blob: e186b153091d33afe50ff102d96dcddb9b062fff [file] [log] [blame]
//! Legalize instructions.
//!
//! A legal instruction is one that can be mapped directly to a machine code instruction for the
//! target ISA. The `legalize_function()` function takes as input any function and transforms it
//! into an equivalent function using only legal instructions.
//!
//! The characteristics of legal instructions depend on the target ISA, so any given instruction
//! can be legal for one ISA and illegal for another.
//!
//! Besides transforming instructions, the legalizer also fills out the `function.encodings` map
//! which provides a legal encoding recipe for every instruction.
//!
//! The legalizer does not deal with register allocation constraints. These constraints are derived
//! from the encoding recipes, and solved later by the register allocator.
use crate::cursor::{Cursor, FuncCursor};
use crate::flowgraph::ControlFlowGraph;
use crate::ir::immediates::Imm64;
use crate::ir::types::{self, I128, I64};
use crate::ir::{self, InstBuilder, InstructionData, MemFlags, Value};
use crate::isa::TargetIsa;
use crate::trace;
mod globalvalue;
mod table;
use self::globalvalue::expand_global_value;
use self::table::expand_table_addr;
fn imm_const(pos: &mut FuncCursor, arg: Value, imm: Imm64, is_signed: bool) -> Value {
let ty = pos.func.dfg.value_type(arg);
match (ty, is_signed) {
(I128, true) => {
let imm = pos.ins().iconst(I64, imm);
pos.ins().sextend(I128, imm)
}
(I128, false) => {
let imm = pos.ins().iconst(I64, imm);
pos.ins().uextend(I128, imm)
}
_ => {
let bits = imm.bits();
let unsigned = match ty.lane_type() {
types::I8 => bits as u8 as i64,
types::I16 => bits as u16 as i64,
types::I32 => bits as u32 as i64,
types::I64 => bits,
_ => unreachable!(),
};
pos.ins().iconst(ty.lane_type(), unsigned)
}
}
}
/// Perform a simple legalization by expansion of the function, without
/// platform-specific transforms.
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
trace!("Pre-legalization function:\n{}", func.display());
let mut pos = FuncCursor::new(func);
let func_begin = pos.position();
pos.set_position(func_begin);
while let Some(_block) = pos.next_block() {
let mut prev_pos = pos.position();
while let Some(inst) = pos.next_inst() {
match pos.func.dfg.insts[inst] {
// control flow
InstructionData::CondTrap {
opcode:
opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
arg,
code,
} => {
expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
}
// memory and constants
InstructionData::UnaryGlobalValue {
opcode: ir::Opcode::GlobalValue,
global_value,
} => expand_global_value(inst, &mut pos.func, isa, global_value),
InstructionData::StackLoad {
opcode: ir::Opcode::StackLoad,
stack_slot,
offset,
} => {
let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
let addr_ty = isa.pointer_type();
let mut pos = FuncCursor::new(pos.func).at_inst(inst);
pos.use_srcloc(inst);
let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);
// Stack slots are required to be accessible.
// We can't currently ensure that they are aligned.
let mut mflags = MemFlags::new();
mflags.set_notrap();
pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
}
InstructionData::StackStore {
opcode: ir::Opcode::StackStore,
arg,
stack_slot,
offset,
} => {
let addr_ty = isa.pointer_type();
let mut pos = FuncCursor::new(pos.func).at_inst(inst);
pos.use_srcloc(inst);
let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);
// Stack slots are required to be accessible.
// We can't currently ensure that they are aligned.
let mut mflags = MemFlags::new();
mflags.set_notrap();
pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
}
InstructionData::DynamicStackLoad {
opcode: ir::Opcode::DynamicStackLoad,
dynamic_stack_slot,
} => {
let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
assert!(ty.is_dynamic_vector());
let addr_ty = isa.pointer_type();
let mut pos = FuncCursor::new(pos.func).at_inst(inst);
pos.use_srcloc(inst);
let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);
// Stack slots are required to be accessible and aligned.
let mflags = MemFlags::trusted();
pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
}
InstructionData::DynamicStackStore {
opcode: ir::Opcode::DynamicStackStore,
arg,
dynamic_stack_slot,
} => {
pos.use_srcloc(inst);
let addr_ty = isa.pointer_type();
let vector_ty = pos.func.dfg.value_type(arg);
assert!(vector_ty.is_dynamic_vector());
let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);
let mut mflags = MemFlags::new();
// Stack slots are required to be accessible and aligned.
mflags.set_notrap();
mflags.set_aligned();
pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
}
InstructionData::TableAddr {
opcode: ir::Opcode::TableAddr,
table,
arg,
offset,
} => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),
InstructionData::BinaryImm64 { opcode, arg, imm } => {
let is_signed = match opcode {
ir::Opcode::IaddImm
| ir::Opcode::IrsubImm
| ir::Opcode::ImulImm
| ir::Opcode::SdivImm
| ir::Opcode::SremImm => true,
_ => false,
};
let imm = imm_const(&mut pos, arg, imm, is_signed);
let replace = pos.func.dfg.replace(inst);
match opcode {
// bitops
ir::Opcode::BandImm => {
replace.band(arg, imm);
}
ir::Opcode::BorImm => {
replace.bor(arg, imm);
}
ir::Opcode::BxorImm => {
replace.bxor(arg, imm);
}
// bitshifting
ir::Opcode::IshlImm => {
replace.ishl(arg, imm);
}
ir::Opcode::RotlImm => {
replace.rotl(arg, imm);
}
ir::Opcode::RotrImm => {
replace.rotr(arg, imm);
}
ir::Opcode::SshrImm => {
replace.sshr(arg, imm);
}
ir::Opcode::UshrImm => {
replace.ushr(arg, imm);
}
// math
ir::Opcode::IaddImm => {
replace.iadd(arg, imm);
}
ir::Opcode::IrsubImm => {
// note: arg order reversed
replace.isub(imm, arg);
}
ir::Opcode::ImulImm => {
replace.imul(arg, imm);
}
ir::Opcode::SdivImm => {
replace.sdiv(arg, imm);
}
ir::Opcode::SremImm => {
replace.srem(arg, imm);
}
ir::Opcode::UdivImm => {
replace.udiv(arg, imm);
}
ir::Opcode::UremImm => {
replace.urem(arg, imm);
}
_ => prev_pos = pos.position(),
};
}
// comparisons
InstructionData::IntCompareImm {
opcode: ir::Opcode::IcmpImm,
cond,
arg,
imm,
} => {
let imm = imm_const(&mut pos, arg, imm, true);
pos.func.dfg.replace(inst).icmp(cond, arg, imm);
}
// Legalize the fused bitwise-plus-not instructions into simpler
// instructions to assist with optimizations. Lowering will
// pattern match this sequence regardless when architectures
// support the instruction natively.
InstructionData::Binary { opcode, args } => {
match opcode {
ir::Opcode::BandNot => {
let neg = pos.ins().bnot(args[1]);
pos.func.dfg.replace(inst).band(args[0], neg);
}
ir::Opcode::BorNot => {
let neg = pos.ins().bnot(args[1]);
pos.func.dfg.replace(inst).bor(args[0], neg);
}
ir::Opcode::BxorNot => {
let neg = pos.ins().bnot(args[1]);
pos.func.dfg.replace(inst).bxor(args[0], neg);
}
_ => prev_pos = pos.position(),
};
}
_ => {
prev_pos = pos.position();
continue;
}
}
// Legalization implementations require fixpoint loop here.
// TODO: fix this.
pos.set_position(prev_pos);
}
}
trace!("Post-legalization function:\n{}", func.display());
}
/// Custom expansion for conditional trap instructions.
fn expand_cond_trap(
inst: ir::Inst,
func: &mut ir::Function,
cfg: &mut ControlFlowGraph,
opcode: ir::Opcode,
arg: ir::Value,
code: ir::TrapCode,
) {
trace!(
"expanding conditional trap: {:?}: {}",
inst,
func.dfg.display_inst(inst)
);
// Parse the instruction.
let trapz = match opcode {
ir::Opcode::Trapz => true,
ir::Opcode::Trapnz | ir::Opcode::ResumableTrapnz => false,
_ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst)),
};
// Split the block after `inst`:
//
// trapnz arg
// ..
//
// Becomes:
//
// brif arg, new_block_trap, new_block_resume
//
// new_block_trap:
// trap
//
// new_block_resume:
// ..
let old_block = func
.layout
.inst_block(inst)
.expect("Instruction not in layout.");
let new_block_trap = func.dfg.make_block();
let new_block_resume = func.dfg.make_block();
// Trapping is a rare event, mark the trapping block as cold.
func.layout.set_cold(new_block_trap);
// Replace trap instruction by the inverted condition.
if trapz {
func.dfg
.replace(inst)
.brif(arg, new_block_resume, &[], new_block_trap, &[]);
} else {
func.dfg
.replace(inst)
.brif(arg, new_block_trap, &[], new_block_resume, &[]);
}
// Insert the new label and the unconditional trap terminator.
let mut pos = FuncCursor::new(func).after_inst(inst);
pos.use_srcloc(inst);
pos.insert_block(new_block_trap);
match opcode {
ir::Opcode::Trapz | ir::Opcode::Trapnz => {
pos.ins().trap(code);
}
ir::Opcode::ResumableTrapnz => {
pos.ins().resumable_trap(code);
pos.ins().jump(new_block_resume, &[]);
}
_ => unreachable!(),
}
// Insert the new label and resume the execution when the trap fails.
pos.insert_block(new_block_resume);
// Finally update the CFG.
cfg.recompute_block(pos.func, old_block);
cfg.recompute_block(pos.func, new_block_resume);
cfg.recompute_block(pos.func, new_block_trap);
}