blob: 283c98c010d1fd07608a45033c6f20eb8c5c7948 [file] [log] [blame]
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Fallback implementation using global locks.
//
// This implementation uses seqlock for global locks.
//
// This is basically based on global locks in crossbeam-utils's `AtomicCell`,
// but seqlock is implemented in a way that does not depend on UB
// (see comments in optimistic_read method in atomic! macro for details).
//
// Note that we cannot use a lock per atomic type, since the in-memory representation of the atomic
// type and the value type must be the same.
#![cfg_attr(
any(
all(
target_arch = "x86_64",
not(portable_atomic_no_cmpxchg16b_target_feature),
not(portable_atomic_no_outline_atomics),
not(any(target_env = "sgx", miri)),
),
all(
target_arch = "powerpc64",
feature = "fallback",
not(portable_atomic_no_outline_atomics),
portable_atomic_outline_atomics, // TODO(powerpc64): currently disabled by default
any(
all(
target_os = "linux",
any(
target_env = "gnu",
all(
any(target_env = "musl", target_env = "ohos"),
not(target_feature = "crt-static"),
),
portable_atomic_outline_atomics,
),
),
target_os = "android",
target_os = "freebsd",
),
not(any(miri, portable_atomic_sanitize_thread)),
),
all(
target_arch = "arm",
not(portable_atomic_no_asm),
any(target_os = "linux", target_os = "android"),
not(portable_atomic_no_outline_atomics),
),
),
allow(dead_code)
)]
#[macro_use]
pub(crate) mod utils;
// Use "wide" sequence lock if the pointer width <= 32 for preventing its counter against wrap
// around.
//
// In narrow architectures (pointer width <= 16), the counter is still <= 32-bit and may be
// vulnerable to wrap around. But it's mostly okay, since in such a primitive hardware, the
// counter will not be increased that fast.
//
// Some 64-bit architectures have ABI with 32-bit pointer width (e.g., x86_64 X32 ABI,
// aarch64 ILP32 ABI, mips64 N32 ABI). On those targets, AtomicU64 is available and fast,
// so use it to implement normal sequence lock.
cfg_has_fast_atomic_64! {
mod seq_lock;
}
cfg_no_fast_atomic_64! {
#[path = "seq_lock_wide.rs"]
mod seq_lock;
}
use core::{cell::UnsafeCell, mem, sync::atomic::Ordering};
use seq_lock::{SeqLock, SeqLockWriteGuard};
use utils::CachePadded;
// Some 64-bit architectures have ABI with 32-bit pointer width (e.g., x86_64 X32 ABI,
// aarch64 ILP32 ABI, mips64 N32 ABI). On those targets, AtomicU64 is fast,
// so use it to reduce chunks of byte-wise atomic memcpy.
use seq_lock::{AtomicChunk, Chunk};
// Adapted from https://github.com/crossbeam-rs/crossbeam/blob/crossbeam-utils-0.8.7/crossbeam-utils/src/atomic/atomic_cell.rs#L969-L1016.
#[inline]
#[must_use]
fn lock(addr: usize) -> &'static SeqLock {
// The number of locks is a prime number because we want to make sure `addr % LEN` gets
// dispersed across all locks.
//
// crossbeam-utils 0.8.7 uses 97 here but does not use CachePadded,
// so the actual concurrency level will be smaller.
const LEN: usize = 67;
#[allow(clippy::declare_interior_mutable_const)]
const L: CachePadded<SeqLock> = CachePadded::new(SeqLock::new());
static LOCKS: [CachePadded<SeqLock>; LEN] = [
L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,
L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,
L, L, L, L, L, L, L,
];
// If the modulus is a constant number, the compiler will use crazy math to transform this into
// a sequence of cheap arithmetic operations rather than using the slow modulo instruction.
&LOCKS[addr % LEN]
}
macro_rules! atomic {
($atomic_type:ident, $int_type:ident, $align:literal) => {
#[repr(C, align($align))]
pub(crate) struct $atomic_type {
v: UnsafeCell<$int_type>,
}
impl $atomic_type {
const LEN: usize = mem::size_of::<$int_type>() / mem::size_of::<Chunk>();
#[inline]
unsafe fn chunks(&self) -> &[AtomicChunk; Self::LEN] {
static_assert!($atomic_type::LEN > 1);
static_assert!(mem::size_of::<$int_type>() % mem::size_of::<Chunk>() == 0);
// SAFETY: the caller must uphold the safety contract for `chunks`.
unsafe { &*(self.v.get() as *const $int_type as *const [AtomicChunk; Self::LEN]) }
}
#[inline]
fn optimistic_read(&self) -> $int_type {
// Using `MaybeUninit<[usize; Self::LEN]>` here doesn't change codegen: https://godbolt.org/z/86f8s733M
let mut dst: [Chunk; Self::LEN] = [0; Self::LEN];
// SAFETY:
// - There are no threads that perform non-atomic concurrent write operations.
// - There is no writer that updates the value using atomic operations of different granularity.
//
// If the atomic operation is not used here, it will cause a data race
// when `write` performs concurrent write operation.
// Such a data race is sometimes considered virtually unproblematic
// in SeqLock implementations:
//
// - https://github.com/Amanieu/seqlock/issues/2
// - https://github.com/crossbeam-rs/crossbeam/blob/crossbeam-utils-0.8.7/crossbeam-utils/src/atomic/atomic_cell.rs#L1111-L1116
// - https://rust-lang.zulipchat.com/#narrow/stream/136281-t-lang.2Fwg-unsafe-code-guidelines/topic/avoiding.20UB.20due.20to.20races.20by.20discarding.20result.3F
//
// However, in our use case, the implementation that loads/stores value as
// chunks of usize is enough fast and sound, so we use that implementation.
//
// See also atomic-memcpy crate, a generic implementation of this pattern:
// https://github.com/taiki-e/atomic-memcpy
let chunks = unsafe { self.chunks() };
for i in 0..Self::LEN {
dst[i] = chunks[i].load(Ordering::Relaxed);
}
// SAFETY: integers are plain old data types so we can always transmute to them.
unsafe { mem::transmute::<[Chunk; Self::LEN], $int_type>(dst) }
}
#[inline]
fn read(&self, _guard: &SeqLockWriteGuard<'static>) -> $int_type {
// This calls optimistic_read that can return teared value, but the resulting value
// is guaranteed not to be teared because we hold the lock to write.
self.optimistic_read()
}
#[inline]
fn write(&self, val: $int_type, _guard: &SeqLockWriteGuard<'static>) {
// SAFETY: integers are plain old data types so we can always transmute them to arrays of integers.
let val = unsafe { mem::transmute::<$int_type, [Chunk; Self::LEN]>(val) };
// SAFETY:
// - The guard guarantees that we hold the lock to write.
// - There are no threads that perform non-atomic concurrent read or write operations.
//
// See optimistic_read for the reason that atomic operations are used here.
let chunks = unsafe { self.chunks() };
for i in 0..Self::LEN {
chunks[i].store(val[i], Ordering::Relaxed);
}
}
}
// Send is implicitly implemented.
// SAFETY: any data races are prevented by the lock and atomic operation.
unsafe impl Sync for $atomic_type {}
impl_default_no_fetch_ops!($atomic_type, $int_type);
impl_default_bit_opts!($atomic_type, $int_type);
impl $atomic_type {
#[inline]
pub(crate) const fn new(v: $int_type) -> Self {
Self { v: UnsafeCell::new(v) }
}
#[inline]
pub(crate) fn is_lock_free() -> bool {
Self::is_always_lock_free()
}
#[inline]
pub(crate) const fn is_always_lock_free() -> bool {
false
}
#[inline]
pub(crate) fn get_mut(&mut self) -> &mut $int_type {
// SAFETY: the mutable reference guarantees unique ownership.
// (UnsafeCell::get_mut requires Rust 1.50)
unsafe { &mut *self.v.get() }
}
#[inline]
pub(crate) fn into_inner(self) -> $int_type {
self.v.into_inner()
}
#[inline]
#[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)]
pub(crate) fn load(&self, order: Ordering) -> $int_type {
crate::utils::assert_load_ordering(order);
let lock = lock(self.v.get() as usize);
// Try doing an optimistic read first.
if let Some(stamp) = lock.optimistic_read() {
let val = self.optimistic_read();
if lock.validate_read(stamp) {
return val;
}
}
// Grab a regular write lock so that writers don't starve this load.
let guard = lock.write();
let val = self.read(&guard);
// The value hasn't been changed. Drop the guard without incrementing the stamp.
guard.abort();
val
}
#[inline]
#[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)]
pub(crate) fn store(&self, val: $int_type, order: Ordering) {
crate::utils::assert_store_ordering(order);
let guard = lock(self.v.get() as usize).write();
self.write(val, &guard)
}
#[inline]
pub(crate) fn swap(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let prev = self.read(&guard);
self.write(val, &guard);
prev
}
#[inline]
#[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)]
pub(crate) fn compare_exchange(
&self,
current: $int_type,
new: $int_type,
success: Ordering,
failure: Ordering,
) -> Result<$int_type, $int_type> {
crate::utils::assert_compare_exchange_ordering(success, failure);
let guard = lock(self.v.get() as usize).write();
let prev = self.read(&guard);
if prev == current {
self.write(new, &guard);
Ok(prev)
} else {
// The value hasn't been changed. Drop the guard without incrementing the stamp.
guard.abort();
Err(prev)
}
}
#[inline]
#[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)]
pub(crate) fn compare_exchange_weak(
&self,
current: $int_type,
new: $int_type,
success: Ordering,
failure: Ordering,
) -> Result<$int_type, $int_type> {
self.compare_exchange(current, new, success, failure)
}
#[inline]
pub(crate) fn fetch_add(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let prev = self.read(&guard);
self.write(prev.wrapping_add(val), &guard);
prev
}
#[inline]
pub(crate) fn fetch_sub(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let prev = self.read(&guard);
self.write(prev.wrapping_sub(val), &guard);
prev
}
#[inline]
pub(crate) fn fetch_and(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let prev = self.read(&guard);
self.write(prev & val, &guard);
prev
}
#[inline]
pub(crate) fn fetch_nand(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let prev = self.read(&guard);
self.write(!(prev & val), &guard);
prev
}
#[inline]
pub(crate) fn fetch_or(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let prev = self.read(&guard);
self.write(prev | val, &guard);
prev
}
#[inline]
pub(crate) fn fetch_xor(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let prev = self.read(&guard);
self.write(prev ^ val, &guard);
prev
}
#[inline]
pub(crate) fn fetch_max(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let prev = self.read(&guard);
self.write(core::cmp::max(prev, val), &guard);
prev
}
#[inline]
pub(crate) fn fetch_min(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let prev = self.read(&guard);
self.write(core::cmp::min(prev, val), &guard);
prev
}
#[inline]
pub(crate) fn fetch_not(&self, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let prev = self.read(&guard);
self.write(!prev, &guard);
prev
}
#[inline]
pub(crate) fn not(&self, order: Ordering) {
self.fetch_not(order);
}
#[inline]
pub(crate) fn fetch_neg(&self, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let prev = self.read(&guard);
self.write(prev.wrapping_neg(), &guard);
prev
}
#[inline]
pub(crate) fn neg(&self, order: Ordering) {
self.fetch_neg(order);
}
#[inline]
pub(crate) const fn as_ptr(&self) -> *mut $int_type {
self.v.get()
}
}
};
}
#[cfg_attr(portable_atomic_no_cfg_target_has_atomic, cfg(any(test, portable_atomic_no_atomic_64)))]
#[cfg_attr(
not(portable_atomic_no_cfg_target_has_atomic),
cfg(any(test, not(target_has_atomic = "64")))
)]
cfg_no_fast_atomic_64! {
atomic!(AtomicI64, i64, 8);
atomic!(AtomicU64, u64, 8);
}
atomic!(AtomicI128, i128, 16);
atomic!(AtomicU128, u128, 16);
#[cfg(test)]
mod tests {
use super::*;
cfg_no_fast_atomic_64! {
test_atomic_int!(i64);
test_atomic_int!(u64);
}
test_atomic_int!(i128);
test_atomic_int!(u128);
// load/store/swap implementation is not affected by signedness, so it is
// enough to test only unsigned types.
cfg_no_fast_atomic_64! {
stress_test!(u64);
}
stress_test!(u128);
}