsmOptions::MAY_UNWIND) {
options.push("may_unwind");
}
s.commasep(Inconsistent, &options, |s, &opt| {
s.word(opt);
});
s.pclose();
}
});
self.pclose();
}
pub fn print_expr(&mut self, expr: &hir::Expr<'_>) {
self.maybe_print_comment(expr.span.lo());
self.print_outer_attributes(self.attrs(expr.hir_id));
self.ibox(INDENT_UNIT);
self.ann.pre(self, AnnNode::Expr(expr));
match expr.kind {
hir::ExprKind::Array(exprs) => {
self.print_expr_vec(exprs);
}
hir::ExprKind::ConstBlock(ref anon_const) => {
self.print_inline_const(anon_const);
}
hir::ExprKind::Repeat(element, ref count) => {
self.print_expr_repeat(element, count);
}
hir::ExprKind::Struct(qpath, fields, wth) => {
self.print_expr_struct(qpath, fields, wth);
}
hir::ExprKind::Tup(exprs) => {
self.print_expr_tup(exprs);
}
hir::ExprKind::Call(func, args) => {
self.print_expr_call(func, args);
}
hir::ExprKind::MethodCall(segment, receiver, args, _) => {
self.print_expr_method_call(segment, receiver, args);
}
hir::ExprKind::Binary(op, lhs, rhs) => {
self.print_expr_binary(op, lhs, rhs);
}
hir::ExprKind::Unary(op, expr) => {
self.print_expr_unary(op, expr);
}
hir::ExprKind::AddrOf(k, m, expr) => {
self.print_expr_addr_of(k, m, expr);
}
hir::ExprKind::Lit(ref lit) => {
self.print_literal(lit);
}
hir::ExprKind::Cast(expr, ty) => {
let prec = AssocOp::As.precedence() as i8;
self.print_expr_maybe_paren(expr, prec);
self.space();
self.word_space("as");
self.print_type(ty);
}
hir::ExprKind::Type(expr, ty) => {
self.word("type_ascribe!(");
self.ibox(0);
self.print_expr(expr);
self.word(",");
self.space_if_not_bol();
self.print_type(ty);
self.end();
self.word(")");
}
hir::ExprKind::DropTemps(init) => {
// Print `{`:
self.cbox(INDENT_UNIT);
self.ibox(0);
self.bopen();
// Print `let _t = $init;`:
let temp = Ident::from_str("_t");
self.print_local(Some(init), None, |this| this.print_ident(temp));
self.word(";");
// Print `_t`:
self.space_if_not_bol();
self.print_ident(temp);
// Print `}`:
self.bclose_maybe_open(expr.span, true);
}
hir::ExprKind::Let(&hir::Let { pat, ty, init, .. }) => {
self.print_let(pat, ty, init);
}
hir::ExprKind::If(test, blk, elseopt) => {
self.print_if(test, blk, elseopt);
}
hir::ExprKind::Loop(blk, opt_label, _, _) => {
if let Some(label) = opt_label {
self.print_ident(label.ident);
self.word_space(":");
}
self.head("loop");
self.print_block(blk);
}
hir::ExprKind::Match(expr, arms, _) => {
self.cbox(INDENT_UNIT);
self.ibox(INDENT_UNIT);
self.word_nbsp("match");
self.print_expr_as_cond(expr);
self.space();
self.bopen();
for arm in arms {
self.print_arm(arm);
}
self.bclose(expr.span);
}
hir::ExprKind::Closure(&hir::Closure {
binder,
constness,
capture_clause,
bound_generic_params,
fn_decl,
body,
fn_decl_span: _,
fn_arg_span: _,
movability: _,
def_id: _,
}) => {
self.print_closure_binder(binder, bound_generic_params);
self.print_constness(constness);
self.print_capture_clause(capture_clause);
self.print_closure_params(fn_decl, body);
self.space();
// This is a bare expression.
self.ann.nested(self, Nested::Body(body));
self.end(); // need to close a box
// A box will be closed by `print_expr`, but we didn't want an overall
// wrapper so we closed the corresponding opening. so create an
// empty box to satisfy the close.
self.ibox(0);
}
hir::ExprKind::Block(blk, opt_label) => {
if let Some(label) = opt_label {
self.print_ident(label.ident);
self.word_space(":");
}
// containing cbox, will be closed by print-block at `}`
self.cbox(INDENT_UNIT);
// head-box, will be closed by print-block after `{`
self.ibox(0);
self.print_block(blk);
}
hir::ExprKind::Assign(lhs, rhs, _) => {
let prec = AssocOp::Assign.precedence() as i8;
self.print_expr_maybe_paren(lhs, prec + 1);
self.space();
self.word_space("=");
self.print_expr_maybe_paren(rhs, prec);
}
hir::ExprKind::AssignOp(op, lhs, rhs) => {
let prec = AssocOp::Assign.precedence() as i8;
self.print_expr_maybe_paren(lhs, prec + 1);
self.space();
self.word(op.node.as_str());
self.word_space("=");
self.print_expr_maybe_paren(rhs, prec);
}
hir::ExprKind::Field(expr, ident) => {
self.print_expr_maybe_paren(expr, parser::PREC_POSTFIX);
self.word(".");
self.print_ident(ident);
}
hir::ExprKind::Index(expr, index, _) => {
self.print_expr_maybe_paren(expr, parser::PREC_POSTFIX);
self.word("[");
self.print_expr(index);
self.word("]");
}
hir::ExprKind::Path(ref qpath) => self.print_qpath(qpath, true),
hir::ExprKind::Break(destination, opt_expr) => {
self.word("break");
if let Some(label) = destination.label {
self.space();
self.print_ident(label.ident);
}
if let Some(expr) = opt_expr {
self.space();
self.print_expr_maybe_paren(expr, parser::PREC_JUMP);
}
}
hir::ExprKind::Continue(destination) => {
self.word("continue");
if let Some(label) = destination.label {
self.space();
self.print_ident(label.ident);
}
}
hir::ExprKind::Ret(result) => {
self.word("return");
if let Some(expr) = result {
self.word(" ");
self.print_expr_maybe_paren(expr, parser::PREC_JUMP);
}
}
hir::ExprKind::Become(result) => {
self.word("become");
self.word(" ");
self.print_expr_maybe_paren(result, parser::PREC_JUMP);
}
hir::ExprKind::InlineAsm(asm) => {
self.word("asm!");
self.print_inline_asm(asm);
}
hir::ExprKind::OffsetOf(container, ref fields) => {
self.word("offset_of!(");
self.print_type(container);
self.word(",");
self.space();
if let Some((&first, rest)) = fields.split_first() {
self.print_ident(first);
for &field in rest {
self.word(".");
self.print_ident(field);
}
}
self.word(")");
}
hir::ExprKind::Yield(expr, _) => {
self.word_space("yield");
self.print_expr_maybe_paren(expr, parser::PREC_JUMP);
}
hir::ExprKind::Err(_) => {
self.popen();
self.word("/*ERROR*/");
self.pclose();
}
}
self.ann.post(self, AnnNode::Expr(expr));
self.end()
}
pub fn print_local_decl(&mut self, loc: &hir::Local<'_>) {
self.print_pat(loc.pat);
if let Some(ty) = loc.ty {
self.word_space(":");
self.print_type(ty);
}
}
pub fn print_name(&mut self, name: Symbol) {
self.print_ident(Ident::with_dummy_span(name))
}
pub fn print_path<R>(&mut self, path: &hir::Path<'_, R>, colons_before_params: bool) {
self.maybe_print_comment(path.span.lo());
for (i, segment) in path.segments.iter().enumerate() {
if i > 0 {
self.word("::")
}
if segment.ident.name != kw::PathRoot {
self.print_ident(segment.ident);
self.print_generic_args(segment.args(), colons_before_params);
}
}
}
pub fn print_path_segment(&mut self, segment: &hir::PathSegment<'_>) {
if segment.ident.name != kw::PathRoot {
self.print_ident(segment.ident);
self.print_generic_args(segment.args(), false);
}
}
pub fn print_qpath(&mut self, qpath: &hir::QPath<'_>, colons_before_params: bool) {
match *qpath {
hir::QPath::Resolved(None, path) => self.print_path(path, colons_before_params),
hir::QPath::Resolved(Some(qself), path) => {
self.word("<");
self.print_type(qself);
self.space();
self.word_space("as");
for (i, segment) in path.segments[..path.segments.len() - 1].iter().enumerate() {
if i > 0 {
self.word("::")
}
if segment.ident.name != kw::PathRoot {
self.print_ident(segment.ident);
self.print_generic_args(segment.args(), colons_before_params);
}
}
self.word(">");
self.word("::");
let item_segment = path.segments.last().unwrap();
self.print_ident(item_segment.ident);
self.print_generic_args(item_segment.args(), colons_before_params)
}
hir::QPath::TypeRelative(qself, item_segment) => {
// If we've got a compound-qualified-path, let's push an additional pair of angle
// brackets, so that we pretty-print `<<A::B>::C>` as `<A::B>::C`, instead of just
// `A::B::C` (since the latter could be ambiguous to the user)
if let hir::TyKind::Path(hir::QPath::Resolved(None, _)) = qself.kind {
self.print_type(qself);
} else {
self.word("<");
self.print_type(qself);
self.word(">");
}
self.word("::");
self.print_ident(item_segment.ident);
self.print_generic_args(item_segment.args(), colons_before_params)
}
hir::QPath::LangItem(lang_item, span, _) => {
self.word("#[lang = \"");
self.print_ident(Ident::new(lang_item.name(), span));
self.word("\"]");
}
}
}
fn print_generic_args(
&mut self,
generic_args: &hir::GenericArgs<'_>,
colons_before_params: bool,
) {
match generic_args.parenthesized {
hir::GenericArgsParentheses::No => {
let start = if colons_before_params { "::<" } else { "<" };
let empty = Cell::new(true);
let start_or_comma = |this: &mut Self| {
if empty.get() {
empty.set(false);
this.word(start)
} else {
this.word_space(",")
}
};
let mut nonelided_generic_args: bool = false;
let elide_lifetimes = generic_args.args.iter().all(|arg| match arg {
GenericArg::Lifetime(lt) if lt.is_elided() => true,
GenericArg::Lifetime(_) => {
nonelided_generic_args = true;
false
}
_ => {
nonelided_generic_args = true;
true
}
});
if nonelided_generic_args {
start_or_comma(self);
self.commasep(Inconsistent, generic_args.args, |s, generic_arg| {
match generic_arg {
GenericArg::Lifetime(lt) if !elide_lifetimes => s.print_lifetime(lt),
GenericArg::Lifetime(_) => {}
GenericArg::Type(ty) => s.print_type(ty),
GenericArg::Const(ct) => s.print_anon_const(&ct.value),
GenericArg::Infer(_inf) => s.word("_"),
}
});
}
for binding in generic_args.bindings {
start_or_comma(self);
self.print_type_binding(binding);
}
if !empty.get() {
self.word(">")
}
}
hir::GenericArgsParentheses::ParenSugar => {
self.word("(");
self.commasep(Inconsistent, generic_args.inputs(), |s, ty| s.print_type(ty));
self.word(")");
self.space_if_not_bol();
self.word_space("->");
self.print_type(generic_args.bindings[0].ty());
}
hir::GenericArgsParentheses::ReturnTypeNotation => {
self.word("(..)");
}
}
}
pub fn print_type_binding(&mut self, binding: &hir::TypeBinding<'_>) {
self.print_ident(binding.ident);
self.print_generic_args(binding.gen_args, false);
self.space();
match binding.kind {
hir::TypeBindingKind::Equality { ref term } => {
self.word_space("=");
match term {
Term::Ty(ty) => self.print_type(ty),
Term::Const(ref c) => self.print_anon_const(c),
}
}
hir::TypeBindingKind::Constraint { bounds } => {
self.print_bounds(":", bounds);
}
}
}
pub fn print_pat(&mut self, pat: &hir::Pat<'_>) {
self.maybe_print_comment(pat.span.lo());
self.ann.pre(self, AnnNode::Pat(pat));
// Pat isn't normalized, but the beauty of it
// is that it doesn't matter
match pat.kind {
PatKind::Wild => self.word("_"),
PatKind::Binding(BindingAnnotation(by_ref, mutbl), _, ident, sub) => {
if by_ref == ByRef::Yes {
self.word_nbsp("ref");
}
if mutbl.is_mut() {
self.word_nbsp("mut");
}
self.print_ident(ident);
if let Some(p) = sub {
self.word("@");
self.print_pat(p);
}
}
PatKind::TupleStruct(ref qpath, elts, ddpos) => {
self.print_qpath(qpath, true);
self.popen();
if let Some(ddpos) = ddpos.as_opt_usize() {
self.commasep(Inconsistent, &elts[..ddpos], |s, p| s.print_pat(p));
if ddpos != 0 {
self.word_space(",");
}
self.word("..");
if ddpos != elts.len() {
self.word(",");
self.commasep(Inconsistent, &elts[ddpos..], |s, p| s.print_pat(p));
}
} else {
self.commasep(Inconsistent, elts, |s, p| s.print_pat(p));
}
self.pclose();
}
PatKind::Path(ref qpath) => {
self.print_qpath(qpath, true);
}
PatKind::Struct(ref qpath, fields, etc) => {
self.print_qpath(qpath, true);
self.nbsp();
self.word("{");
let empty = fields.is_empty() && !etc;
if !empty {
self.space();
}
self.commasep_cmnt(Consistent, &fields, |s, f| s.print_patfield(f), |f| f.pat.span);
if etc {
if !fields.is_empty() {
self.word_space(",");
}
self.word("..");
}
if !empty {
self.space();
}
self.word("}");
}
PatKind::Or(pats) => {
self.strsep("|", true, Inconsistent, pats, |s, p| s.print_pat(p));
}
PatKind::Tuple(elts, ddpos) => {
self.popen();
if let Some(ddpos) = ddpos.as_opt_usize() {
self.commasep(Inconsistent, &elts[..ddpos], |s, p| s.print_pat(p));
if ddpos != 0 {
self.word_space(",");
}
self.word("..");
if ddpos != elts.len() {
self.word(",");
self.commasep(Inconsistent, &elts[ddpos..], |s, p| s.print_pat(p));
}
} else {
self.commasep(Inconsistent, elts, |s, p| s.print_pat(p));
if elts.len() == 1 {
self.word(",");
}
}
self.pclose();
}
PatKind::Box(inner) => {
let is_range_inner = matches!(inner.kind, PatKind::Range(..));
self.word("box ");
if is_range_inner {
self.popen();
}
self.print_pat(inner);
if is_range_inner {
self.pclose();
}
}
PatKind::Ref(inner, mutbl) => {
let is_range_inner = matches!(inner.kind, PatKind::Range(..));
self.word("&");
self.word(mutbl.prefix_str());
if is_range_inner {
self.popen();
}
self.print_pat(inner);
if is_range_inner {
self.pclose();
}
}
PatKind::Lit(e) => self.print_expr(e),
PatKind::Range(begin, end, end_kind) => {
if let Some(expr) = begin {
self.print_expr(expr);
}
match end_kind {
RangeEnd::Included => self.word("..."),
RangeEnd::Excluded => self.word(".."),
}
if let Some(expr) = end {
self.print_expr(expr);
}
}
PatKind::Slice(before, slice, after) => {
self.word("[");
self.commasep(Inconsistent, before, |s, p| s.print_pat(p));
if let Some(p) = slice {
if !before.is_empty() {
self.word_space(",");
}
if let PatKind::Wild = p.kind {
// Print nothing.
} else {
self.print_pat(p);
}
self.word("..");
if !after.is_empty() {
self.word_space(",");
}
}
self.commasep(Inconsistent, after, |s, p| s.print_pat(p));
self.word("]");
}
}
self.ann.post(self, AnnNode::Pat(pat))
}
pub fn print_patfield(&mut self, field: &hir::PatField<'_>) {
if self.attrs(field.hir_id).is_empty() {
self.space();
}
self.cbox(INDENT_UNIT);
self.print_outer_attributes(&self.attrs(field.hir_id));
if !field.is_shorthand {
self.print_ident(field.ident);
self.word_nbsp(":");
}
self.print_pat(field.pat);
self.end();
}
pub fn print_param(&mut self, arg: &hir::Param<'_>) {
self.print_outer_attributes(self.attrs(arg.hir_id));
self.print_pat(arg.pat);
}
pub fn print_arm(&mut self, arm: &hir::Arm<'_>) {
// I have no idea why this check is necessary, but here it
// is :(
if self.attrs(arm.hir_id).is_empty() {
self.space();
}
self.cbox(INDENT_UNIT);
self.ann.pre(self, AnnNode::Arm(arm));
self.ibox(0);
self.print_outer_attributes(self.attrs(arm.hir_id));
self.print_pat(arm.pat);
self.space();
if let Some(ref g) = arm.guard {
match *g {
hir::Guard::If(e) => {
self.word_space("if");
self.print_expr(e);
self.space();
}
hir::Guard::IfLet(&hir::Let { pat, ty, init, .. }) => {
self.word_nbsp("if");
self.print_let(pat, ty, init);
}
}
}
self.word_space("=>");
match arm.body.kind {
hir::ExprKind::Block(blk, opt_label) => {
if let Some(label) = opt_label {
self.print_ident(label.ident);
self.word_space(":");
}
// the block will close the pattern's ibox
self.print_block_unclosed(blk);
// If it is a user-provided unsafe block, print a comma after it
if let hir::BlockCheckMode::UnsafeBlock(hir::UnsafeSource::UserProvided) = blk.rules
{
self.word(",");
}
}
_ => {
self.end(); // close the ibox for the pattern
self.print_expr(arm.body);
self.word(",");
}
}
self.ann.post(self, AnnNode::Arm(arm));
self.end() // close enclosing cbox
}
pub fn print_fn(
&mut self,
decl: &hir::FnDecl<'_>,
header: hir::FnHeader,
name: Option<Symbol>,
generics: &hir::Generics<'_>,
arg_names: &[Ident],
body_id: Option<hir::BodyId>,
) {
self.print_fn_header_info(header);
if let Some(name) = name {
self.nbsp();
self.print_name(name);
}
self.print_generic_params(generics.params);
self.popen();
let mut i = 0;
// Make sure we aren't supplied *both* `arg_names` and `body_id`.
assert!(arg_names.is_empty() || body_id.is_none());
self.commasep(Inconsistent, decl.inputs, |s, ty| {
s.ibox(INDENT_UNIT);
if let Some(arg_name) = arg_names.get(i) {
s.word(arg_name.to_string());
s.word(":");
s.space();
} else if let Some(body_id) = body_id {
s.ann.nested(s, Nested::BodyParamPat(body_id, i));
s.word(":");
s.space();
}
i += 1;
s.print_type(ty);
s.end()
});
if decl.c_variadic {
self.word(", ...");
}
self.pclose();
self.print_fn_output(decl);
self.print_where_clause(generics)
}
fn print_closure_params(&mut self, decl: &hir::FnDecl<'_>, body_id: hir::BodyId) {
self.word("|");
let mut i = 0;
self.commasep(Inconsistent, decl.inputs, |s, ty| {
s.ibox(INDENT_UNIT);
s.ann.nested(s, Nested::BodyParamPat(body_id, i));
i += 1;
if let hir::TyKind::Infer = ty.kind {
// Print nothing.
} else {
s.word(":");
s.space();
s.print_type(ty);
}
s.end();
});
self.word("|");
if let hir::FnRetTy::DefaultReturn(..) = decl.output {
return;
}
self.space_if_not_bol();
self.word_space("->");
match decl.output {
hir::FnRetTy::Return(ty) => {
self.print_type(ty);
self.maybe_print_comment(ty.span.lo());
}
hir::FnRetTy::DefaultReturn(..) => unreachable!(),
}
}
pub fn print_capture_clause(&mut self, capture_clause: hir::CaptureBy) {
match capture_clause {
hir::CaptureBy::Value => self.word_space("move"),
hir::CaptureBy::Ref => {}
}
}
pub fn print_closure_binder(
&mut self,
binder: hir::ClosureBinder,
generic_params: &[GenericParam<'_>],
) {
let generic_params = generic_params
.iter()
.filter(|p| {
matches!(
p,
GenericParam {
kind: GenericParamKind::Lifetime { kind: LifetimeParamKind::Explicit },
..
}
)
})
.collect::<Vec<_>>();
match binder {
hir::ClosureBinder::Default => {}
// we need to distinguish `|...| {}` from `for<> |...| {}` as `for<>` adds additional restrictions
hir::ClosureBinder::For { .. } if generic_params.is_empty() => self.word("for<>"),
hir::ClosureBinder::For { .. } => {
self.word("for");
self.word("<");
self.commasep(Inconsistent, &generic_params, |s, param| {
s.print_generic_param(param)
});
self.word(">");
self.nbsp();
}
}
}
pub fn print_bounds<'b>(
&mut self,
prefix: &'static str,
bounds: impl IntoIterator<Item = &'b hir::GenericBound<'b>>,
) {
let mut first = true;
for bound in bounds {
if first {
self.word(prefix);
}
if !(first && prefix.is_empty()) {
self.nbsp();
}
if first {
first = false;
} else {
self.word_space("+");
}
match bound {
GenericBound::Trait(tref, modifier) => {
if modifier == &TraitBoundModifier::Maybe {
self.word("?");
}
self.print_poly_trait_ref(tref);
}
GenericBound::LangItemTrait(lang_item, span, ..) => {
self.word("#[lang = \"");
self.print_ident(Ident::new(lang_item.name(), *span));
self.word("\"]");
}
GenericBound::Outlives(lt) => {
self.print_lifetime(lt);
}
}
}
}
pub fn print_generic_params(&mut self, generic_params: &[GenericParam<'_>]) {
if !generic_params.is_empty() {
self.word("<");
self.commasep(Inconsistent, generic_params, |s, param| s.print_generic_param(param));
self.word(">");
}
}
pub fn print_generic_param(&mut self, param: &GenericParam<'_>) {
if let GenericParamKind::Const { .. } = param.kind {
self.word_space("const");
}
self.print_ident(param.name.ident());
match param.kind {
GenericParamKind::Lifetime { .. } => {}
GenericParamKind::Type { default, .. } => {
if let Some(default) = default {
self.space();
self.word_space("=");
self.print_type(default);
}
}
GenericParamKind::Const { ty, ref default } => {
self.word_space(":");
self.print_type(ty);
if let Some(default) = default {
self.space();
self.word_space("=");
self.print_anon_const(default);
}
}
}
}
pub fn print_lifetime(&mut self, lifetime: &hir::Lifetime) {
self.print_ident(lifetime.ident)
}
pub fn print_where_clause(&mut self, generics: &hir::Generics<'_>) {
if generics.predicates.is_empty() {
return;
}
self.space();
self.word_space("where");
for (i, predicate) in generics.predicates.iter().enumerate() {
if i != 0 {
self.word_space(",");
}
match *predicate {
hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
bound_generic_params,
bounded_ty,
bounds,
..
}) => {
self.print_formal_generic_params(bound_generic_params);
self.print_type(bounded_ty);
self.print_bounds(":", bounds);
}
hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
ref lifetime,
bounds,
..
}) => {
self.print_lifetime(lifetime);
self.word(":");
for (i, bound) in bounds.iter().enumerate() {
match bound {
GenericBound::Outlives(lt) => {
self.print_lifetime(lt);
}
_ => panic!(),
}
if i != 0 {
self.word(":");
}
}
}
hir::WherePredicate::EqPredicate(hir::WhereEqPredicate {
lhs_ty, rhs_ty, ..
}) => {
self.print_type(lhs_ty);
self.space();
self.word_space("=");
self.print_type(rhs_ty);
}
}
}
}
pub fn print_mutability(&mut self, mutbl: hir::Mutability, print_const: bool) {
match mutbl {
hir::Mutability::Mut => self.word_nbsp("mut"),
hir::Mutability::Not => {
if print_const {
self.word_nbsp("const")
}
}
}
}
pub fn print_mt(&mut self, mt: &hir::MutTy<'_>, print_const: bool) {
self.print_mutability(mt.mutbl, print_const);
self.print_type(mt.ty);
}
pub fn print_fn_output(&mut self, decl: &hir::FnDecl<'_>) {
if let hir::FnRetTy::DefaultReturn(..) = decl.output {
return;
}
self.space_if_not_bol();
self.ibox(INDENT_UNIT);
self.word_space("->");
match decl.output {
hir::FnRetTy::DefaultReturn(..) => unreachable!(),
hir::FnRetTy::Return(ty) => self.print_type(ty),
}
self.end();
if let hir::FnRetTy::Return(output) = decl.output {
self.maybe_print_comment(output.span.lo());
}
}
pub fn print_ty_fn(
&mut self,
abi: Abi,
unsafety: hir::Unsafety,
decl: &hir::FnDecl<'_>,
name: Option<Symbol>,
generic_params: &[hir::GenericParam<'_>],
arg_names: &[Ident],
) {
self.ibox(INDENT_UNIT);
self.print_formal_generic_params(generic_params);
let generics = hir::Generics::empty();
self.print_fn(
decl,
hir::FnHeader {
unsafety,
abi,
constness: hir::Constness::NotConst,
asyncness: hir::IsAsync::NotAsync,
},
name,
generics,
arg_names,
None,
);
self.end();
}
pub fn print_fn_header_info(&mut self, header: hir::FnHeader) {
self.print_constness(header.constness);
match header.asyncness {
hir::IsAsync::NotAsync => {}
hir::IsAsync::Async => self.word_nbsp("async"),
}
self.print_unsafety(header.unsafety);
if header.abi != Abi::Rust {
self.word_nbsp("extern");
self.word_nbsp(header.abi.to_string());
}
self.word("fn")
}
pub fn print_constness(&mut self, s: hir::Constness) {
match s {
hir::Constness::NotConst => {}
hir::Constness::Const => self.word_nbsp("const"),
}
}
pub fn print_unsafety(&mut self, s: hir::Unsafety) {
match s {
hir::Unsafety::Normal => {}
hir::Unsafety::Unsafe => self.word_nbsp("unsafe"),
}
}
pub fn print_is_auto(&mut self, s: hir::IsAuto) {
match s {
hir::IsAuto::Yes => self.word_nbsp("auto"),
hir::IsAuto::No => {}
}
}
}
/// Does this expression require a semicolon to be treated
/// as a statement? The negation of this: 'can this expression
/// be used as a statement without a semicolon' -- is used
/// as an early-bail-out in the parser so that, for instance,
/// if true {...} else {...}
/// |x| 5
/// isn't parsed as (if true {...} else {...} | x) | 5
//
// Duplicated from `parse::classify`, but adapted for the HIR.
fn expr_requires_semi_to_be_stmt(e: &hir::Expr<'_>) -> bool {
!matches!(
e.kind,
hir::ExprKind::If(..)
| hir::ExprKind::Match(..)
| hir::ExprKind::Block(..)
| hir::ExprKind::Loop(..)
)
}
/// This statement requires a semicolon after it.
/// note that in one case (stmt_semi), we've already
/// seen the semicolon, and thus don't need another.
fn stmt_ends_with_semi(stmt: &hir::StmtKind<'_>) -> bool {
match *stmt {
hir::StmtKind::Local(_) => true,
hir::StmtKind::Item(_) => false,
hir::StmtKind::Expr(e) => expr_requires_semi_to_be_stmt(e),
hir::StmtKind::Semi(..) => false,
}
}
fn bin_op_to_assoc_op(op: hir::BinOpKind) -> AssocOp {
use crate::hir::BinOpKind::*;
match op {
Add => AssocOp::Add,
Sub => AssocOp::Subtract,
Mul => AssocOp::Multiply,
Div => AssocOp::Divide,
Rem => AssocOp::Modulus,
And => AssocOp::LAnd,
Or => AssocOp::LOr,
BitXor => AssocOp::BitXor,
BitAnd => AssocOp::BitAnd,
BitOr => AssocOp::BitOr,
Shl => AssocOp::ShiftLeft,
Shr => AssocOp::ShiftRight,
Eq => AssocOp::Equal,
Lt => AssocOp::Less,
Le => AssocOp::LessEqual,
Ne => AssocOp::NotEqual,
Ge => AssocOp::GreaterEqual,
Gt => AssocOp::Greater,
}
}
/// Expressions that syntactically contain an "exterior" struct literal, i.e., not surrounded by any
/// parens or other delimiters, e.g., `X { y: 1 }`, `X { y: 1 }.method()`, `foo == X { y: 1 }` and
/// `X { y: 1 } == foo` all do, but `(X { y: 1 }) == foo` does not.
fn contains_exterior_struct_lit(value: &hir::Expr<'_>) -> bool {
match value.kind {
hir::ExprKind::Struct(..) => true,
hir::ExprKind::Assign(lhs, rhs, _)
| hir::ExprKind::AssignOp(_, lhs, rhs)
| hir::ExprKind::Binary(_, lhs, rhs) => {
// `X { y: 1 } + X { y: 2 }`
contains_exterior_struct_lit(lhs) || contains_exterior_struct_lit(rhs)
}
hir::ExprKind::Unary(_, x)
| hir::ExprKind::Cast(x, _)
| hir::ExprKind::Type(x, _)
| hir::ExprKind::Field(x, _)
| hir::ExprKind::Index(x, _, _) => {
// `&X { y: 1 }, X { y: 1 }.y`
contains_exterior_struct_lit(x)
}
hir::ExprKind::MethodCall(_, receiver, ..) => {
// `X { y: 1 }.bar(...)`
contains_exterior_struct_lit(receiver)
}
_ => false,
}
}