blob: 3411048562bc6786fd1d742eb8e1b4da6e262a48 [file] [log] [blame]
use bitflags::bitflags as inner_bitflags;
use core::{mem, ops::Deref, slice};
macro_rules! bitflags {
(
$(#[$outer:meta])*
pub struct $BitFlags:ident: $T:ty {
$(
$(#[$inner:ident $($args:tt)*])*
const $Flag:ident = $value:expr;
)+
}
) => {
// First, use the inner bitflags
inner_bitflags! {
#[derive(Default)]
$(#[$outer])*
pub struct $BitFlags: $T {
$(
$(#[$inner $($args)*])*
const $Flag = $value;
)+
}
}
// Secondly, re-export all inner constants
// (`pub use self::Struct::*` doesn't work)
$(
$(#[$inner $($args)*])*
pub const $Flag: $BitFlags = $BitFlags::$Flag;
)+
}
}
pub const CLOCK_REALTIME: usize = 1;
pub const CLOCK_MONOTONIC: usize = 4;
bitflags! {
pub struct EventFlags: usize {
const EVENT_NONE = 0;
const EVENT_READ = 1;
const EVENT_WRITE = 2;
}
}
pub const F_DUPFD: usize = 0;
pub const F_GETFD: usize = 1;
pub const F_SETFD: usize = 2;
pub const F_GETFL: usize = 3;
pub const F_SETFL: usize = 4;
pub const FUTEX_WAIT: usize = 0;
pub const FUTEX_WAKE: usize = 1;
pub const FUTEX_REQUEUE: usize = 2;
pub const FUTEX_WAIT64: usize = 3;
bitflags! {
pub struct MapFlags: usize {
const PROT_NONE = 0x0000_0000;
const PROT_EXEC = 0x0001_0000;
const PROT_WRITE = 0x0002_0000;
const PROT_READ = 0x0004_0000;
const MAP_SHARED = 0x0001;
const MAP_PRIVATE = 0x0002;
/// Only accepted for mmap2(2).
const MAP_FIXED = 0x0004;
const MAP_FIXED_NOREPLACE = 0x000C;
}
}
pub const MODE_TYPE: u16 = 0xF000;
pub const MODE_DIR: u16 = 0x4000;
pub const MODE_FILE: u16 = 0x8000;
pub const MODE_SYMLINK: u16 = 0xA000;
pub const MODE_FIFO: u16 = 0x1000;
pub const MODE_CHR: u16 = 0x2000;
pub const MODE_PERM: u16 = 0x0FFF;
pub const MODE_SETUID: u16 = 0o4000;
pub const MODE_SETGID: u16 = 0o2000;
pub const O_RDONLY: usize = 0x0001_0000;
pub const O_WRONLY: usize = 0x0002_0000;
pub const O_RDWR: usize = 0x0003_0000;
pub const O_NONBLOCK: usize = 0x0004_0000;
pub const O_APPEND: usize = 0x0008_0000;
pub const O_SHLOCK: usize = 0x0010_0000;
pub const O_EXLOCK: usize = 0x0020_0000;
pub const O_ASYNC: usize = 0x0040_0000;
pub const O_FSYNC: usize = 0x0080_0000;
pub const O_CLOEXEC: usize = 0x0100_0000;
pub const O_CREAT: usize = 0x0200_0000;
pub const O_TRUNC: usize = 0x0400_0000;
pub const O_EXCL: usize = 0x0800_0000;
pub const O_DIRECTORY: usize = 0x1000_0000;
pub const O_STAT: usize = 0x2000_0000;
pub const O_SYMLINK: usize = 0x4000_0000;
pub const O_NOFOLLOW: usize = 0x8000_0000;
pub const O_ACCMODE: usize = O_RDONLY | O_WRONLY | O_RDWR;
bitflags! {
pub struct PhysmapFlags: usize {
const PHYSMAP_WRITE = 0x0000_0001;
const PHYSMAP_WRITE_COMBINE = 0x0000_0002;
const PHYSMAP_NO_CACHE = 0x0000_0004;
}
}
bitflags! {
/// Extra flags for [`physalloc2`] or [`physalloc3`].
///
/// [`physalloc2`]: ../call/fn.physalloc2.html
/// [`physalloc3`]: ../call/fn.physalloc3.html
pub struct PhysallocFlags: usize {
/// Only allocate memory within the 32-bit physical memory space. This is necessary for
/// some devices may not support 64-bit memory.
const SPACE_32 = 0x0000_0001;
/// The frame that will be allocated, is going to reside anywhere in 64-bit space. This
/// flag is redundant for the most part, except when overriding some other default.
const SPACE_64 = 0x0000_0002;
/// Do a "partial allocation", which means that not all of the frames specified in the
/// frame count `size` actually have to be allocated. This means that if the allocator was
/// unable to find a physical memory range large enough, it can instead return whatever
/// range it decides is optimal. Thus, instead of letting one driver get an expensive
/// 128MiB physical memory range when the physical memory has become fragmented, and
/// failing, it can instead be given a more optimal range. If the device supports
/// scatter-gather lists, then the driver only has to allocate more ranges, and the device
/// will do vectored I/O.
///
/// PARTIAL_ALLOC supports different allocation strategies, refer to
/// [`Optimal`], [`GreatestRange`].
///
/// [`Optimal`]: ./enum.PartialAllocStrategy.html
/// [`GreatestRange`]: ./enum.PartialAllocStrategy.html
const PARTIAL_ALLOC = 0x0000_0004;
}
}
/// The bitmask of the partial allocation strategy. Currently four different strategies are
/// supported. If [`PARTIAL_ALLOC`] is not set, this bitmask is no longer reserved.
pub const PARTIAL_ALLOC_STRATEGY_MASK: usize = 0x0003_0000;
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
#[repr(usize)]
pub enum PartialAllocStrategy {
/// The allocator decides itself the size of the memory range, based on e.g. free memory ranges
/// and other processes which require large physical memory chunks.
Optimal = 0x0001_0000,
/// The allocator returns the absolute greatest range it can find.
GreatestRange = 0x0002_0000,
/// The allocator returns the first range that fits the minimum count, without searching extra.
Greedy = 0x0003_0000,
}
impl Default for PartialAllocStrategy {
fn default() -> Self {
Self::Optimal
}
}
impl PartialAllocStrategy {
pub fn from_raw(raw: usize) -> Option<Self> {
match raw {
0x0001_0000 => Some(Self::Optimal),
0x0002_0000 => Some(Self::GreatestRange),
0x0003_0000 => Some(Self::Greedy),
_ => None,
}
}
}
// The top 48 bits of PTRACE_* are reserved, for now
bitflags! {
pub struct PtraceFlags: u64 {
/// Stop before a syscall is handled. Send PTRACE_FLAG_IGNORE to not
/// handle the syscall.
const PTRACE_STOP_PRE_SYSCALL = 0x0000_0000_0000_0001;
/// Stop after a syscall is handled.
const PTRACE_STOP_POST_SYSCALL = 0x0000_0000_0000_0002;
/// Stop after exactly one instruction. TODO: This may not handle
/// fexec/signal boundaries. Should it?
const PTRACE_STOP_SINGLESTEP = 0x0000_0000_0000_0004;
/// Stop before a signal is handled. Send PTRACE_FLAG_IGNORE to not
/// handle signal.
const PTRACE_STOP_SIGNAL = 0x0000_0000_0000_0008;
/// Stop on a software breakpoint, such as the int3 instruction for
/// x86_64.
const PTRACE_STOP_BREAKPOINT = 0x0000_0000_0000_0010;
/// Stop just before exiting for good.
const PTRACE_STOP_EXIT = 0x0000_0000_0000_0020;
const PTRACE_STOP_MASK = 0x0000_0000_0000_00FF;
/// Sent when a child is cloned, giving you the opportunity to trace it.
/// If you don't catch this, the child is started as normal.
const PTRACE_EVENT_CLONE = 0x0000_0000_0000_0100;
/// Sent when current-addrspace is changed, allowing the tracer to reopen the memory file.
const PTRACE_EVENT_ADDRSPACE_SWITCH = 0x0000_0000_0000_0200;
const PTRACE_EVENT_MASK = 0x0000_0000_0000_0F00;
/// Special meaning, depending on the event. Usually, when fired before
/// an action, it will skip performing that action.
const PTRACE_FLAG_IGNORE = 0x0000_0000_0000_1000;
const PTRACE_FLAG_MASK = 0x0000_0000_0000_F000;
}
}
impl Deref for PtraceFlags {
type Target = [u8];
fn deref(&self) -> &Self::Target {
// Same as to_ne_bytes but in-place
unsafe {
slice::from_raw_parts(
&self.bits as *const _ as *const u8,
mem::size_of::<u64>()
)
}
}
}
pub const SEEK_SET: usize = 0;
pub const SEEK_CUR: usize = 1;
pub const SEEK_END: usize = 2;
pub const SIGHUP: usize = 1;
pub const SIGINT: usize = 2;
pub const SIGQUIT: usize = 3;
pub const SIGILL: usize = 4;
pub const SIGTRAP: usize = 5;
pub const SIGABRT: usize = 6;
pub const SIGBUS: usize = 7;
pub const SIGFPE: usize = 8;
pub const SIGKILL: usize = 9;
pub const SIGUSR1: usize = 10;
pub const SIGSEGV: usize = 11;
pub const SIGUSR2: usize = 12;
pub const SIGPIPE: usize = 13;
pub const SIGALRM: usize = 14;
pub const SIGTERM: usize = 15;
pub const SIGSTKFLT: usize= 16;
pub const SIGCHLD: usize = 17;
pub const SIGCONT: usize = 18;
pub const SIGSTOP: usize = 19;
pub const SIGTSTP: usize = 20;
pub const SIGTTIN: usize = 21;
pub const SIGTTOU: usize = 22;
pub const SIGURG: usize = 23;
pub const SIGXCPU: usize = 24;
pub const SIGXFSZ: usize = 25;
pub const SIGVTALRM: usize= 26;
pub const SIGPROF: usize = 27;
pub const SIGWINCH: usize = 28;
pub const SIGIO: usize = 29;
pub const SIGPWR: usize = 30;
pub const SIGSYS: usize = 31;
pub const SIG_DFL: usize = 0;
pub const SIG_IGN: usize = 1;
pub const SIG_BLOCK: usize = 0;
pub const SIG_UNBLOCK: usize = 1;
pub const SIG_SETMASK: usize = 2;
bitflags! {
pub struct SigActionFlags: usize {
const SA_NOCLDSTOP = 0x00000001;
const SA_NOCLDWAIT = 0x00000002;
const SA_SIGINFO = 0x00000004;
const SA_RESTORER = 0x04000000;
const SA_ONSTACK = 0x08000000;
const SA_RESTART = 0x10000000;
const SA_NODEFER = 0x40000000;
const SA_RESETHAND = 0x80000000;
}
}
bitflags! {
pub struct WaitFlags: usize {
const WNOHANG = 0x01;
const WUNTRACED = 0x02;
const WCONTINUED = 0x08;
}
}
pub const ADDRSPACE_OP_MMAP: usize = 0;
pub const ADDRSPACE_OP_MUNMAP: usize = 1;
pub const ADDRSPACE_OP_MPROTECT: usize = 2;
pub const ADDRSPACE_OP_TRANSFER: usize = 3;
/// True if status indicates the child is stopped.
pub fn wifstopped(status: usize) -> bool {
(status & 0xff) == 0x7f
}
/// If wifstopped(status), the signal that stopped the child.
pub fn wstopsig(status: usize) -> usize {
(status >> 8) & 0xff
}
/// True if status indicates the child continued after a stop.
pub fn wifcontinued(status: usize) -> bool {
status == 0xffff
}
/// True if STATUS indicates termination by a signal.
pub fn wifsignaled(status: usize) -> bool {
((status & 0x7f) + 1) as i8 >= 2
}
/// If wifsignaled(status), the terminating signal.
pub fn wtermsig(status: usize) -> usize {
status & 0x7f
}
/// True if status indicates normal termination.
pub fn wifexited(status: usize) -> bool {
wtermsig(status) == 0
}
/// If wifexited(status), the exit status.
pub fn wexitstatus(status: usize) -> usize {
(status >> 8) & 0xff
}
/// True if status indicates a core dump was created.
pub fn wcoredump(status: usize) -> bool {
(status & 0x80) != 0
}