blob: 39363bf250a7da6feff9b6110074f5e5a104becb [file] [log] [blame]
//! epoll support.
//!
//! This is an experiment, and it isn't yet clear whether epoll is the right
//! level of abstraction at which to introduce safety. But it works fairly well
//! in simple examples 🙂.
//!
//! # Examples
//!
//! ```no_run
//! # #[cfg(feature = "net")]
//! # fn main() -> std::io::Result<()> {
//! use rustix::event::epoll;
//! use rustix::fd::AsFd;
//! use rustix::io::{ioctl_fionbio, read, write};
//! use rustix::net::{
//! accept, bind_v4, listen, socket, AddressFamily, Ipv4Addr, SocketAddrV4, SocketType,
//! };
//! use std::collections::HashMap;
//! use std::os::unix::io::AsRawFd;
//!
//! // Create a socket and listen on it.
//! let listen_sock = socket(AddressFamily::INET, SocketType::STREAM, None)?;
//! bind_v4(&listen_sock, &SocketAddrV4::new(Ipv4Addr::LOCALHOST, 0))?;
//! listen(&listen_sock, 1)?;
//!
//! // Create an epoll object. Using `Owning` here means the epoll object will
//! // take ownership of the file descriptors registered with it.
//! let epoll = epoll::create(epoll::CreateFlags::CLOEXEC)?;
//!
//! // Register the socket with the epoll object.
//! epoll::add(
//! &epoll,
//! &listen_sock,
//! epoll::EventData::new_u64(1),
//! epoll::EventFlags::IN,
//! )?;
//!
//! // Keep track of the sockets we've opened.
//! let mut next_id = epoll::EventData::new_u64(2);
//! let mut sockets = HashMap::new();
//!
//! // Process events.
//! let mut event_list = epoll::EventVec::with_capacity(4);
//! loop {
//! epoll::wait(&epoll, &mut event_list, -1)?;
//! for event in &event_list {
//! let target = event.data;
//! if target.u64() == 1 {
//! // Accept a new connection, set it to non-blocking, and
//! // register to be notified when it's ready to write to.
//! let conn_sock = accept(&listen_sock)?;
//! ioctl_fionbio(&conn_sock, true)?;
//! epoll::add(
//! &epoll,
//! &conn_sock,
//! next_id,
//! epoll::EventFlags::OUT | epoll::EventFlags::ET,
//! )?;
//!
//! // Keep track of the socket.
//! sockets.insert(next_id, conn_sock);
//! next_id = epoll::EventData::new_u64(next_id.u64() + 1);
//! } else {
//! // Write a message to the stream and then unregister it.
//! let target = sockets.remove(&target).unwrap();
//! write(&target, b"hello\n")?;
//! let _ = epoll::delete(&epoll, &target)?;
//! }
//! }
//! }
//! # }
//! # #[cfg(not(feature = "net"))]
//! # fn main() {}
//! ```
use crate::backend::c;
#[cfg(feature = "alloc")]
use crate::backend::conv::ret_u32;
use crate::backend::conv::{ret, ret_owned_fd};
use crate::fd::{AsFd, AsRawFd, OwnedFd};
use crate::io;
use crate::utils::as_mut_ptr;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use bitflags::bitflags;
use core::ffi::c_void;
use core::hash::{Hash, Hasher};
use core::ptr::null_mut;
use core::slice;
bitflags! {
/// `EPOLL_*` for use with [`new`].
#[repr(transparent)]
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub struct CreateFlags: u32 {
/// `EPOLL_CLOEXEC`
const CLOEXEC = bitcast!(c::EPOLL_CLOEXEC);
/// <https://docs.rs/bitflags/latest/bitflags/#externally-defined-flags>
const _ = !0;
}
}
bitflags! {
/// `EPOLL*` for use with [`add`].
#[repr(transparent)]
#[derive(Default, Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub struct EventFlags: u32 {
/// `EPOLLIN`
const IN = bitcast!(c::EPOLLIN);
/// `EPOLLOUT`
const OUT = bitcast!(c::EPOLLOUT);
/// `EPOLLPRI`
const PRI = bitcast!(c::EPOLLPRI);
/// `EPOLLERR`
const ERR = bitcast!(c::EPOLLERR);
/// `EPOLLHUP`
const HUP = bitcast!(c::EPOLLHUP);
/// `EPOLLRDNORM`
const RDNORM = bitcast!(c::EPOLLRDNORM);
/// `EPOLLRDBAND`
const RDBAND = bitcast!(c::EPOLLRDBAND);
/// `EPOLLWRNORM`
const WRNORM = bitcast!(c::EPOLLWRNORM);
/// `EPOLLWRBAND`
const WRBAND = bitcast!(c::EPOLLWRBAND);
/// `EPOLLMSG`
const MSG = bitcast!(c::EPOLLMSG);
/// `EPOLLRDHUP`
const RDHUP = bitcast!(c::EPOLLRDHUP);
/// `EPOLLET`
const ET = bitcast!(c::EPOLLET);
/// `EPOLLONESHOT`
const ONESHOT = bitcast!(c::EPOLLONESHOT);
/// `EPOLLWAKEUP`
const WAKEUP = bitcast!(c::EPOLLWAKEUP);
/// `EPOLLEXCLUSIVE`
#[cfg(not(target_os = "android"))]
const EXCLUSIVE = bitcast!(c::EPOLLEXCLUSIVE);
/// <https://docs.rs/bitflags/latest/bitflags/#externally-defined-flags>
const _ = !0;
}
}
/// `epoll_create1(flags)`—Creates a new epoll object.
///
/// Use the [`CreateFlags::CLOEXEC`] flag to prevent the resulting file
/// descriptor from being implicitly passed across `exec` boundaries.
#[inline]
#[doc(alias = "epoll_create1")]
pub fn create(flags: CreateFlags) -> io::Result<OwnedFd> {
// SAFETY: We're calling `epoll_create1` via FFI and we know how it
// behaves.
unsafe { ret_owned_fd(c::epoll_create1(bitflags_bits!(flags))) }
}
/// `epoll_ctl(self, EPOLL_CTL_ADD, data, event)`—Adds an element to an epoll
/// object.
///
/// This registers interest in any of the events set in `events` occurring on
/// the file descriptor associated with `data`.
///
/// If [`delete`] is not called on the I/O source passed into this function
/// before the I/O source is `close`d, then the `epoll` will act as if the I/O
/// source is still registered with it. This can lead to spurious events being
/// returned from [`wait`]. If a file descriptor is an
/// `Arc<dyn SystemResource>`, then `epoll` can be thought to maintain a
/// `Weak<dyn SystemResource>` to the file descriptor.
#[doc(alias = "epoll_ctl")]
pub fn add(
epoll: impl AsFd,
source: impl AsFd,
data: EventData,
event_flags: EventFlags,
) -> io::Result<()> {
// SAFETY: We're calling `epoll_ctl` via FFI and we know how it
// behaves. We use our own `Event` struct instead of libc's because
// ours preserves pointer provenance instead of just using a `u64`,
// and we have tests elsehwere for layout equivalence.
unsafe {
let raw_fd = source.as_fd().as_raw_fd();
ret(c::epoll_ctl(
epoll.as_fd().as_raw_fd(),
c::EPOLL_CTL_ADD,
raw_fd,
as_mut_ptr(&mut Event {
flags: event_flags,
data,
})
.cast(),
))
}
}
/// `epoll_ctl(self, EPOLL_CTL_MOD, target, event)`—Modifies an element in a
/// given epoll object.
///
/// This sets the events of interest with `target` to `events`.
#[doc(alias = "epoll_ctl")]
pub fn modify(
epoll: impl AsFd,
source: impl AsFd,
data: EventData,
event_flags: EventFlags,
) -> io::Result<()> {
let raw_fd = source.as_fd().as_raw_fd();
// SAFETY: We're calling `epoll_ctl` via FFI and we know how it
// behaves. We use our own `Event` struct instead of libc's because
// ours preserves pointer provenance instead of just using a `u64`,
// and we have tests elsehwere for layout equivalence.
unsafe {
ret(c::epoll_ctl(
epoll.as_fd().as_raw_fd(),
c::EPOLL_CTL_MOD,
raw_fd,
as_mut_ptr(&mut Event {
flags: event_flags,
data,
})
.cast(),
))
}
}
/// `epoll_ctl(self, EPOLL_CTL_DEL, target, NULL)`—Removes an element in a
/// given epoll object.
#[doc(alias = "epoll_ctl")]
pub fn delete(epoll: impl AsFd, source: impl AsFd) -> io::Result<()> {
// SAFETY: We're calling `epoll_ctl` via FFI and we know how it
// behaves.
unsafe {
let raw_fd = source.as_fd().as_raw_fd();
ret(c::epoll_ctl(
epoll.as_fd().as_raw_fd(),
c::EPOLL_CTL_DEL,
raw_fd,
null_mut(),
))
}
}
/// `epoll_wait(self, events, timeout)`—Waits for registered events of
/// interest.
///
/// For each event of interest, an element is written to `events`. On
/// success, this returns the number of written elements.
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub fn wait(epoll: impl AsFd, event_list: &mut EventVec, timeout: c::c_int) -> io::Result<()> {
// SAFETY: We're calling `epoll_wait` via FFI and we know how it
// behaves.
unsafe {
event_list.events.set_len(0);
let nfds = ret_u32(c::epoll_wait(
epoll.as_fd().as_raw_fd(),
event_list.events.as_mut_ptr().cast::<c::epoll_event>(),
event_list.events.capacity().try_into().unwrap_or(i32::MAX),
timeout,
))?;
event_list.events.set_len(nfds as usize);
}
Ok(())
}
/// An iterator over the `Event`s in an `EventVec`.
pub struct Iter<'a> {
/// Use `Copied` to copy the struct, since `Event` is `packed` on some
/// platforms, and it's common for users to directly destructure it,
/// which would lead to errors about forming references to packed fields.
iter: core::iter::Copied<slice::Iter<'a, Event>>,
}
impl<'a> Iterator for Iter<'a> {
type Item = Event;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
/// A record of an event that occurred.
#[repr(C)]
#[cfg_attr(
any(
all(
target_arch = "x86",
not(target_env = "musl"),
not(target_os = "android"),
),
target_arch = "x86_64",
),
repr(packed)
)]
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
pub struct Event {
/// Which specific event(s) occurred.
pub flags: EventFlags,
/// User data.
pub data: EventData,
}
/// Data associated with an [`Event`]. This can either be a 64-bit integer
/// value or a pointer which preserves pointer provenance.
#[repr(C)]
#[derive(Copy, Clone)]
pub union EventData {
/// A 64-bit integer value.
as_u64: u64,
/// A `*mut c_void` which preserves pointer provenance, extended to be
/// 64-bit so that if we read the value as a `u64` union field, we don't
/// get uninitialized memory.
sixty_four_bit_pointer: SixtyFourBitPointer,
}
impl EventData {
/// Construct a new value containing a `u64`.
#[inline]
pub const fn new_u64(value: u64) -> Self {
Self { as_u64: value }
}
/// Construct a new value containing a `*mut c_void`.
#[inline]
pub const fn new_ptr(value: *mut c_void) -> Self {
Self {
sixty_four_bit_pointer: SixtyFourBitPointer {
pointer: value,
#[cfg(target_pointer_width = "32")]
_padding: 0,
},
}
}
/// Return the value as a `u64`.
///
/// If the stored value was a pointer, the pointer is zero-extended to a
/// `u64`.
#[inline]
pub fn u64(self) -> u64 {
unsafe { self.as_u64 }
}
/// Return the value as a `*mut c_void`.
///
/// If the stored value was a `u64`, the least-significant bits of the
/// `u64` are returned as a pointer value.
#[inline]
pub fn ptr(self) -> *mut c_void {
unsafe { self.sixty_four_bit_pointer.pointer }
}
}
impl PartialEq for EventData {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.u64() == other.u64()
}
}
impl Eq for EventData {}
impl Hash for EventData {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
self.u64().hash(state)
}
}
#[repr(C)]
#[derive(Copy, Clone)]
struct SixtyFourBitPointer {
#[cfg(target_endian = "big")]
#[cfg(target_pointer_width = "32")]
_padding: u32,
pointer: *mut c_void,
#[cfg(target_endian = "little")]
#[cfg(target_pointer_width = "32")]
_padding: u32,
}
/// A vector of `Event`s, plus context for interpreting them.
#[cfg(feature = "alloc")]
pub struct EventVec {
events: Vec<Event>,
}
#[cfg(feature = "alloc")]
impl EventVec {
/// Constructs an `EventVec` from raw pointer, length, and capacity.
///
/// # Safety
///
/// This function calls [`Vec::from_raw_parts`] with its arguments.
///
/// [`Vec::from_raw_parts`]: https://doc.rust-lang.org/stable/std/vec/struct.Vec.html#method.from_raw_parts
#[inline]
pub unsafe fn from_raw_parts(ptr: *mut Event, len: usize, capacity: usize) -> Self {
Self {
events: Vec::from_raw_parts(ptr, len, capacity),
}
}
/// Constructs an `EventVec` with memory for `capacity` `Event`s.
#[inline]
pub fn with_capacity(capacity: usize) -> Self {
Self {
events: Vec::with_capacity(capacity),
}
}
/// Returns the current `Event` capacity of this `EventVec`.
#[inline]
pub fn capacity(&self) -> usize {
self.events.capacity()
}
/// Reserves enough memory for at least `additional` more `Event`s.
#[inline]
pub fn reserve(&mut self, additional: usize) {
self.events.reserve(additional);
}
/// Reserves enough memory for exactly `additional` more `Event`s.
#[inline]
pub fn reserve_exact(&mut self, additional: usize) {
self.events.reserve_exact(additional);
}
/// Clears all the `Events` out of this `EventVec`.
#[inline]
pub fn clear(&mut self) {
self.events.clear();
}
/// Shrinks the capacity of this `EventVec` as much as possible.
#[inline]
pub fn shrink_to_fit(&mut self) {
self.events.shrink_to_fit();
}
/// Returns an iterator over the `Event`s in this `EventVec`.
#[inline]
pub fn iter(&self) -> Iter<'_> {
Iter {
iter: self.events.iter().copied(),
}
}
/// Returns the number of `Event`s logically contained in this `EventVec`.
#[inline]
pub fn len(&mut self) -> usize {
self.events.len()
}
/// Tests whether this `EventVec` is logically empty.
#[inline]
pub fn is_empty(&mut self) -> bool {
self.events.is_empty()
}
}
#[cfg(feature = "alloc")]
impl<'a> IntoIterator for &'a EventVec {
type IntoIter = Iter<'a>;
type Item = Event;
#[inline]
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
#[test]
fn test_epoll_layouts() {
check_renamed_type!(Event, epoll_event);
check_renamed_type!(Event, epoll_event);
check_renamed_struct_renamed_field!(Event, epoll_event, flags, events);
check_renamed_struct_renamed_field!(Event, epoll_event, data, u64);
}