blob: 32528a706e9bcae6464f7b983618fa84b50f7c76 [file] [log] [blame]
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Atomic{I,U}128 implementation on AArch64.
//
// There are a few ways to implement 128-bit atomic operations in AArch64.
//
// - LDXP/STXP loop (DW LL/SC)
// - CASP (DWCAS) added as FEAT_LSE (mandatory from armv8.1-a)
// - LDP/STP (DW load/store) if FEAT_LSE2 (optional from armv8.2-a, mandatory from armv8.4-a) is available
// - LDIAPP/STILP (DW acquire-load/release-store) added as FEAT_LRCPC3 (optional from armv8.9-a/armv9.4-a) (if FEAT_LSE2 is also available)
// - LDCLRP/LDSETP/SWPP (DW RMW) added as FEAT_LSE128 (optional from armv9.4-a)
//
// If outline-atomics is not enabled and FEAT_LSE is not available at
// compile-time, we use LDXP/STXP loop.
// If outline-atomics is enabled and FEAT_LSE is not available at
// compile-time, we use CASP for CAS if FEAT_LSE is available
// at run-time, otherwise, use LDXP/STXP loop.
// If FEAT_LSE is available at compile-time, we use CASP for load/store/CAS/RMW.
// However, when portable_atomic_ll_sc_rmw cfg is set, use LDXP/STXP loop instead of CASP
// loop for RMW (by default, it is set on Apple hardware; see build script for details).
// If FEAT_LSE2 is available at compile-time, we use LDP/STP for load/store.
// If FEAT_LSE128 is available at compile-time, we use LDCLRP/LDSETP/SWPP for fetch_and/fetch_or/swap/{release,seqcst}-store.
// If FEAT_LSE2 and FEAT_LRCPC3 are available at compile-time, we use LDIAPP/STILP for acquire-load/release-store.
//
// Note: FEAT_LSE2 doesn't imply FEAT_LSE. FEAT_LSE128 implies FEAT_LSE but not FEAT_LSE2.
//
// Note that we do not separate LL and SC into separate functions, but handle
// them within a single asm block. This is because it is theoretically possible
// for the compiler to insert operations that might clear the reservation between
// LL and SC. Considering the type of operations we are providing and the fact
// that [progress64](https://github.com/ARM-software/progress64) uses such code,
// this is probably not a problem for aarch64, but it seems that aarch64 doesn't
// guarantee it and hexagon is the only architecture with hardware guarantees
// that such code works. See also:
//
// - https://yarchive.net/comp/linux/cmpxchg_ll_sc_portability.html
// - https://lists.llvm.org/pipermail/llvm-dev/2016-May/099490.html
// - https://lists.llvm.org/pipermail/llvm-dev/2018-June/123993.html
//
// Also, even when using a CAS loop to implement atomic RMW, include the loop itself
// in the asm block because it is more efficient for some codegen backends.
// https://github.com/rust-lang/compiler-builtins/issues/339#issuecomment-1191260474
//
// Note: On Miri and ThreadSanitizer which do not support inline assembly, we don't use
// this module and use intrinsics.rs instead.
//
// Refs:
// - ARM Compiler armasm User Guide
// https://developer.arm.com/documentation/dui0801/latest
// - Arm A-profile A64 Instruction Set Architecture
// https://developer.arm.com/documentation/ddi0602/latest
// - Arm Architecture Reference Manual for A-profile architecture
// https://developer.arm.com/documentation/ddi0487/latest
// - atomic-maybe-uninit https://github.com/taiki-e/atomic-maybe-uninit
//
// Generated asm:
// - aarch64 https://godbolt.org/z/5Mz1E33vz
// - aarch64 msvc https://godbolt.org/z/P53d1MsGY
// - aarch64 (+lse) https://godbolt.org/z/qvaE8n79K
// - aarch64 msvc (+lse) https://godbolt.org/z/dj4aYerfr
// - aarch64 (+lse,+lse2) https://godbolt.org/z/1E15jjxah
// - aarch64 (+lse,+lse2,+rcpc3) https://godbolt.org/z/YreM4n84o
// - aarch64 (+lse2,+lse128) https://godbolt.org/z/Kfeqs54ox
// - aarch64 (+lse2,+lse128,+rcpc3) https://godbolt.org/z/n6zhjE77s
include!("macros.rs");
// On musl with static linking, it seems that getauxval is not always available.
// See detect/auxv.rs for more.
#[cfg(not(portable_atomic_no_outline_atomics))]
#[cfg(any(
test,
not(all(
any(target_feature = "lse2", portable_atomic_target_feature = "lse2"),
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
)),
))]
#[cfg(any(
all(
target_os = "linux",
any(
target_env = "gnu",
all(any(target_env = "musl", target_env = "ohos"), not(target_feature = "crt-static")),
portable_atomic_outline_atomics,
),
),
target_os = "android",
target_os = "freebsd",
))]
#[path = "detect/auxv.rs"]
mod detect;
#[cfg(not(portable_atomic_no_outline_atomics))]
#[cfg_attr(
target_os = "netbsd",
cfg(any(
test,
not(all(
any(target_feature = "lse2", portable_atomic_target_feature = "lse2"),
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
)),
))
)]
#[cfg_attr(
target_os = "openbsd",
cfg(any(test, not(any(target_feature = "lse", portable_atomic_target_feature = "lse"))))
)]
#[cfg(any(target_os = "netbsd", target_os = "openbsd"))]
#[path = "detect/aarch64_aa64reg.rs"]
mod detect;
#[cfg(not(portable_atomic_no_outline_atomics))]
#[cfg(any(test, not(any(target_feature = "lse", portable_atomic_target_feature = "lse"))))]
#[cfg(target_os = "fuchsia")]
#[path = "detect/aarch64_fuchsia.rs"]
mod detect;
#[cfg(not(portable_atomic_no_outline_atomics))]
#[cfg(any(test, not(any(target_feature = "lse", portable_atomic_target_feature = "lse"))))]
#[cfg(target_os = "windows")]
#[path = "detect/aarch64_windows.rs"]
mod detect;
// test only
#[cfg(test)]
#[cfg(not(qemu))]
#[cfg(not(valgrind))]
#[cfg(not(portable_atomic_no_outline_atomics))]
#[cfg(any(target_os = "linux", target_os = "android", target_os = "freebsd"))]
#[path = "detect/aarch64_aa64reg.rs"]
mod detect_aa64reg;
#[cfg(test)]
#[cfg(not(portable_atomic_no_outline_atomics))]
#[cfg(target_os = "macos")]
#[path = "detect/aarch64_macos.rs"]
mod detect_macos;
#[cfg(not(portable_atomic_no_asm))]
use core::arch::asm;
use core::sync::atomic::Ordering;
use crate::utils::{Pair, U128};
#[cfg(any(
target_feature = "lse",
portable_atomic_target_feature = "lse",
not(portable_atomic_no_outline_atomics),
))]
macro_rules! debug_assert_lse {
() => {
#[cfg(all(
not(portable_atomic_no_outline_atomics),
any(
all(
target_os = "linux",
any(
target_env = "gnu",
all(
any(target_env = "musl", target_env = "ohos"),
not(target_feature = "crt-static"),
),
portable_atomic_outline_atomics,
),
),
target_os = "android",
target_os = "freebsd",
target_os = "netbsd",
target_os = "openbsd",
target_os = "fuchsia",
target_os = "windows",
),
))]
#[cfg(not(any(target_feature = "lse", portable_atomic_target_feature = "lse")))]
{
debug_assert!(detect::detect().has_lse());
}
};
}
#[rustfmt::skip]
#[cfg(any(
target_feature = "lse2",
portable_atomic_target_feature = "lse2",
not(portable_atomic_no_outline_atomics),
))]
macro_rules! debug_assert_lse2 {
() => {
#[cfg(all(
not(portable_atomic_no_outline_atomics),
any(
all(
target_os = "linux",
any(
target_env = "gnu",
all(
any(target_env = "musl", target_env = "ohos"),
not(target_feature = "crt-static"),
),
portable_atomic_outline_atomics,
),
),
target_os = "android",
target_os = "freebsd",
target_os = "netbsd",
// These don't support detection of FEAT_LSE2.
// target_os = "openbsd",
// target_os = "fuchsia",
// target_os = "windows",
),
))]
#[cfg(not(any(target_feature = "lse2", portable_atomic_target_feature = "lse2")))]
{
debug_assert!(detect::detect().has_lse2());
}
};
}
// Refs: https://developer.arm.com/documentation/100067/0612/armclang-Integrated-Assembler/AArch32-Target-selection-directives?lang=en
//
// This is similar to #[target_feature(enable = "lse")], except that there are
// no compiler guarantees regarding (un)inlining, and the scope is within an asm
// block rather than a function. We use this directive to support outline-atomics
// on pre-1.61 rustc (aarch64_target_feature stabilized in Rust 1.61).
//
// The .arch_extension directive is effective until the end of the assembly block and
// is not propagated to subsequent code, so the end_lse macro is unneeded.
// https://godbolt.org/z/4oMEW8vWc
// https://github.com/torvalds/linux/commit/e0d5896bd356cd577f9710a02d7a474cdf58426b
// https://github.com/torvalds/linux/commit/dd1f6308b28edf0452dd5dc7877992903ec61e69
// (It seems GCC effectively ignores this directive and always allow FEAT_LSE instructions: https://godbolt.org/z/W9W6rensG)
//
// The .arch directive has a similar effect, but we don't use it due to the following issue:
// https://github.com/torvalds/linux/commit/dd1f6308b28edf0452dd5dc7877992903ec61e69
//
// This is also needed for compatibility with rustc_codegen_cranelift:
// https://github.com/rust-lang/rustc_codegen_cranelift/issues/1400#issuecomment-1774599775
//
// Note: If FEAT_LSE is not available at compile-time, we must guarantee that
// the function that uses it is not inlined into a function where it is not
// clear whether FEAT_LSE is available. Otherwise, (even if we checked whether
// FEAT_LSE is available at run-time) optimizations that reorder its
// instructions across the if condition might introduce undefined behavior.
// (see also https://rust-lang.github.io/rfcs/2045-target-feature.html#safely-inlining-target_feature-functions-on-more-contexts)
// However, our code uses the ifunc helper macro that works with function pointers,
// so we don't have to worry about this unless calling without helper macro.
#[cfg(any(
target_feature = "lse",
portable_atomic_target_feature = "lse",
not(portable_atomic_no_outline_atomics),
))]
macro_rules! start_lse {
() => {
".arch_extension lse"
};
}
#[cfg(target_endian = "little")]
macro_rules! select_le_or_be {
($le:expr, $be:expr) => {
$le
};
}
#[cfg(target_endian = "big")]
macro_rules! select_le_or_be {
($le:expr, $be:expr) => {
$be
};
}
macro_rules! atomic_rmw {
($op:ident, $order:ident) => {
atomic_rmw!($op, $order, write = $order)
};
($op:ident, $order:ident, write = $write:ident) => {
match $order {
Ordering::Relaxed => $op!("", "", ""),
Ordering::Acquire => $op!("a", "", ""),
Ordering::Release => $op!("", "l", ""),
Ordering::AcqRel => $op!("a", "l", ""),
// In MSVC environments, SeqCst stores/writes needs fences after writes.
// https://reviews.llvm.org/D141748
#[cfg(target_env = "msvc")]
Ordering::SeqCst if $write == Ordering::SeqCst => $op!("a", "l", "dmb ish"),
// AcqRel and SeqCst RMWs are equivalent in non-MSVC environments.
Ordering::SeqCst => $op!("a", "l", ""),
_ => unreachable!("{:?}", $order),
}
};
}
// cfg guarantee that the CPU supports FEAT_LSE2.
#[cfg(any(target_feature = "lse2", portable_atomic_target_feature = "lse2"))]
use _atomic_load_ldp as atomic_load;
#[cfg(not(any(target_feature = "lse2", portable_atomic_target_feature = "lse2")))]
#[inline]
unsafe fn atomic_load(src: *mut u128, order: Ordering) -> u128 {
#[inline]
unsafe fn atomic_load_no_lse2(src: *mut u128, order: Ordering) -> u128 {
#[cfg(any(target_feature = "lse", portable_atomic_target_feature = "lse"))]
// SAFETY: the caller must uphold the safety contract.
// cfg guarantee that the CPU supports FEAT_LSE.
unsafe {
_atomic_load_casp(src, order)
}
#[cfg(not(any(target_feature = "lse", portable_atomic_target_feature = "lse")))]
// SAFETY: the caller must uphold the safety contract.
unsafe {
_atomic_load_ldxp_stxp(src, order)
}
}
#[cfg(not(all(
not(portable_atomic_no_outline_atomics),
any(
all(
target_os = "linux",
any(
target_env = "gnu",
all(
any(target_env = "musl", target_env = "ohos"),
not(target_feature = "crt-static"),
),
portable_atomic_outline_atomics,
),
),
target_os = "android",
target_os = "freebsd",
target_os = "netbsd",
// These don't support detection of FEAT_LSE2.
// target_os = "openbsd",
// target_os = "fuchsia",
// target_os = "windows",
),
)))]
// SAFETY: the caller must uphold the safety contract.
unsafe {
atomic_load_no_lse2(src, order)
}
#[cfg(all(
not(portable_atomic_no_outline_atomics),
any(
all(
target_os = "linux",
any(
target_env = "gnu",
all(
any(target_env = "musl", target_env = "ohos"),
not(target_feature = "crt-static"),
),
portable_atomic_outline_atomics,
),
),
target_os = "android",
target_os = "freebsd",
target_os = "netbsd",
// These don't support detection of FEAT_LSE2.
// target_os = "openbsd",
// target_os = "fuchsia",
// target_os = "windows",
),
))]
{
fn_alias! {
// inline(never) is just a hint and also not strictly necessary
// because we use ifunc helper macro, but used for clarity.
#[inline(never)]
unsafe fn(src: *mut u128) -> u128;
atomic_load_lse2_relaxed = _atomic_load_ldp(Ordering::Relaxed);
atomic_load_lse2_acquire = _atomic_load_ldp(Ordering::Acquire);
atomic_load_lse2_seqcst = _atomic_load_ldp(Ordering::SeqCst);
}
fn_alias! {
unsafe fn(src: *mut u128) -> u128;
atomic_load_no_lse2_relaxed = atomic_load_no_lse2(Ordering::Relaxed);
atomic_load_no_lse2_acquire = atomic_load_no_lse2(Ordering::Acquire);
atomic_load_no_lse2_seqcst = atomic_load_no_lse2(Ordering::SeqCst);
}
// SAFETY: the caller must uphold the safety contract.
// and we've checked if FEAT_LSE2 is available.
unsafe {
match order {
Ordering::Relaxed => {
ifunc!(unsafe fn(src: *mut u128) -> u128 {
let cpuinfo = detect::detect();
if cpuinfo.has_lse2() {
atomic_load_lse2_relaxed
} else {
atomic_load_no_lse2_relaxed
}
})
}
Ordering::Acquire => {
ifunc!(unsafe fn(src: *mut u128) -> u128 {
let cpuinfo = detect::detect();
if cpuinfo.has_lse2() {
atomic_load_lse2_acquire
} else {
atomic_load_no_lse2_acquire
}
})
}
Ordering::SeqCst => {
ifunc!(unsafe fn(src: *mut u128) -> u128 {
let cpuinfo = detect::detect();
if cpuinfo.has_lse2() {
atomic_load_lse2_seqcst
} else {
atomic_load_no_lse2_seqcst
}
})
}
_ => unreachable!("{:?}", order),
}
}
}
}
// If CPU supports FEAT_LSE2, LDP/LDIAPP is single-copy atomic reads,
// otherwise it is two single-copy atomic reads.
// Refs: B2.2.1 of the Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile
#[cfg(any(
target_feature = "lse2",
portable_atomic_target_feature = "lse2",
not(portable_atomic_no_outline_atomics),
))]
#[inline]
unsafe fn _atomic_load_ldp(src: *mut u128, order: Ordering) -> u128 {
debug_assert!(src as usize % 16 == 0);
debug_assert_lse2!();
// SAFETY: the caller must guarantee that `dst` is valid for reads,
// 16-byte aligned, that there are no concurrent non-atomic operations.
//
// Refs:
// - LDP: https://developer.arm.com/documentation/dui0801/l/A64-Data-Transfer-Instructions/LDP--A64-
unsafe {
let (out_lo, out_hi);
macro_rules! atomic_load_relaxed {
($acquire:tt $(, $readonly:tt)?) => {
asm!(
"ldp {out_lo}, {out_hi}, [{src}]",
$acquire,
src = in(reg) ptr_reg!(src),
out_hi = lateout(reg) out_hi,
out_lo = lateout(reg) out_lo,
options(nostack, preserves_flags $(, $readonly)?),
)
};
}
match order {
Ordering::Relaxed => atomic_load_relaxed!("", readonly),
#[cfg(any(target_feature = "rcpc3", portable_atomic_target_feature = "rcpc3"))]
Ordering::Acquire => {
// SAFETY: cfg guarantee that the CPU supports FEAT_LRCPC3.
// Refs: https://developer.arm.com/documentation/ddi0602/2023-03/Base-Instructions/LDIAPP--Load-Acquire-RCpc-ordered-Pair-of-registers-
asm!(
"ldiapp {out_lo}, {out_hi}, [{src}]",
src = in(reg) ptr_reg!(src),
out_hi = lateout(reg) out_hi,
out_lo = lateout(reg) out_lo,
options(nostack, preserves_flags),
);
}
#[cfg(not(any(target_feature = "rcpc3", portable_atomic_target_feature = "rcpc3")))]
Ordering::Acquire => atomic_load_relaxed!("dmb ishld"),
Ordering::SeqCst => {
asm!(
// ldar (or dmb ishld) is required to prevent reordering with preceding stlxp.
// See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=108891 for details.
"ldar {tmp}, [{src}]",
"ldp {out_lo}, {out_hi}, [{src}]",
"dmb ishld",
src = in(reg) ptr_reg!(src),
out_hi = lateout(reg) out_hi,
out_lo = lateout(reg) out_lo,
tmp = out(reg) _,
options(nostack, preserves_flags),
);
}
_ => unreachable!("{:?}", order),
}
U128 { pair: Pair { lo: out_lo, hi: out_hi } }.whole
}
}
// Do not use _atomic_compare_exchange_casp because it needs extra MOV to implement load.
#[cfg(any(test, not(any(target_feature = "lse2", portable_atomic_target_feature = "lse2"))))]
#[cfg(any(target_feature = "lse", portable_atomic_target_feature = "lse"))]
#[inline]
unsafe fn _atomic_load_casp(src: *mut u128, order: Ordering) -> u128 {
debug_assert!(src as usize % 16 == 0);
debug_assert_lse!();
// SAFETY: the caller must uphold the safety contract.
// cfg guarantee that the CPU supports FEAT_LSE.
unsafe {
let (out_lo, out_hi);
macro_rules! atomic_load {
($acquire:tt, $release:tt) => {
asm!(
start_lse!(),
concat!("casp", $acquire, $release, " x2, x3, x2, x3, [{src}]"),
src = in(reg) ptr_reg!(src),
// must be allocated to even/odd register pair
inout("x2") 0_u64 => out_lo,
inout("x3") 0_u64 => out_hi,
options(nostack, preserves_flags),
)
};
}
match order {
Ordering::Relaxed => atomic_load!("", ""),
Ordering::Acquire => atomic_load!("a", ""),
Ordering::SeqCst => atomic_load!("a", "l"),
_ => unreachable!("{:?}", order),
}
U128 { pair: Pair { lo: out_lo, hi: out_hi } }.whole
}
}
#[cfg(any(
test,
all(
not(any(target_feature = "lse2", portable_atomic_target_feature = "lse2")),
not(any(target_feature = "lse", portable_atomic_target_feature = "lse")),
),
))]
#[inline]
unsafe fn _atomic_load_ldxp_stxp(src: *mut u128, order: Ordering) -> u128 {
debug_assert!(src as usize % 16 == 0);
// SAFETY: the caller must uphold the safety contract.
unsafe {
let (mut out_lo, mut out_hi);
macro_rules! atomic_load {
($acquire:tt, $release:tt) => {
asm!(
"2:",
concat!("ld", $acquire, "xp {out_lo}, {out_hi}, [{src}]"),
concat!("st", $release, "xp {r:w}, {out_lo}, {out_hi}, [{src}]"),
// 0 if the store was successful, 1 if no store was performed
"cbnz {r:w}, 2b",
src = in(reg) ptr_reg!(src),
out_lo = out(reg) out_lo,
out_hi = out(reg) out_hi,
r = out(reg) _,
options(nostack, preserves_flags),
)
};
}
match order {
Ordering::Relaxed => atomic_load!("", ""),
Ordering::Acquire => atomic_load!("a", ""),
Ordering::SeqCst => atomic_load!("a", "l"),
_ => unreachable!("{:?}", order),
}
U128 { pair: Pair { lo: out_lo, hi: out_hi } }.whole
}
}
// cfg guarantee that the CPU supports FEAT_LSE2.
#[cfg(any(target_feature = "lse2", portable_atomic_target_feature = "lse2"))]
use _atomic_store_stp as atomic_store;
#[cfg(not(any(target_feature = "lse2", portable_atomic_target_feature = "lse2")))]
#[inline]
unsafe fn atomic_store(dst: *mut u128, val: u128, order: Ordering) {
#[inline]
unsafe fn atomic_store_no_lse2(dst: *mut u128, val: u128, order: Ordering) {
// If FEAT_LSE is available at compile-time and portable_atomic_ll_sc_rmw cfg is not set,
// we use CAS-based atomic RMW.
#[cfg(all(
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
not(portable_atomic_ll_sc_rmw),
))]
// SAFETY: the caller must uphold the safety contract.
// cfg guarantee that the CPU supports FEAT_LSE.
unsafe {
_atomic_swap_casp(dst, val, order);
}
#[cfg(not(all(
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
not(portable_atomic_ll_sc_rmw),
)))]
// SAFETY: the caller must uphold the safety contract.
unsafe {
_atomic_store_ldxp_stxp(dst, val, order);
}
}
#[cfg(not(all(
not(portable_atomic_no_outline_atomics),
any(
all(
target_os = "linux",
any(
target_env = "gnu",
all(
any(target_env = "musl", target_env = "ohos"),
not(target_feature = "crt-static"),
),
portable_atomic_outline_atomics,
),
),
target_os = "android",
target_os = "freebsd",
target_os = "netbsd",
// These don't support detection of FEAT_LSE2.
// target_os = "openbsd",
// target_os = "fuchsia",
// target_os = "windows",
),
)))]
// SAFETY: the caller must uphold the safety contract.
unsafe {
atomic_store_no_lse2(dst, val, order);
}
#[cfg(all(
not(portable_atomic_no_outline_atomics),
any(
all(
target_os = "linux",
any(
target_env = "gnu",
all(
any(target_env = "musl", target_env = "ohos"),
not(target_feature = "crt-static"),
),
portable_atomic_outline_atomics,
),
),
target_os = "android",
target_os = "freebsd",
target_os = "netbsd",
// These don't support detection of FEAT_LSE2.
// target_os = "openbsd",
// target_os = "fuchsia",
// target_os = "windows",
),
))]
{
fn_alias! {
// inline(never) is just a hint and also not strictly necessary
// because we use ifunc helper macro, but used for clarity.
#[inline(never)]
unsafe fn(dst: *mut u128, val: u128);
atomic_store_lse2_relaxed = _atomic_store_stp(Ordering::Relaxed);
atomic_store_lse2_release = _atomic_store_stp(Ordering::Release);
atomic_store_lse2_seqcst = _atomic_store_stp(Ordering::SeqCst);
}
fn_alias! {
unsafe fn(dst: *mut u128, val: u128);
atomic_store_no_lse2_relaxed = atomic_store_no_lse2(Ordering::Relaxed);
atomic_store_no_lse2_release = atomic_store_no_lse2(Ordering::Release);
atomic_store_no_lse2_seqcst = atomic_store_no_lse2(Ordering::SeqCst);
}
// SAFETY: the caller must uphold the safety contract.
// and we've checked if FEAT_LSE2 is available.
unsafe {
match order {
Ordering::Relaxed => {
ifunc!(unsafe fn(dst: *mut u128, val: u128) {
let cpuinfo = detect::detect();
if cpuinfo.has_lse2() {
atomic_store_lse2_relaxed
} else {
atomic_store_no_lse2_relaxed
}
});
}
Ordering::Release => {
ifunc!(unsafe fn(dst: *mut u128, val: u128) {
let cpuinfo = detect::detect();
if cpuinfo.has_lse2() {
atomic_store_lse2_release
} else {
atomic_store_no_lse2_release
}
});
}
Ordering::SeqCst => {
ifunc!(unsafe fn(dst: *mut u128, val: u128) {
let cpuinfo = detect::detect();
if cpuinfo.has_lse2() {
atomic_store_lse2_seqcst
} else {
atomic_store_no_lse2_seqcst
}
});
}
_ => unreachable!("{:?}", order),
}
}
}
}
// If CPU supports FEAT_LSE2, STP/STILP is single-copy atomic writes,
// otherwise it is two single-copy atomic writes.
// Refs: B2.2.1 of the Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile
#[cfg(any(
target_feature = "lse2",
portable_atomic_target_feature = "lse2",
not(portable_atomic_no_outline_atomics),
))]
#[inline]
unsafe fn _atomic_store_stp(dst: *mut u128, val: u128, order: Ordering) {
debug_assert!(dst as usize % 16 == 0);
debug_assert_lse2!();
// SAFETY: the caller must guarantee that `dst` is valid for writes,
// 16-byte aligned, that there are no concurrent non-atomic operations.
//
// Refs:
// - STP: https://developer.arm.com/documentation/dui0801/l/A64-Data-Transfer-Instructions/STP--A64-
unsafe {
#[rustfmt::skip]
macro_rules! atomic_store {
($acquire:tt, $release:tt) => {{
let val = U128 { whole: val };
asm!(
$release,
"stp {val_lo}, {val_hi}, [{dst}]",
$acquire,
dst = in(reg) ptr_reg!(dst),
val_lo = in(reg) val.pair.lo,
val_hi = in(reg) val.pair.hi,
options(nostack, preserves_flags),
);
}};
}
match order {
Ordering::Relaxed => atomic_store!("", ""),
#[cfg(any(target_feature = "rcpc3", portable_atomic_target_feature = "rcpc3"))]
Ordering::Release => {
let val = U128 { whole: val };
// SAFETY: cfg guarantee that the CPU supports FEAT_LRCPC3.
// Refs: https://developer.arm.com/documentation/ddi0602/2023-03/Base-Instructions/STILP--Store-Release-ordered-Pair-of-registers-
asm!(
"stilp {val_lo}, {val_hi}, [{dst}]",
dst = in(reg) ptr_reg!(dst),
val_lo = in(reg) val.pair.lo,
val_hi = in(reg) val.pair.hi,
options(nostack, preserves_flags),
);
}
#[cfg(not(any(target_feature = "rcpc3", portable_atomic_target_feature = "rcpc3")))]
#[cfg(any(target_feature = "lse128", portable_atomic_target_feature = "lse128"))]
Ordering::Release => {
// Use swpp if stp requires fences.
// https://reviews.llvm.org/D143506
// SAFETY: cfg guarantee that the CPU supports FEAT_LSE128.
_atomic_swap_swpp(dst, val, order);
}
#[cfg(not(any(target_feature = "rcpc3", portable_atomic_target_feature = "rcpc3")))]
#[cfg(not(any(target_feature = "lse128", portable_atomic_target_feature = "lse128")))]
Ordering::Release => atomic_store!("", "dmb ish"),
#[cfg(any(target_feature = "lse128", portable_atomic_target_feature = "lse128"))]
Ordering::SeqCst => {
// Use swpp if stp requires fences.
// https://reviews.llvm.org/D143506
// SAFETY: cfg guarantee that the CPU supports FEAT_LSE128.
_atomic_swap_swpp(dst, val, order);
}
#[cfg(not(any(target_feature = "lse128", portable_atomic_target_feature = "lse128")))]
Ordering::SeqCst => atomic_store!("dmb ish", "dmb ish"),
_ => unreachable!("{:?}", order),
}
}
}
// Do not use _atomic_swap_ldxp_stxp because it needs extra registers to implement store.
#[cfg(any(
test,
not(all(
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
not(portable_atomic_ll_sc_rmw),
))
))]
#[inline]
unsafe fn _atomic_store_ldxp_stxp(dst: *mut u128, val: u128, order: Ordering) {
debug_assert!(dst as usize % 16 == 0);
// SAFETY: the caller must uphold the safety contract.
unsafe {
let val = U128 { whole: val };
macro_rules! store {
($acquire:tt, $release:tt, $fence:tt) => {
asm!(
"2:",
concat!("ld", $acquire, "xp xzr, {tmp}, [{dst}]"),
concat!("st", $release, "xp {tmp:w}, {val_lo}, {val_hi}, [{dst}]"),
// 0 if the store was successful, 1 if no store was performed
"cbnz {tmp:w}, 2b",
$fence,
dst = in(reg) ptr_reg!(dst),
val_lo = in(reg) val.pair.lo,
val_hi = in(reg) val.pair.hi,
tmp = out(reg) _,
options(nostack, preserves_flags),
)
};
}
atomic_rmw!(store, order);
}
}
#[inline]
unsafe fn atomic_compare_exchange(
dst: *mut u128,
old: u128,
new: u128,
success: Ordering,
failure: Ordering,
) -> Result<u128, u128> {
#[cfg(any(target_feature = "lse", portable_atomic_target_feature = "lse"))]
// SAFETY: the caller must uphold the safety contract.
// cfg guarantee that the CPU supports FEAT_LSE.
let prev = unsafe { _atomic_compare_exchange_casp(dst, old, new, success, failure) };
#[cfg(not(all(
not(portable_atomic_no_outline_atomics),
any(
all(
target_os = "linux",
any(
target_env = "gnu",
all(
any(target_env = "musl", target_env = "ohos"),
not(target_feature = "crt-static"),
),
portable_atomic_outline_atomics,
),
),
target_os = "android",
target_os = "freebsd",
target_os = "netbsd",
target_os = "openbsd",
target_os = "fuchsia",
target_os = "windows",
),
)))]
#[cfg(not(any(target_feature = "lse", portable_atomic_target_feature = "lse")))]
// SAFETY: the caller must uphold the safety contract.
let prev = unsafe { _atomic_compare_exchange_ldxp_stxp(dst, old, new, success, failure) };
#[cfg(all(
not(portable_atomic_no_outline_atomics),
any(
all(
target_os = "linux",
any(
target_env = "gnu",
all(
any(target_env = "musl", target_env = "ohos"),
not(target_feature = "crt-static"),
),
portable_atomic_outline_atomics,
),
),
target_os = "android",
target_os = "freebsd",
target_os = "netbsd",
target_os = "openbsd",
target_os = "fuchsia",
target_os = "windows",
),
))]
#[cfg(not(any(target_feature = "lse", portable_atomic_target_feature = "lse")))]
let prev = {
fn_alias! {
// inline(never) is just a hint and also not strictly necessary
// because we use ifunc helper macro, but used for clarity.
#[inline(never)]
unsafe fn(dst: *mut u128, old: u128, new: u128) -> u128;
atomic_compare_exchange_casp_relaxed
= _atomic_compare_exchange_casp(Ordering::Relaxed, Ordering::Relaxed);
atomic_compare_exchange_casp_acquire
= _atomic_compare_exchange_casp(Ordering::Acquire, Ordering::Acquire);
atomic_compare_exchange_casp_release
= _atomic_compare_exchange_casp(Ordering::Release, Ordering::Relaxed);
atomic_compare_exchange_casp_acqrel
= _atomic_compare_exchange_casp(Ordering::AcqRel, Ordering::Acquire);
// AcqRel and SeqCst RMWs are equivalent in non-MSVC environments.
#[cfg(target_env = "msvc")]
atomic_compare_exchange_casp_seqcst
= _atomic_compare_exchange_casp(Ordering::SeqCst, Ordering::SeqCst);
}
fn_alias! {
unsafe fn(dst: *mut u128, old: u128, new: u128) -> u128;
atomic_compare_exchange_ldxp_stxp_relaxed
= _atomic_compare_exchange_ldxp_stxp(Ordering::Relaxed, Ordering::Relaxed);
atomic_compare_exchange_ldxp_stxp_acquire
= _atomic_compare_exchange_ldxp_stxp(Ordering::Acquire, Ordering::Acquire);
atomic_compare_exchange_ldxp_stxp_release
= _atomic_compare_exchange_ldxp_stxp(Ordering::Release, Ordering::Relaxed);
atomic_compare_exchange_ldxp_stxp_acqrel
= _atomic_compare_exchange_ldxp_stxp(Ordering::AcqRel, Ordering::Acquire);
// AcqRel and SeqCst RMWs are equivalent in non-MSVC environments.
#[cfg(target_env = "msvc")]
atomic_compare_exchange_ldxp_stxp_seqcst
= _atomic_compare_exchange_ldxp_stxp(Ordering::SeqCst, Ordering::SeqCst);
}
// SAFETY: the caller must guarantee that `dst` is valid for both writes and
// reads, 16-byte aligned, that there are no concurrent non-atomic operations,
// and we've checked if FEAT_LSE is available.
unsafe {
let success = crate::utils::upgrade_success_ordering(success, failure);
match success {
Ordering::Relaxed => {
ifunc!(unsafe fn(dst: *mut u128, old: u128, new: u128) -> u128 {
if detect::detect().has_lse() {
atomic_compare_exchange_casp_relaxed
} else {
atomic_compare_exchange_ldxp_stxp_relaxed
}
})
}
Ordering::Acquire => {
ifunc!(unsafe fn(dst: *mut u128, old: u128, new: u128) -> u128 {
if detect::detect().has_lse() {
atomic_compare_exchange_casp_acquire
} else {
atomic_compare_exchange_ldxp_stxp_acquire
}
})
}
Ordering::Release => {
ifunc!(unsafe fn(dst: *mut u128, old: u128, new: u128) -> u128 {
if detect::detect().has_lse() {
atomic_compare_exchange_casp_release
} else {
atomic_compare_exchange_ldxp_stxp_release
}
})
}
// AcqRel and SeqCst RMWs are equivalent in both implementations in non-MSVC environments.
#[cfg(not(target_env = "msvc"))]
Ordering::AcqRel | Ordering::SeqCst => {
ifunc!(unsafe fn(dst: *mut u128, old: u128, new: u128) -> u128 {
if detect::detect().has_lse() {
atomic_compare_exchange_casp_acqrel
} else {
atomic_compare_exchange_ldxp_stxp_acqrel
}
})
}
#[cfg(target_env = "msvc")]
Ordering::AcqRel => {
ifunc!(unsafe fn(dst: *mut u128, old: u128, new: u128) -> u128 {
if detect::detect().has_lse() {
atomic_compare_exchange_casp_acqrel
} else {
atomic_compare_exchange_ldxp_stxp_acqrel
}
})
}
#[cfg(target_env = "msvc")]
Ordering::SeqCst => {
ifunc!(unsafe fn(dst: *mut u128, old: u128, new: u128) -> u128 {
if detect::detect().has_lse() {
atomic_compare_exchange_casp_seqcst
} else {
atomic_compare_exchange_ldxp_stxp_seqcst
}
})
}
_ => unreachable!("{:?}", success),
}
}
};
if prev == old {
Ok(prev)
} else {
Err(prev)
}
}
#[cfg(any(
target_feature = "lse",
portable_atomic_target_feature = "lse",
not(portable_atomic_no_outline_atomics),
))]
#[inline]
unsafe fn _atomic_compare_exchange_casp(
dst: *mut u128,
old: u128,
new: u128,
success: Ordering,
failure: Ordering,
) -> u128 {
debug_assert!(dst as usize % 16 == 0);
debug_assert_lse!();
let order = crate::utils::upgrade_success_ordering(success, failure);
// SAFETY: the caller must guarantee that `dst` is valid for both writes and
// reads, 16-byte aligned, that there are no concurrent non-atomic operations,
// and the CPU supports FEAT_LSE.
//
// Refs:
// - https://developer.arm.com/documentation/dui0801/l/A64-Data-Transfer-Instructions/CASPA--CASPAL--CASP--CASPL--CASPAL--CASP--CASPL--A64-
// - https://developer.arm.com/documentation/ddi0602/2023-06/Base-Instructions/CASP--CASPA--CASPAL--CASPL--Compare-and-Swap-Pair-of-words-or-doublewords-in-memory-
unsafe {
let old = U128 { whole: old };
let new = U128 { whole: new };
let (prev_lo, prev_hi);
macro_rules! cmpxchg {
($acquire:tt, $release:tt, $fence:tt) => {
asm!(
start_lse!(),
concat!("casp", $acquire, $release, " x6, x7, x4, x5, [{dst}]"),
$fence,
dst = in(reg) ptr_reg!(dst),
// must be allocated to even/odd register pair
inout("x6") old.pair.lo => prev_lo,
inout("x7") old.pair.hi => prev_hi,
// must be allocated to even/odd register pair
in("x4") new.pair.lo,
in("x5") new.pair.hi,
options(nostack, preserves_flags),
)
};
}
atomic_rmw!(cmpxchg, order, write = success);
U128 { pair: Pair { lo: prev_lo, hi: prev_hi } }.whole
}
}
#[cfg(any(test, not(any(target_feature = "lse", portable_atomic_target_feature = "lse"))))]
#[inline]
unsafe fn _atomic_compare_exchange_ldxp_stxp(
dst: *mut u128,
old: u128,
new: u128,
success: Ordering,
failure: Ordering,
) -> u128 {
debug_assert!(dst as usize % 16 == 0);
let order = crate::utils::upgrade_success_ordering(success, failure);
// SAFETY: the caller must guarantee that `dst` is valid for both writes and
// reads, 16-byte aligned, and that there are no concurrent non-atomic operations.
//
// Refs:
// - LDXP: https://developer.arm.com/documentation/dui0801/l/A64-Data-Transfer-Instructions/LDXP--A64-
// - LDAXP: https://developer.arm.com/documentation/dui0801/l/A64-Data-Transfer-Instructions/LDAXP--A64-
// - STXP: https://developer.arm.com/documentation/dui0801/l/A64-Data-Transfer-Instructions/STXP--A64-
// - STLXP: https://developer.arm.com/documentation/dui0801/l/A64-Data-Transfer-Instructions/STLXP--A64-
//
// Note: Load-Exclusive pair (by itself) does not guarantee atomicity; to complete an atomic
// operation (even load/store), a corresponding Store-Exclusive pair must succeed.
// See Arm Architecture Reference Manual for A-profile architecture
// Section B2.2.1 "Requirements for single-copy atomicity", and
// Section B2.9 "Synchronization and semaphores" for more.
unsafe {
let old = U128 { whole: old };
let new = U128 { whole: new };
let (mut prev_lo, mut prev_hi);
macro_rules! cmpxchg {
($acquire:tt, $release:tt, $fence:tt) => {
asm!(
"2:",
concat!("ld", $acquire, "xp {prev_lo}, {prev_hi}, [{dst}]"),
"cmp {prev_lo}, {old_lo}",
"cset {r:w}, ne",
"cmp {prev_hi}, {old_hi}",
"cinc {r:w}, {r:w}, ne",
"cbz {r:w}, 3f",
concat!("st", $release, "xp {r:w}, {prev_lo}, {prev_hi}, [{dst}]"),
// 0 if the store was successful, 1 if no store was performed
"cbnz {r:w}, 2b",
"b 4f",
"3:",
concat!("st", $release, "xp {r:w}, {new_lo}, {new_hi}, [{dst}]"),
// 0 if the store was successful, 1 if no store was performed
"cbnz {r:w}, 2b",
"4:",
$fence,
dst = in(reg) ptr_reg!(dst),
old_lo = in(reg) old.pair.lo,
old_hi = in(reg) old.pair.hi,
new_lo = in(reg) new.pair.lo,
new_hi = in(reg) new.pair.hi,
prev_lo = out(reg) prev_lo,
prev_hi = out(reg) prev_hi,
r = out(reg) _,
// Do not use `preserves_flags` because CMP modifies the condition flags.
options(nostack),
)
};
}
atomic_rmw!(cmpxchg, order, write = success);
U128 { pair: Pair { lo: prev_lo, hi: prev_hi } }.whole
}
}
// casp is always strong, and ldxp requires a corresponding (succeed) stxp for
// its atomicity (see code comment in _atomic_compare_exchange_ldxp_stxp).
// (i.e., aarch64 doesn't have 128-bit weak CAS)
use self::atomic_compare_exchange as atomic_compare_exchange_weak;
// If FEAT_LSE is available at compile-time and portable_atomic_ll_sc_rmw cfg is not set,
// we use CAS-based atomic RMW.
#[cfg(not(any(target_feature = "lse128", portable_atomic_target_feature = "lse128")))]
#[cfg(all(
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
not(portable_atomic_ll_sc_rmw),
))]
use _atomic_swap_casp as atomic_swap;
#[cfg(not(any(target_feature = "lse128", portable_atomic_target_feature = "lse128")))]
#[cfg(not(all(
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
not(portable_atomic_ll_sc_rmw),
)))]
use _atomic_swap_ldxp_stxp as atomic_swap;
#[cfg(any(target_feature = "lse128", portable_atomic_target_feature = "lse128"))]
use _atomic_swap_swpp as atomic_swap;
#[cfg(any(target_feature = "lse128", portable_atomic_target_feature = "lse128"))]
#[inline]
unsafe fn _atomic_swap_swpp(dst: *mut u128, val: u128, order: Ordering) -> u128 {
debug_assert!(dst as usize % 16 == 0);
// SAFETY: the caller must guarantee that `dst` is valid for both writes and
// reads, 16-byte aligned, that there are no concurrent non-atomic operations,
// and the CPU supports FEAT_LSE128.
//
// Refs:
// - https://developer.arm.com/documentation/ddi0602/2023-03/Base-Instructions/SWPP--SWPPA--SWPPAL--SWPPL--Swap-quadword-in-memory-?lang=en
unsafe {
let val = U128 { whole: val };
let (prev_lo, prev_hi);
macro_rules! swap {
($acquire:tt, $release:tt, $fence:tt) => {
asm!(
concat!("swpp", $acquire, $release, " {val_lo}, {val_hi}, [{dst}]"),
$fence,
dst = in(reg) ptr_reg!(dst),
val_lo = inout(reg) val.pair.lo => prev_lo,
val_hi = inout(reg) val.pair.hi => prev_hi,
options(nostack, preserves_flags),
)
};
}
atomic_rmw!(swap, order);
U128 { pair: Pair { lo: prev_lo, hi: prev_hi } }.whole
}
}
// Do not use atomic_rmw_cas_3 because it needs extra MOV to implement swap.
#[cfg(any(test, not(portable_atomic_ll_sc_rmw)))]
#[cfg(any(target_feature = "lse", portable_atomic_target_feature = "lse"))]
#[inline]
unsafe fn _atomic_swap_casp(dst: *mut u128, val: u128, order: Ordering) -> u128 {
debug_assert!(dst as usize % 16 == 0);
debug_assert_lse!();
// SAFETY: the caller must uphold the safety contract.
// cfg guarantee that the CPU supports FEAT_LSE.
unsafe {
let val = U128 { whole: val };
let (mut prev_lo, mut prev_hi);
macro_rules! swap {
($acquire:tt, $release:tt, $fence:tt) => {
asm!(
start_lse!(),
// If FEAT_LSE2 is not supported, this works like byte-wise atomic.
// This is not single-copy atomic reads, but this is ok because subsequent
// CAS will check for consistency.
"ldp x4, x5, [{dst}]",
"2:",
// casp writes the current value to the first register pair,
// so copy the `out`'s value for later comparison.
"mov {tmp_lo}, x4",
"mov {tmp_hi}, x5",
concat!("casp", $acquire, $release, " x4, x5, x2, x3, [{dst}]"),
"cmp {tmp_hi}, x5",
"ccmp {tmp_lo}, x4, #0, eq",
"b.ne 2b",
$fence,
dst = in(reg) ptr_reg!(dst),
tmp_lo = out(reg) _,
tmp_hi = out(reg) _,
// must be allocated to even/odd register pair
out("x4") prev_lo,
out("x5") prev_hi,
// must be allocated to even/odd register pair
in("x2") val.pair.lo,
in("x3") val.pair.hi,
// Do not use `preserves_flags` because CMP and CCMP modify the condition flags.
options(nostack),
)
};
}
atomic_rmw!(swap, order);
U128 { pair: Pair { lo: prev_lo, hi: prev_hi } }.whole
}
}
// Do not use atomic_rmw_ll_sc_3 because it needs extra MOV to implement swap.
#[cfg(any(
test,
not(all(
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
not(portable_atomic_ll_sc_rmw),
))
))]
#[inline]
unsafe fn _atomic_swap_ldxp_stxp(dst: *mut u128, val: u128, order: Ordering) -> u128 {
debug_assert!(dst as usize % 16 == 0);
// SAFETY: the caller must uphold the safety contract.
unsafe {
let val = U128 { whole: val };
let (mut prev_lo, mut prev_hi);
macro_rules! swap {
($acquire:tt, $release:tt, $fence:tt) => {
asm!(
"2:",
concat!("ld", $acquire, "xp {prev_lo}, {prev_hi}, [{dst}]"),
concat!("st", $release, "xp {r:w}, {val_lo}, {val_hi}, [{dst}]"),
// 0 if the store was successful, 1 if no store was performed
"cbnz {r:w}, 2b",
$fence,
dst = in(reg) ptr_reg!(dst),
val_lo = in(reg) val.pair.lo,
val_hi = in(reg) val.pair.hi,
prev_lo = out(reg) prev_lo,
prev_hi = out(reg) prev_hi,
r = out(reg) _,
options(nostack, preserves_flags),
)
};
}
atomic_rmw!(swap, order);
U128 { pair: Pair { lo: prev_lo, hi: prev_hi } }.whole
}
}
/// Atomic RMW by LL/SC loop (3 arguments)
/// `unsafe fn(dst: *mut u128, val: u128, order: Ordering) -> u128;`
///
/// `$op` can use the following registers:
/// - val_lo/val_hi pair: val argument (read-only for `$op`)
/// - prev_lo/prev_hi pair: previous value loaded by ll (read-only for `$op`)
/// - new_lo/new_hi pair: new value that will be stored by sc
macro_rules! atomic_rmw_ll_sc_3 {
($name:ident as $reexport_name:ident $(($preserves_flags:tt))?, $($op:tt)*) => {
// If FEAT_LSE is available at compile-time and portable_atomic_ll_sc_rmw cfg is not set,
// we use CAS-based atomic RMW generated by atomic_rmw_cas_3! macro instead.
#[cfg(not(all(
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
not(portable_atomic_ll_sc_rmw),
)))]
use $name as $reexport_name;
#[cfg(any(
test,
not(all(
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
not(portable_atomic_ll_sc_rmw),
))
))]
#[inline]
unsafe fn $name(dst: *mut u128, val: u128, order: Ordering) -> u128 {
debug_assert!(dst as usize % 16 == 0);
// SAFETY: the caller must uphold the safety contract.
unsafe {
let val = U128 { whole: val };
let (mut prev_lo, mut prev_hi);
macro_rules! op {
($acquire:tt, $release:tt, $fence:tt) => {
asm!(
"2:",
concat!("ld", $acquire, "xp {prev_lo}, {prev_hi}, [{dst}]"),
$($op)*
concat!("st", $release, "xp {r:w}, {new_lo}, {new_hi}, [{dst}]"),
// 0 if the store was successful, 1 if no store was performed
"cbnz {r:w}, 2b",
$fence,
dst = in(reg) ptr_reg!(dst),
val_lo = in(reg) val.pair.lo,
val_hi = in(reg) val.pair.hi,
prev_lo = out(reg) prev_lo,
prev_hi = out(reg) prev_hi,
new_lo = out(reg) _,
new_hi = out(reg) _,
r = out(reg) _,
options(nostack $(, $preserves_flags)?),
)
};
}
atomic_rmw!(op, order);
U128 { pair: Pair { lo: prev_lo, hi: prev_hi } }.whole
}
}
};
}
/// Atomic RMW by CAS loop (3 arguments)
/// `unsafe fn(dst: *mut u128, val: u128, order: Ordering) -> u128;`
///
/// `$op` can use the following registers:
/// - val_lo/val_hi pair: val argument (read-only for `$op`)
/// - x6/x7 pair: previous value loaded (read-only for `$op`)
/// - x4/x5 pair: new value that will be stored
macro_rules! atomic_rmw_cas_3 {
($name:ident as $reexport_name:ident, $($op:tt)*) => {
// If FEAT_LSE is not available at compile-time or portable_atomic_ll_sc_rmw cfg is set,
// we use LL/SC-based atomic RMW generated by atomic_rmw_ll_sc_3! macro instead.
#[cfg(all(
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
not(portable_atomic_ll_sc_rmw),
))]
use $name as $reexport_name;
#[cfg(any(test, not(portable_atomic_ll_sc_rmw)))]
#[cfg(any(target_feature = "lse", portable_atomic_target_feature = "lse"))]
#[inline]
unsafe fn $name(dst: *mut u128, val: u128, order: Ordering) -> u128 {
debug_assert!(dst as usize % 16 == 0);
debug_assert_lse!();
// SAFETY: the caller must uphold the safety contract.
// cfg guarantee that the CPU supports FEAT_LSE.
unsafe {
let val = U128 { whole: val };
let (mut prev_lo, mut prev_hi);
macro_rules! op {
($acquire:tt, $release:tt, $fence:tt) => {
asm!(
start_lse!(),
// If FEAT_LSE2 is not supported, this works like byte-wise atomic.
// This is not single-copy atomic reads, but this is ok because subsequent
// CAS will check for consistency.
"ldp x6, x7, [{dst}]",
"2:",
// casp writes the current value to the first register pair,
// so copy the `out`'s value for later comparison.
"mov {tmp_lo}, x6",
"mov {tmp_hi}, x7",
$($op)*
concat!("casp", $acquire, $release, " x6, x7, x4, x5, [{dst}]"),
"cmp {tmp_hi}, x7",
"ccmp {tmp_lo}, x6, #0, eq",
"b.ne 2b",
$fence,
dst = in(reg) ptr_reg!(dst),
val_lo = in(reg) val.pair.lo,
val_hi = in(reg) val.pair.hi,
tmp_lo = out(reg) _,
tmp_hi = out(reg) _,
// must be allocated to even/odd register pair
out("x6") prev_lo,
out("x7") prev_hi,
// must be allocated to even/odd register pair
out("x4") _,
out("x5") _,
// Do not use `preserves_flags` because CMP and CCMP modify the condition flags.
options(nostack),
)
};
}
atomic_rmw!(op, order);
U128 { pair: Pair { lo: prev_lo, hi: prev_hi } }.whole
}
}
};
}
/// Atomic RMW by LL/SC loop (2 arguments)
/// `unsafe fn(dst: *mut u128, order: Ordering) -> u128;`
///
/// `$op` can use the following registers:
/// - prev_lo/prev_hi pair: previous value loaded by ll (read-only for `$op`)
/// - new_lo/new_hi pair: new value that will be stored by sc
macro_rules! atomic_rmw_ll_sc_2 {
($name:ident as $reexport_name:ident $(($preserves_flags:tt))?, $($op:tt)*) => {
// If FEAT_LSE is available at compile-time and portable_atomic_ll_sc_rmw cfg is not set,
// we use CAS-based atomic RMW generated by atomic_rmw_cas_2! macro instead.
#[cfg(not(all(
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
not(portable_atomic_ll_sc_rmw),
)))]
use $name as $reexport_name;
#[cfg(any(
test,
not(all(
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
not(portable_atomic_ll_sc_rmw),
))
))]
#[inline]
unsafe fn $name(dst: *mut u128, order: Ordering) -> u128 {
debug_assert!(dst as usize % 16 == 0);
// SAFETY: the caller must uphold the safety contract.
unsafe {
let (mut prev_lo, mut prev_hi);
macro_rules! op {
($acquire:tt, $release:tt, $fence:tt) => {
asm!(
"2:",
concat!("ld", $acquire, "xp {prev_lo}, {prev_hi}, [{dst}]"),
$($op)*
concat!("st", $release, "xp {r:w}, {new_lo}, {new_hi}, [{dst}]"),
// 0 if the store was successful, 1 if no store was performed
"cbnz {r:w}, 2b",
$fence,
dst = in(reg) ptr_reg!(dst),
prev_lo = out(reg) prev_lo,
prev_hi = out(reg) prev_hi,
new_lo = out(reg) _,
new_hi = out(reg) _,
r = out(reg) _,
options(nostack $(, $preserves_flags)?),
)
};
}
atomic_rmw!(op, order);
U128 { pair: Pair { lo: prev_lo, hi: prev_hi } }.whole
}
}
};
}
/// Atomic RMW by CAS loop (2 arguments)
/// `unsafe fn(dst: *mut u128, order: Ordering) -> u128;`
///
/// `$op` can use the following registers:
/// - x6/x7 pair: previous value loaded (read-only for `$op`)
/// - x4/x5 pair: new value that will be stored
macro_rules! atomic_rmw_cas_2 {
($name:ident as $reexport_name:ident, $($op:tt)*) => {
// If FEAT_LSE is not available at compile-time or portable_atomic_ll_sc_rmw cfg is set,
// we use LL/SC-based atomic RMW generated by atomic_rmw_ll_sc_3! macro instead.
#[cfg(all(
any(target_feature = "lse", portable_atomic_target_feature = "lse"),
not(portable_atomic_ll_sc_rmw),
))]
use $name as $reexport_name;
#[cfg(any(test, not(portable_atomic_ll_sc_rmw)))]
#[cfg(any(target_feature = "lse", portable_atomic_target_feature = "lse"))]
#[inline]
unsafe fn $name(dst: *mut u128, order: Ordering) -> u128 {
debug_assert!(dst as usize % 16 == 0);
debug_assert_lse!();
// SAFETY: the caller must uphold the safety contract.
// cfg guarantee that the CPU supports FEAT_LSE.
unsafe {
let (mut prev_lo, mut prev_hi);
macro_rules! op {
($acquire:tt, $release:tt, $fence:tt) => {
asm!(
start_lse!(),
// If FEAT_LSE2 is not supported, this works like byte-wise atomic.
// This is not single-copy atomic reads, but this is ok because subsequent
// CAS will check for consistency.
"ldp x6, x7, [{dst}]",
"2:",
// casp writes the current value to the first register pair,
// so copy the `out`'s value for later comparison.
"mov {tmp_lo}, x6",
"mov {tmp_hi}, x7",
$($op)*
concat!("casp", $acquire, $release, " x6, x7, x4, x5, [{dst}]"),
"cmp {tmp_hi}, x7",
"ccmp {tmp_lo}, x6, #0, eq",
"b.ne 2b",
$fence,
dst = in(reg) ptr_reg!(dst),
tmp_lo = out(reg) _,
tmp_hi = out(reg) _,
// must be allocated to even/odd register pair
out("x6") prev_lo,
out("x7") prev_hi,
// must be allocated to even/odd register pair
out("x4") _,
out("x5") _,
// Do not use `preserves_flags` because CMP and CCMP modify the condition flags.
options(nostack),
)
};
}
atomic_rmw!(op, order);
U128 { pair: Pair { lo: prev_lo, hi: prev_hi } }.whole
}
}
};
}
// Do not use `preserves_flags` because ADDS modifies the condition flags.
atomic_rmw_ll_sc_3! {
_atomic_add_ldxp_stxp as atomic_add,
select_le_or_be!("adds {new_lo}, {prev_lo}, {val_lo}", "adds {new_hi}, {prev_hi}, {val_hi}"),
select_le_or_be!("adc {new_hi}, {prev_hi}, {val_hi}", "adc {new_lo}, {prev_lo}, {val_lo}"),
}
atomic_rmw_cas_3! {
_atomic_add_casp as atomic_add,
select_le_or_be!("adds x4, x6, {val_lo}", "adds x5, x7, {val_hi}"),
select_le_or_be!("adc x5, x7, {val_hi}", "adc x4, x6, {val_lo}"),
}
// Do not use `preserves_flags` because SUBS modifies the condition flags.
atomic_rmw_ll_sc_3! {
_atomic_sub_ldxp_stxp as atomic_sub,
select_le_or_be!("subs {new_lo}, {prev_lo}, {val_lo}", "subs {new_hi}, {prev_hi}, {val_hi}"),
select_le_or_be!("sbc {new_hi}, {prev_hi}, {val_hi}", "sbc {new_lo}, {prev_lo}, {val_lo}"),
}
atomic_rmw_cas_3! {
_atomic_sub_casp as atomic_sub,
select_le_or_be!("subs x4, x6, {val_lo}", "subs x5, x7, {val_hi}"),
select_le_or_be!("sbc x5, x7, {val_hi}", "sbc x4, x6, {val_lo}"),
}
#[cfg(not(any(target_feature = "lse128", portable_atomic_target_feature = "lse128")))]
atomic_rmw_ll_sc_3! {
_atomic_and_ldxp_stxp as atomic_and (preserves_flags),
"and {new_lo}, {prev_lo}, {val_lo}",
"and {new_hi}, {prev_hi}, {val_hi}",
}
#[cfg(not(any(target_feature = "lse128", portable_atomic_target_feature = "lse128")))]
atomic_rmw_cas_3! {
_atomic_and_casp as atomic_and,
"and x4, x6, {val_lo}",
"and x5, x7, {val_hi}",
}
#[cfg(any(target_feature = "lse128", portable_atomic_target_feature = "lse128"))]
#[inline]
unsafe fn atomic_and(dst: *mut u128, val: u128, order: Ordering) -> u128 {
debug_assert!(dst as usize % 16 == 0);
// SAFETY: the caller must guarantee that `dst` is valid for both writes and
// reads, 16-byte aligned, that there are no concurrent non-atomic operations,
// and the CPU supports FEAT_LSE128.
//
// Refs:
// - https://developer.arm.com/documentation/ddi0602/2023-03/Base-Instructions/LDCLRP--LDCLRPA--LDCLRPAL--LDCLRPL--Atomic-bit-clear-on-quadword-in-memory-?lang=en
unsafe {
let val = U128 { whole: !val };
let (prev_lo, prev_hi);
macro_rules! and {
($acquire:tt, $release:tt, $fence:tt) => {
asm!(
concat!("ldclrp", $acquire, $release, " {val_lo}, {val_hi}, [{dst}]"),
$fence,
dst = in(reg) ptr_reg!(dst),
val_lo = inout(reg) val.pair.lo => prev_lo,
val_hi = inout(reg) val.pair.hi => prev_hi,
options(nostack, preserves_flags),
)
};
}
atomic_rmw!(and, order);
U128 { pair: Pair { lo: prev_lo, hi: prev_hi } }.whole
}
}
atomic_rmw_ll_sc_3! {
_atomic_nand_ldxp_stxp as atomic_nand (preserves_flags),
"and {new_lo}, {prev_lo}, {val_lo}",
"mvn {new_lo}, {new_lo}",
"and {new_hi}, {prev_hi}, {val_hi}",
"mvn {new_hi}, {new_hi}",
}
atomic_rmw_cas_3! {
_atomic_nand_casp as atomic_nand,
"and x4, x6, {val_lo}",
"mvn x4, x4",
"and x5, x7, {val_hi}",
"mvn x5, x5",
}
#[cfg(not(any(target_feature = "lse128", portable_atomic_target_feature = "lse128")))]
atomic_rmw_ll_sc_3! {
_atomic_or_ldxp_stxp as atomic_or (preserves_flags),
"orr {new_lo}, {prev_lo}, {val_lo}",
"orr {new_hi}, {prev_hi}, {val_hi}",
}
#[cfg(not(any(target_feature = "lse128", portable_atomic_target_feature = "lse128")))]
atomic_rmw_cas_3! {
_atomic_or_casp as atomic_or,
"orr x4, x6, {val_lo}",
"orr x5, x7, {val_hi}",
}
#[cfg(any(target_feature = "lse128", portable_atomic_target_feature = "lse128"))]
#[inline]
unsafe fn atomic_or(dst: *mut u128, val: u128, order: Ordering) -> u128 {
debug_assert!(dst as usize % 16 == 0);
// SAFETY: the caller must guarantee that `dst` is valid for both writes and
// reads, 16-byte aligned, that there are no concurrent non-atomic operations,
// and the CPU supports FEAT_LSE128.
//
// Refs:
// - https://developer.arm.com/documentation/ddi0602/2023-03/Base-Instructions/LDSETP--LDSETPA--LDSETPAL--LDSETPL--Atomic-bit-set-on-quadword-in-memory-?lang=en
unsafe {
let val = U128 { whole: val };
let (prev_lo, prev_hi);
macro_rules! or {
($acquire:tt, $release:tt, $fence:tt) => {
asm!(
concat!("ldsetp", $acquire, $release, " {val_lo}, {val_hi}, [{dst}]"),
$fence,
dst = in(reg) ptr_reg!(dst),
val_lo = inout(reg) val.pair.lo => prev_lo,
val_hi = inout(reg) val.pair.hi => prev_hi,
options(nostack, preserves_flags),
)
};
}
atomic_rmw!(or, order);
U128 { pair: Pair { lo: prev_lo, hi: prev_hi } }.whole
}
}
atomic_rmw_ll_sc_3! {
_atomic_xor_ldxp_stxp as atomic_xor (preserves_flags),
"eor {new_lo}, {prev_lo}, {val_lo}",
"eor {new_hi}, {prev_hi}, {val_hi}",
}
atomic_rmw_cas_3! {
_atomic_xor_casp as atomic_xor,
"eor x4, x6, {val_lo}",
"eor x5, x7, {val_hi}",
}
atomic_rmw_ll_sc_2! {
_atomic_not_ldxp_stxp as atomic_not (preserves_flags),
"mvn {new_lo}, {prev_lo}",
"mvn {new_hi}, {prev_hi}",
}
atomic_rmw_cas_2! {
_atomic_not_casp as atomic_not,
"mvn x4, x6",
"mvn x5, x7",
}
// Do not use `preserves_flags` because NEGS modifies the condition flags.
atomic_rmw_ll_sc_2! {
_atomic_neg_ldxp_stxp as atomic_neg,
select_le_or_be!("negs {new_lo}, {prev_lo}", "negs {new_hi}, {prev_hi}"),
select_le_or_be!("ngc {new_hi}, {prev_hi}", "ngc {new_lo}, {prev_lo}"),
}
atomic_rmw_cas_2! {
_atomic_neg_casp as atomic_neg,
select_le_or_be!("negs x4, x6", "negs x5, x7"),
select_le_or_be!("ngc x5, x7", "ngc x4, x6"),
}
// Do not use `preserves_flags` because CMP and SBCS modify the condition flags.
atomic_rmw_ll_sc_3! {
_atomic_max_ldxp_stxp as atomic_max,
select_le_or_be!("cmp {val_lo}, {prev_lo}", "cmp {val_hi}, {prev_hi}"),
select_le_or_be!("sbcs xzr, {val_hi}, {prev_hi}", "sbcs xzr, {val_lo}, {prev_lo}"),
"csel {new_hi}, {prev_hi}, {val_hi}, lt", // select hi 64-bit
"csel {new_lo}, {prev_lo}, {val_lo}, lt", // select lo 64-bit
}
atomic_rmw_cas_3! {
_atomic_max_casp as atomic_max,
select_le_or_be!("cmp {val_lo}, x6", "cmp {val_hi}, x7"),
select_le_or_be!("sbcs xzr, {val_hi}, x7", "sbcs xzr, {val_lo}, x6"),
"csel x5, x7, {val_hi}, lt", // select hi 64-bit
"csel x4, x6, {val_lo}, lt", // select lo 64-bit
}
// Do not use `preserves_flags` because CMP and SBCS modify the condition flags.
atomic_rmw_ll_sc_3! {
_atomic_umax_ldxp_stxp as atomic_umax,
select_le_or_be!("cmp {val_lo}, {prev_lo}", "cmp {val_hi}, {prev_hi}"),
select_le_or_be!("sbcs xzr, {val_hi}, {prev_hi}", "sbcs xzr, {val_lo}, {prev_lo}"),
"csel {new_hi}, {prev_hi}, {val_hi}, lo", // select hi 64-bit
"csel {new_lo}, {prev_lo}, {val_lo}, lo", // select lo 64-bit
}
atomic_rmw_cas_3! {
_atomic_umax_casp as atomic_umax,
select_le_or_be!("cmp {val_lo}, x6", "cmp {val_hi}, x7"),
select_le_or_be!("sbcs xzr, {val_hi}, x7", "sbcs xzr, {val_lo}, x6"),
"csel x5, x7, {val_hi}, lo", // select hi 64-bit
"csel x4, x6, {val_lo}, lo", // select lo 64-bit
}
// Do not use `preserves_flags` because CMP and SBCS modify the condition flags.
atomic_rmw_ll_sc_3! {
_atomic_min_ldxp_stxp as atomic_min,
select_le_or_be!("cmp {val_lo}, {prev_lo}", "cmp {val_hi}, {prev_hi}"),
select_le_or_be!("sbcs xzr, {val_hi}, {prev_hi}", "sbcs xzr, {val_lo}, {prev_lo}"),
"csel {new_hi}, {prev_hi}, {val_hi}, ge", // select hi 64-bit
"csel {new_lo}, {prev_lo}, {val_lo}, ge", // select lo 64-bit
}
atomic_rmw_cas_3! {
_atomic_min_casp as atomic_min,
select_le_or_be!("cmp {val_lo}, x6", "cmp {val_hi}, x7"),
select_le_or_be!("sbcs xzr, {val_hi}, x7", "sbcs xzr, {val_lo}, x6"),
"csel x5, x7, {val_hi}, ge", // select hi 64-bit
"csel x4, x6, {val_lo}, ge", // select lo 64-bit
}
// Do not use `preserves_flags` because CMP and SBCS modify the condition flags.
atomic_rmw_ll_sc_3! {
_atomic_umin_ldxp_stxp as atomic_umin,
select_le_or_be!("cmp {val_lo}, {prev_lo}", "cmp {val_hi}, {prev_hi}"),
select_le_or_be!("sbcs xzr, {val_hi}, {prev_hi}", "sbcs xzr, {val_lo}, {prev_lo}"),
"csel {new_hi}, {prev_hi}, {val_hi}, hs", // select hi 64-bit
"csel {new_lo}, {prev_lo}, {val_lo}, hs", // select lo 64-bit
}
atomic_rmw_cas_3! {
_atomic_umin_casp as atomic_umin,
select_le_or_be!("cmp {val_lo}, x6", "cmp {val_hi}, x7"),
select_le_or_be!("sbcs xzr, {val_hi}, x7", "sbcs xzr, {val_lo}, x6"),
"csel x5, x7, {val_hi}, hs", // select hi 64-bit
"csel x4, x6, {val_lo}, hs", // select lo 64-bit
}
#[inline]
const fn is_lock_free() -> bool {
IS_ALWAYS_LOCK_FREE
}
const IS_ALWAYS_LOCK_FREE: bool = true;
atomic128!(AtomicI128, i128, atomic_max, atomic_min);
atomic128!(AtomicU128, u128, atomic_umax, atomic_umin);
#[cfg(test)]
mod tests {
use super::*;
test_atomic_int!(i128);
test_atomic_int!(u128);
// load/store/swap implementation is not affected by signedness, so it is
// enough to test only unsigned types.
stress_test!(u128);
}