blob: 0ece48c7b664bf9915ed409fed5ea14d0b8fa93b [file] [log] [blame]
//! This module defines s390x-specific machine instruction types.
use crate::binemit::{Addend, CodeOffset, Reloc};
use crate::ir::{types, ExternalName, Opcode, Type};
use crate::isa::s390x::abi::S390xMachineDeps;
use crate::isa::{CallConv, FunctionAlignment};
use crate::machinst::*;
use crate::{settings, CodegenError, CodegenResult};
use alloc::boxed::Box;
use alloc::vec::Vec;
use regalloc2::{PRegSet, VReg};
use smallvec::SmallVec;
use std::fmt::Write;
use std::string::{String, ToString};
pub mod regs;
pub use self::regs::*;
pub mod imms;
pub use self::imms::*;
pub mod args;
pub use self::args::*;
pub mod emit;
pub use self::emit::*;
pub mod unwind;
#[cfg(test)]
mod emit_tests;
//=============================================================================
// Instructions (top level): definition
pub use crate::isa::s390x::lower::isle::generated_code::{
ALUOp, CmpOp, FPUOp1, FPUOp2, FPUOp3, FpuRoundMode, FpuRoundOp, LaneOrder, MInst as Inst,
RxSBGOp, ShiftOp, SymbolReloc, UnaryOp, VecBinaryOp, VecFloatCmpOp, VecIntCmpOp, VecShiftOp,
VecUnaryOp,
};
/// Additional information for (direct) Call instructions, left out of line to lower the size of
/// the Inst enum.
#[derive(Clone, Debug)]
pub struct CallInfo {
pub dest: ExternalName,
pub uses: CallArgList,
pub defs: CallRetList,
pub clobbers: PRegSet,
pub opcode: Opcode,
pub caller_callconv: CallConv,
pub callee_callconv: CallConv,
pub tls_symbol: Option<SymbolReloc>,
}
/// Additional information for CallInd instructions, left out of line to lower the size of the Inst
/// enum.
#[derive(Clone, Debug)]
pub struct CallIndInfo {
pub rn: Reg,
pub uses: CallArgList,
pub defs: CallRetList,
pub clobbers: PRegSet,
pub opcode: Opcode,
pub caller_callconv: CallConv,
pub callee_callconv: CallConv,
}
#[test]
fn inst_size_test() {
// This test will help with unintentionally growing the size
// of the Inst enum.
assert_eq!(32, std::mem::size_of::<Inst>());
}
/// A register pair. Enum so it can be destructured in ISLE.
#[derive(Clone, Copy, Debug)]
pub struct RegPair {
pub hi: Reg,
pub lo: Reg,
}
/// A writable register pair. Enum so it can be destructured in ISLE.
#[derive(Clone, Copy, Debug)]
pub struct WritableRegPair {
pub hi: Writable<Reg>,
pub lo: Writable<Reg>,
}
impl WritableRegPair {
pub fn to_regpair(&self) -> RegPair {
RegPair {
hi: self.hi.to_reg(),
lo: self.lo.to_reg(),
}
}
}
/// Supported instruction sets
#[allow(non_camel_case_types)]
#[derive(Debug)]
pub(crate) enum InstructionSet {
/// Baseline ISA for cranelift is z14.
Base,
/// Miscellaneous-Instruction-Extensions Facility 2 (z15)
MIE2,
/// Vector-Enhancements Facility 2 (z15)
VXRS_EXT2,
}
impl Inst {
/// Retrieve the ISA feature set in which the instruction is available.
fn available_in_isa(&self) -> InstructionSet {
match self {
// These instructions are part of the baseline ISA for cranelift (z14)
Inst::Nop0
| Inst::Nop2
| Inst::AluRRSImm16 { .. }
| Inst::AluRR { .. }
| Inst::AluRX { .. }
| Inst::AluRSImm16 { .. }
| Inst::AluRSImm32 { .. }
| Inst::AluRUImm32 { .. }
| Inst::AluRUImm16Shifted { .. }
| Inst::AluRUImm32Shifted { .. }
| Inst::ShiftRR { .. }
| Inst::RxSBG { .. }
| Inst::RxSBGTest { .. }
| Inst::SMulWide { .. }
| Inst::UMulWide { .. }
| Inst::SDivMod32 { .. }
| Inst::SDivMod64 { .. }
| Inst::UDivMod32 { .. }
| Inst::UDivMod64 { .. }
| Inst::Flogr { .. }
| Inst::CmpRR { .. }
| Inst::CmpRX { .. }
| Inst::CmpRSImm16 { .. }
| Inst::CmpRSImm32 { .. }
| Inst::CmpRUImm32 { .. }
| Inst::CmpTrapRR { .. }
| Inst::CmpTrapRSImm16 { .. }
| Inst::CmpTrapRUImm16 { .. }
| Inst::AtomicRmw { .. }
| Inst::AtomicCas32 { .. }
| Inst::AtomicCas64 { .. }
| Inst::Fence
| Inst::Load32 { .. }
| Inst::Load32ZExt8 { .. }
| Inst::Load32SExt8 { .. }
| Inst::Load32ZExt16 { .. }
| Inst::Load32SExt16 { .. }
| Inst::Load64 { .. }
| Inst::Load64ZExt8 { .. }
| Inst::Load64SExt8 { .. }
| Inst::Load64ZExt16 { .. }
| Inst::Load64SExt16 { .. }
| Inst::Load64ZExt32 { .. }
| Inst::Load64SExt32 { .. }
| Inst::LoadRev16 { .. }
| Inst::LoadRev32 { .. }
| Inst::LoadRev64 { .. }
| Inst::Store8 { .. }
| Inst::Store16 { .. }
| Inst::Store32 { .. }
| Inst::Store64 { .. }
| Inst::StoreImm8 { .. }
| Inst::StoreImm16 { .. }
| Inst::StoreImm32SExt16 { .. }
| Inst::StoreImm64SExt16 { .. }
| Inst::StoreRev16 { .. }
| Inst::StoreRev32 { .. }
| Inst::StoreRev64 { .. }
| Inst::Mvc { .. }
| Inst::LoadMultiple64 { .. }
| Inst::StoreMultiple64 { .. }
| Inst::Mov32 { .. }
| Inst::Mov64 { .. }
| Inst::MovPReg { .. }
| Inst::Mov32Imm { .. }
| Inst::Mov32SImm16 { .. }
| Inst::Mov64SImm16 { .. }
| Inst::Mov64SImm32 { .. }
| Inst::Mov64UImm16Shifted { .. }
| Inst::Mov64UImm32Shifted { .. }
| Inst::Insert64UImm16Shifted { .. }
| Inst::Insert64UImm32Shifted { .. }
| Inst::LoadAR { .. }
| Inst::InsertAR { .. }
| Inst::Extend { .. }
| Inst::CMov32 { .. }
| Inst::CMov64 { .. }
| Inst::CMov32SImm16 { .. }
| Inst::CMov64SImm16 { .. }
| Inst::FpuMove32 { .. }
| Inst::FpuMove64 { .. }
| Inst::FpuCMov32 { .. }
| Inst::FpuCMov64 { .. }
| Inst::FpuRR { .. }
| Inst::FpuRRR { .. }
| Inst::FpuRRRR { .. }
| Inst::FpuCmp32 { .. }
| Inst::FpuCmp64 { .. }
| Inst::LoadFpuConst32 { .. }
| Inst::LoadFpuConst64 { .. }
| Inst::VecRRR { .. }
| Inst::VecRR { .. }
| Inst::VecShiftRR { .. }
| Inst::VecSelect { .. }
| Inst::VecPermute { .. }
| Inst::VecPermuteDWImm { .. }
| Inst::VecIntCmp { .. }
| Inst::VecIntCmpS { .. }
| Inst::VecFloatCmp { .. }
| Inst::VecFloatCmpS { .. }
| Inst::VecInt128SCmpHi { .. }
| Inst::VecInt128UCmpHi { .. }
| Inst::VecLoad { .. }
| Inst::VecStore { .. }
| Inst::VecLoadReplicate { .. }
| Inst::VecMov { .. }
| Inst::VecCMov { .. }
| Inst::MovToVec128 { .. }
| Inst::VecLoadConst { .. }
| Inst::VecLoadConstReplicate { .. }
| Inst::VecImmByteMask { .. }
| Inst::VecImmBitMask { .. }
| Inst::VecImmReplicate { .. }
| Inst::VecLoadLane { .. }
| Inst::VecLoadLaneUndef { .. }
| Inst::VecStoreLane { .. }
| Inst::VecInsertLane { .. }
| Inst::VecInsertLaneUndef { .. }
| Inst::VecExtractLane { .. }
| Inst::VecInsertLaneImm { .. }
| Inst::VecReplicateLane { .. }
| Inst::Call { .. }
| Inst::CallInd { .. }
| Inst::Args { .. }
| Inst::Rets { .. }
| Inst::Ret { .. }
| Inst::Jump { .. }
| Inst::CondBr { .. }
| Inst::TrapIf { .. }
| Inst::OneWayCondBr { .. }
| Inst::IndirectBr { .. }
| Inst::Debugtrap
| Inst::Trap { .. }
| Inst::JTSequence { .. }
| Inst::LoadSymbolReloc { .. }
| Inst::LoadAddr { .. }
| Inst::Loop { .. }
| Inst::CondBreak { .. }
| Inst::VirtualSPOffsetAdj { .. }
| Inst::Unwind { .. } => InstructionSet::Base,
// These depend on the opcode
Inst::AluRRR { alu_op, .. } => match alu_op {
ALUOp::NotAnd32 | ALUOp::NotAnd64 => InstructionSet::MIE2,
ALUOp::NotOrr32 | ALUOp::NotOrr64 => InstructionSet::MIE2,
ALUOp::NotXor32 | ALUOp::NotXor64 => InstructionSet::MIE2,
ALUOp::AndNot32 | ALUOp::AndNot64 => InstructionSet::MIE2,
ALUOp::OrrNot32 | ALUOp::OrrNot64 => InstructionSet::MIE2,
_ => InstructionSet::Base,
},
Inst::UnaryRR { op, .. } => match op {
UnaryOp::PopcntReg => InstructionSet::MIE2,
_ => InstructionSet::Base,
},
Inst::FpuRound { op, .. } => match op {
FpuRoundOp::ToSInt32 | FpuRoundOp::FromSInt32 => InstructionSet::VXRS_EXT2,
FpuRoundOp::ToUInt32 | FpuRoundOp::FromUInt32 => InstructionSet::VXRS_EXT2,
FpuRoundOp::ToSInt32x4 | FpuRoundOp::FromSInt32x4 => InstructionSet::VXRS_EXT2,
FpuRoundOp::ToUInt32x4 | FpuRoundOp::FromUInt32x4 => InstructionSet::VXRS_EXT2,
_ => InstructionSet::Base,
},
// These are all part of VXRS_EXT2
Inst::VecLoadRev { .. }
| Inst::VecLoadByte16Rev { .. }
| Inst::VecLoadByte32Rev { .. }
| Inst::VecLoadByte64Rev { .. }
| Inst::VecLoadElt16Rev { .. }
| Inst::VecLoadElt32Rev { .. }
| Inst::VecLoadElt64Rev { .. }
| Inst::VecStoreRev { .. }
| Inst::VecStoreByte16Rev { .. }
| Inst::VecStoreByte32Rev { .. }
| Inst::VecStoreByte64Rev { .. }
| Inst::VecStoreElt16Rev { .. }
| Inst::VecStoreElt32Rev { .. }
| Inst::VecStoreElt64Rev { .. }
| Inst::VecLoadReplicateRev { .. }
| Inst::VecLoadLaneRev { .. }
| Inst::VecLoadLaneRevUndef { .. }
| Inst::VecStoreLaneRev { .. } => InstructionSet::VXRS_EXT2,
Inst::DummyUse { .. } => InstructionSet::Base,
}
}
/// Create a 128-bit move instruction.
pub fn mov128(to_reg: Writable<Reg>, from_reg: Reg) -> Inst {
assert!(to_reg.to_reg().class() == RegClass::Float);
assert!(from_reg.class() == RegClass::Float);
Inst::VecMov {
rd: to_reg,
rn: from_reg,
}
}
/// Create a 64-bit move instruction.
pub fn mov64(to_reg: Writable<Reg>, from_reg: Reg) -> Inst {
assert!(to_reg.to_reg().class() == from_reg.class());
if from_reg.class() == RegClass::Int {
Inst::Mov64 {
rd: to_reg,
rm: from_reg,
}
} else {
Inst::FpuMove64 {
rd: to_reg,
rn: from_reg,
}
}
}
/// Create a 32-bit move instruction.
pub fn mov32(to_reg: Writable<Reg>, from_reg: Reg) -> Inst {
if from_reg.class() == RegClass::Int {
Inst::Mov32 {
rd: to_reg,
rm: from_reg,
}
} else {
Inst::FpuMove32 {
rd: to_reg,
rn: from_reg,
}
}
}
/// Generic constructor for a load (zero-extending where appropriate).
pub fn gen_load(into_reg: Writable<Reg>, mem: MemArg, ty: Type) -> Inst {
match ty {
types::I8 => Inst::Load64ZExt8 { rd: into_reg, mem },
types::I16 => Inst::Load64ZExt16 { rd: into_reg, mem },
types::I32 => Inst::Load64ZExt32 { rd: into_reg, mem },
types::I64 | types::R64 => Inst::Load64 { rd: into_reg, mem },
types::F32 => Inst::VecLoadLaneUndef {
size: 32,
rd: into_reg,
mem,
lane_imm: 0,
},
types::F64 => Inst::VecLoadLaneUndef {
size: 64,
rd: into_reg,
mem,
lane_imm: 0,
},
_ if ty.is_vector() && ty.bits() == 128 => Inst::VecLoad { rd: into_reg, mem },
types::I128 => Inst::VecLoad { rd: into_reg, mem },
_ => unimplemented!("gen_load({})", ty),
}
}
/// Generic constructor for a store.
pub fn gen_store(mem: MemArg, from_reg: Reg, ty: Type) -> Inst {
match ty {
types::I8 => Inst::Store8 { rd: from_reg, mem },
types::I16 => Inst::Store16 { rd: from_reg, mem },
types::I32 => Inst::Store32 { rd: from_reg, mem },
types::I64 | types::R64 => Inst::Store64 { rd: from_reg, mem },
types::F32 => Inst::VecStoreLane {
size: 32,
rd: from_reg,
mem,
lane_imm: 0,
},
types::F64 => Inst::VecStoreLane {
size: 64,
rd: from_reg,
mem,
lane_imm: 0,
},
_ if ty.is_vector() && ty.bits() == 128 => Inst::VecStore { rd: from_reg, mem },
types::I128 => Inst::VecStore { rd: from_reg, mem },
_ => unimplemented!("gen_store({})", ty),
}
}
}
//=============================================================================
// Instructions: get_regs
fn memarg_operands<F: Fn(VReg) -> VReg>(memarg: &MemArg, collector: &mut OperandCollector<'_, F>) {
match memarg {
&MemArg::BXD12 { base, index, .. } | &MemArg::BXD20 { base, index, .. } => {
collector.reg_use(base);
collector.reg_use(index);
}
&MemArg::Label { .. } | &MemArg::Symbol { .. } => {}
&MemArg::RegOffset { reg, .. } => {
collector.reg_use(reg);
}
&MemArg::InitialSPOffset { .. } | &MemArg::NominalSPOffset { .. } => {}
}
// mem_finalize might require %r1 to hold (part of) the address.
// Conservatively assume this will always be necessary here.
collector.reg_early_def(writable_gpr(1));
}
fn s390x_get_operands<F: Fn(VReg) -> VReg>(inst: &Inst, collector: &mut OperandCollector<'_, F>) {
match inst {
&Inst::AluRRR { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::AluRRSImm16 { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::AluRR { rd, ri, rm, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
collector.reg_use(rm);
}
&Inst::AluRX {
rd, ri, ref mem, ..
} => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
memarg_operands(mem, collector);
}
&Inst::AluRSImm16 { rd, ri, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
}
&Inst::AluRSImm32 { rd, ri, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
}
&Inst::AluRUImm32 { rd, ri, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
}
&Inst::AluRUImm16Shifted { rd, ri, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
}
&Inst::AluRUImm32Shifted { rd, ri, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
}
&Inst::SMulWide { rd, rn, rm } => {
collector.reg_use(rn);
collector.reg_use(rm);
// FIXME: The pair is hard-coded as %r2/%r3 because regalloc cannot handle pairs. If
// that changes, all the hard-coded uses of %r2/%r3 can be changed.
collector.reg_fixed_def(rd.hi, gpr(2));
collector.reg_fixed_def(rd.lo, gpr(3));
}
&Inst::UMulWide { rd, ri, rn } => {
collector.reg_use(rn);
collector.reg_fixed_def(rd.hi, gpr(2));
collector.reg_fixed_def(rd.lo, gpr(3));
collector.reg_fixed_use(ri, gpr(3));
}
&Inst::SDivMod32 { rd, ri, rn } | &Inst::SDivMod64 { rd, ri, rn } => {
collector.reg_use(rn);
collector.reg_fixed_def(rd.hi, gpr(2));
collector.reg_fixed_def(rd.lo, gpr(3));
collector.reg_fixed_use(ri, gpr(3));
}
&Inst::UDivMod32 { rd, ri, rn } | &Inst::UDivMod64 { rd, ri, rn } => {
collector.reg_use(rn);
collector.reg_fixed_def(rd.hi, gpr(2));
collector.reg_fixed_def(rd.lo, gpr(3));
collector.reg_fixed_use(ri.hi, gpr(2));
collector.reg_fixed_use(ri.lo, gpr(3));
}
&Inst::Flogr { rd, rn } => {
collector.reg_use(rn);
collector.reg_fixed_def(rd.hi, gpr(2));
collector.reg_fixed_def(rd.lo, gpr(3));
}
&Inst::ShiftRR {
rd, rn, shift_reg, ..
} => {
collector.reg_def(rd);
collector.reg_use(rn);
if shift_reg != zero_reg() {
collector.reg_use(shift_reg);
}
}
&Inst::RxSBG { rd, ri, rn, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
collector.reg_use(rn);
}
&Inst::RxSBGTest { rd, rn, .. } => {
collector.reg_use(rd);
collector.reg_use(rn);
}
&Inst::UnaryRR { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::CmpRR { rn, rm, .. } => {
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::CmpRX { rn, ref mem, .. } => {
collector.reg_use(rn);
memarg_operands(mem, collector);
}
&Inst::CmpRSImm16 { rn, .. } => {
collector.reg_use(rn);
}
&Inst::CmpRSImm32 { rn, .. } => {
collector.reg_use(rn);
}
&Inst::CmpRUImm32 { rn, .. } => {
collector.reg_use(rn);
}
&Inst::CmpTrapRR { rn, rm, .. } => {
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::CmpTrapRSImm16 { rn, .. } => {
collector.reg_use(rn);
}
&Inst::CmpTrapRUImm16 { rn, .. } => {
collector.reg_use(rn);
}
&Inst::AtomicRmw {
rd, rn, ref mem, ..
} => {
collector.reg_def(rd);
collector.reg_use(rn);
memarg_operands(mem, collector);
}
&Inst::AtomicCas32 {
rd,
ri,
rn,
ref mem,
..
}
| &Inst::AtomicCas64 {
rd,
ri,
rn,
ref mem,
..
} => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
collector.reg_use(rn);
memarg_operands(mem, collector);
}
&Inst::Fence => {}
&Inst::Load32 { rd, ref mem, .. }
| &Inst::Load32ZExt8 { rd, ref mem, .. }
| &Inst::Load32SExt8 { rd, ref mem, .. }
| &Inst::Load32ZExt16 { rd, ref mem, .. }
| &Inst::Load32SExt16 { rd, ref mem, .. }
| &Inst::Load64 { rd, ref mem, .. }
| &Inst::Load64ZExt8 { rd, ref mem, .. }
| &Inst::Load64SExt8 { rd, ref mem, .. }
| &Inst::Load64ZExt16 { rd, ref mem, .. }
| &Inst::Load64SExt16 { rd, ref mem, .. }
| &Inst::Load64ZExt32 { rd, ref mem, .. }
| &Inst::Load64SExt32 { rd, ref mem, .. }
| &Inst::LoadRev16 { rd, ref mem, .. }
| &Inst::LoadRev32 { rd, ref mem, .. }
| &Inst::LoadRev64 { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::Store8 { rd, ref mem, .. }
| &Inst::Store16 { rd, ref mem, .. }
| &Inst::Store32 { rd, ref mem, .. }
| &Inst::Store64 { rd, ref mem, .. }
| &Inst::StoreRev16 { rd, ref mem, .. }
| &Inst::StoreRev32 { rd, ref mem, .. }
| &Inst::StoreRev64 { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::StoreImm8 { ref mem, .. }
| &Inst::StoreImm16 { ref mem, .. }
| &Inst::StoreImm32SExt16 { ref mem, .. }
| &Inst::StoreImm64SExt16 { ref mem, .. } => {
memarg_operands(mem, collector);
}
&Inst::Mvc {
ref dst, ref src, ..
} => {
collector.reg_use(dst.base);
collector.reg_use(src.base);
}
&Inst::LoadMultiple64 {
rt, rt2, ref mem, ..
} => {
memarg_operands(mem, collector);
let first_regnum = rt.to_reg().to_real_reg().unwrap().hw_enc();
let last_regnum = rt2.to_reg().to_real_reg().unwrap().hw_enc();
for regnum in first_regnum..last_regnum + 1 {
collector.reg_def(writable_gpr(regnum));
}
}
&Inst::StoreMultiple64 {
rt, rt2, ref mem, ..
} => {
memarg_operands(mem, collector);
let first_regnum = rt.to_real_reg().unwrap().hw_enc();
let last_regnum = rt2.to_real_reg().unwrap().hw_enc();
for regnum in first_regnum..last_regnum + 1 {
collector.reg_use(gpr(regnum));
}
}
&Inst::Mov64 { rd, rm } => {
collector.reg_def(rd);
collector.reg_use(rm);
}
&Inst::MovPReg { rd, rm } => {
debug_assert!([regs::gpr(0), regs::gpr(14), regs::gpr(15)].contains(&rm.into()));
debug_assert!(rd.to_reg().is_virtual());
collector.reg_def(rd);
}
&Inst::Mov32 { rd, rm } => {
collector.reg_def(rd);
collector.reg_use(rm);
}
&Inst::Mov32Imm { rd, .. }
| &Inst::Mov32SImm16 { rd, .. }
| &Inst::Mov64SImm16 { rd, .. }
| &Inst::Mov64SImm32 { rd, .. }
| &Inst::Mov64UImm16Shifted { rd, .. }
| &Inst::Mov64UImm32Shifted { rd, .. } => {
collector.reg_def(rd);
}
&Inst::CMov32 { rd, ri, rm, .. } | &Inst::CMov64 { rd, ri, rm, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
collector.reg_use(rm);
}
&Inst::CMov32SImm16 { rd, ri, .. } | &Inst::CMov64SImm16 { rd, ri, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
}
&Inst::Insert64UImm16Shifted { rd, ri, .. }
| &Inst::Insert64UImm32Shifted { rd, ri, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
}
&Inst::LoadAR { rd, .. } => {
collector.reg_def(rd);
}
&Inst::InsertAR { rd, ri, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
}
&Inst::FpuMove32 { rd, rn } | &Inst::FpuMove64 { rd, rn } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::FpuCMov32 { rd, ri, rm, .. } | &Inst::FpuCMov64 { rd, ri, rm, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
collector.reg_use(rm);
}
&Inst::FpuRR { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::FpuRRR { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::FpuRRRR { rd, rn, rm, ra, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
collector.reg_use(ra);
}
&Inst::FpuCmp32 { rn, rm } | &Inst::FpuCmp64 { rn, rm } => {
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::LoadFpuConst32 { rd, .. } | &Inst::LoadFpuConst64 { rd, .. } => {
collector.reg_def(rd);
collector.reg_def(writable_gpr(1));
}
&Inst::FpuRound { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecRRR { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::VecRR { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecShiftRR {
rd, rn, shift_reg, ..
} => {
collector.reg_def(rd);
collector.reg_use(rn);
if shift_reg != zero_reg() {
collector.reg_use(shift_reg);
}
}
&Inst::VecSelect { rd, rn, rm, ra, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
collector.reg_use(ra);
}
&Inst::VecPermute { rd, rn, rm, ra, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
collector.reg_use(ra);
}
&Inst::VecPermuteDWImm { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::VecIntCmp { rd, rn, rm, .. } | &Inst::VecIntCmpS { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::VecFloatCmp { rd, rn, rm, .. } | &Inst::VecFloatCmpS { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::VecInt128SCmpHi { tmp, rn, rm, .. } | &Inst::VecInt128UCmpHi { tmp, rn, rm, .. } => {
collector.reg_def(tmp);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::VecLoad { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::VecLoadRev { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::VecLoadByte16Rev { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::VecLoadByte32Rev { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::VecLoadByte64Rev { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::VecLoadElt16Rev { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::VecLoadElt32Rev { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::VecLoadElt64Rev { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::VecStore { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::VecStoreRev { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::VecStoreByte16Rev { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::VecStoreByte32Rev { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::VecStoreByte64Rev { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::VecStoreElt16Rev { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::VecStoreElt32Rev { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::VecStoreElt64Rev { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::VecLoadReplicate { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::VecLoadReplicateRev { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::VecMov { rd, rn } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecCMov { rd, ri, rm, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
collector.reg_use(rm);
}
&Inst::MovToVec128 { rd, rn, rm } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::VecLoadConst { rd, .. } | &Inst::VecLoadConstReplicate { rd, .. } => {
collector.reg_def(rd);
collector.reg_def(writable_gpr(1));
}
&Inst::VecImmByteMask { rd, .. } => {
collector.reg_def(rd);
}
&Inst::VecImmBitMask { rd, .. } => {
collector.reg_def(rd);
}
&Inst::VecImmReplicate { rd, .. } => {
collector.reg_def(rd);
}
&Inst::VecLoadLane {
rd, ri, ref mem, ..
} => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
memarg_operands(mem, collector);
}
&Inst::VecLoadLaneUndef { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::VecStoreLaneRev { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::VecLoadLaneRevUndef { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::VecStoreLane { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::VecLoadLaneRev {
rd, ri, ref mem, ..
} => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
memarg_operands(mem, collector);
}
&Inst::VecInsertLane {
rd,
ri,
rn,
lane_reg,
..
} => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
collector.reg_use(rn);
if lane_reg != zero_reg() {
collector.reg_use(lane_reg);
}
}
&Inst::VecInsertLaneUndef {
rd, rn, lane_reg, ..
} => {
collector.reg_def(rd);
collector.reg_use(rn);
if lane_reg != zero_reg() {
collector.reg_use(lane_reg);
}
}
&Inst::VecExtractLane {
rd, rn, lane_reg, ..
} => {
collector.reg_def(rd);
collector.reg_use(rn);
if lane_reg != zero_reg() {
collector.reg_use(lane_reg);
}
}
&Inst::VecInsertLaneImm { rd, ri, .. } => {
collector.reg_reuse_def(rd, 1);
collector.reg_use(ri);
}
&Inst::VecReplicateLane { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::Extend { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::Call { link, ref info } => {
for u in &info.uses {
collector.reg_fixed_use(u.vreg, u.preg);
}
for d in &info.defs {
collector.reg_fixed_def(d.vreg, d.preg);
}
let mut clobbers = info.clobbers.clone();
clobbers.add(link.to_reg().to_real_reg().unwrap().into());
collector.reg_clobbers(clobbers);
}
&Inst::CallInd { link, ref info } => {
collector.reg_use(info.rn);
for u in &info.uses {
collector.reg_fixed_use(u.vreg, u.preg);
}
for d in &info.defs {
collector.reg_fixed_def(d.vreg, d.preg);
}
let mut clobbers = info.clobbers.clone();
clobbers.add(link.to_reg().to_real_reg().unwrap().into());
collector.reg_clobbers(clobbers);
}
&Inst::Args { ref args } => {
for arg in args {
collector.reg_fixed_def(arg.vreg, arg.preg);
}
}
&Inst::Rets { ref rets } => {
for ret in rets {
collector.reg_fixed_use(ret.vreg, ret.preg);
}
}
&Inst::Ret { .. } => {
// NOTE: we explicitly don't mark the link register as used here, as the use is only in
// the epilog where callee-save registers are restored.
}
&Inst::Jump { .. } => {}
&Inst::IndirectBr { rn, .. } => {
collector.reg_use(rn);
}
&Inst::CondBr { .. } | &Inst::OneWayCondBr { .. } => {}
&Inst::Nop0 | Inst::Nop2 => {}
&Inst::Debugtrap => {}
&Inst::Trap { .. } => {}
&Inst::TrapIf { .. } => {}
&Inst::JTSequence { ridx, .. } => {
collector.reg_use(ridx);
collector.reg_early_def(writable_gpr(1));
}
&Inst::LoadSymbolReloc { rd, .. } => {
collector.reg_def(rd);
collector.reg_def(writable_gpr(1));
}
&Inst::LoadAddr { rd, ref mem } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::Loop { ref body, .. } => {
for inst in body.iter() {
s390x_get_operands(inst, collector);
}
// `reuse_def` constraints can't be permitted in a Loop instruction because the operand
// index will always be relative to the Loop instruction, not the individual
// instruction in the loop body. However, fixed-nonallocatable registers used with
// instructions that would have emitted `reuse_def` constraints are fine.
debug_assert!(collector.no_reuse_def());
}
&Inst::CondBreak { .. } => {}
&Inst::VirtualSPOffsetAdj { .. } => {}
&Inst::Unwind { .. } => {}
&Inst::DummyUse { reg } => {
collector.reg_use(reg);
}
}
}
//=============================================================================
// Instructions: misc functions and external interface
impl MachInst for Inst {
type ABIMachineSpec = S390xMachineDeps;
type LabelUse = LabelUse;
const TRAP_OPCODE: &'static [u8] = &[0, 0];
fn get_operands<F: Fn(VReg) -> VReg>(&self, collector: &mut OperandCollector<'_, F>) {
s390x_get_operands(self, collector);
}
fn is_move(&self) -> Option<(Writable<Reg>, Reg)> {
match self {
&Inst::Mov32 { rd, rm } => Some((rd, rm)),
&Inst::Mov64 { rd, rm } => Some((rd, rm)),
&Inst::FpuMove32 { rd, rn } => Some((rd, rn)),
&Inst::FpuMove64 { rd, rn } => Some((rd, rn)),
&Inst::VecMov { rd, rn } => Some((rd, rn)),
_ => None,
}
}
fn is_included_in_clobbers(&self) -> bool {
// We exclude call instructions from the clobber-set when they are calls
// from caller to callee with the same ABI. Such calls cannot possibly
// force any new registers to be saved in the prologue, because anything
// that the callee clobbers, the caller is also allowed to clobber. This
// both saves work and enables us to more precisely follow the
// half-caller-save, half-callee-save SysV ABI for some vector
// registers.
match self {
&Inst::Args { .. } => false,
&Inst::Call { ref info, .. } => info.caller_callconv != info.callee_callconv,
&Inst::CallInd { ref info, .. } => info.caller_callconv != info.callee_callconv,
_ => true,
}
}
fn is_trap(&self) -> bool {
match self {
Self::Trap { .. } => true,
_ => false,
}
}
fn is_args(&self) -> bool {
match self {
Self::Args { .. } => true,
_ => false,
}
}
fn is_term(&self) -> MachTerminator {
match self {
&Inst::Rets { .. } => MachTerminator::Ret,
&Inst::Jump { .. } => MachTerminator::Uncond,
&Inst::CondBr { .. } => MachTerminator::Cond,
&Inst::OneWayCondBr { .. } => {
// Explicitly invisible to CFG processing.
MachTerminator::None
}
&Inst::IndirectBr { .. } => MachTerminator::Indirect,
&Inst::JTSequence { .. } => MachTerminator::Indirect,
_ => MachTerminator::None,
}
}
fn is_safepoint(&self) -> bool {
match self {
&Inst::Call { .. }
| &Inst::CallInd { .. }
| &Inst::Trap { .. }
| Inst::TrapIf { .. }
| &Inst::CmpTrapRR { .. }
| &Inst::CmpTrapRSImm16 { .. }
| &Inst::CmpTrapRUImm16 { .. } => true,
_ => false,
}
}
fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Inst {
assert!(ty.bits() <= 128);
if ty.bits() <= 32 {
Inst::mov32(to_reg, from_reg)
} else if ty.bits() <= 64 {
Inst::mov64(to_reg, from_reg)
} else {
Inst::mov128(to_reg, from_reg)
}
}
fn gen_nop(preferred_size: usize) -> Inst {
if preferred_size == 0 {
Inst::Nop0
} else {
// We can't give a NOP (or any insn) < 2 bytes.
assert!(preferred_size >= 2);
Inst::Nop2
}
}
fn rc_for_type(ty: Type) -> CodegenResult<(&'static [RegClass], &'static [Type])> {
match ty {
types::I8 => Ok((&[RegClass::Int], &[types::I8])),
types::I16 => Ok((&[RegClass::Int], &[types::I16])),
types::I32 => Ok((&[RegClass::Int], &[types::I32])),
types::I64 => Ok((&[RegClass::Int], &[types::I64])),
types::R32 => panic!("32-bit reftype pointer should never be seen on s390x"),
types::R64 => Ok((&[RegClass::Int], &[types::R64])),
types::F32 => Ok((&[RegClass::Float], &[types::F32])),
types::F64 => Ok((&[RegClass::Float], &[types::F64])),
types::I128 => Ok((&[RegClass::Float], &[types::I128])),
_ if ty.is_vector() && ty.bits() == 128 => Ok((&[RegClass::Float], &[types::I8X16])),
_ => Err(CodegenError::Unsupported(format!(
"Unexpected SSA-value type: {}",
ty
))),
}
}
fn canonical_type_for_rc(rc: RegClass) -> Type {
match rc {
RegClass::Int => types::I64,
RegClass::Float => types::I8X16,
RegClass::Vector => unreachable!(),
}
}
fn gen_jump(target: MachLabel) -> Inst {
Inst::Jump { dest: target }
}
fn worst_case_size() -> CodeOffset {
// The maximum size, in bytes, of any `Inst`'s emitted code. We have at least one case of
// an 8-instruction sequence (saturating int-to-float conversions) with three embedded
// 64-bit f64 constants.
//
// Note that inline jump-tables handle island/pool insertion separately, so we do not need
// to account for them here (otherwise the worst case would be 2^31 * 4, clearly not
// feasible for other reasons).
44
}
fn ref_type_regclass(_: &settings::Flags) -> RegClass {
RegClass::Int
}
fn gen_dummy_use(reg: Reg) -> Inst {
Inst::DummyUse { reg }
}
fn function_alignment() -> FunctionAlignment {
FunctionAlignment {
minimum: 4,
preferred: 4,
}
}
}
//=============================================================================
// Pretty-printing of instructions.
fn mem_finalize_for_show(mem: &MemArg, state: &EmitState, mi: MemInstType) -> (String, MemArg) {
let (mem_insts, mem) = mem_finalize(mem, state, mi);
let mut mem_str = mem_insts
.into_iter()
.map(|inst| {
inst.print_with_state(&mut EmitState::default(), &mut AllocationConsumer::new(&[]))
})
.collect::<Vec<_>>()
.join(" ; ");
if !mem_str.is_empty() {
mem_str += " ; ";
}
(mem_str, mem)
}
impl Inst {
fn print_with_state(
&self,
state: &mut EmitState,
allocs: &mut AllocationConsumer<'_>,
) -> String {
// N.B.: order of consumption of `allocs` must match the order
// in `s390x_get_operands()`.
let mut empty_allocs = AllocationConsumer::new(&[]);
match self {
&Inst::Nop0 => "nop-zero-len".to_string(),
&Inst::Nop2 => "nop".to_string(),
&Inst::AluRRR { alu_op, rd, rn, rm } => {
let rd = allocs.next_writable(rd);
let rn = allocs.next(rn);
let rm = allocs.next(rm);
let (op, have_rr) = match alu_op {
ALUOp::Add32 => ("ark", true),
ALUOp::Add64 => ("agrk", true),
ALUOp::AddLogical32 => ("alrk", true),
ALUOp::AddLogical64 => ("algrk", true),
ALUOp::Sub32 => ("srk", true),
ALUOp::Sub64 => ("sgrk", true),
ALUOp::SubLogical32 => ("slrk", true),
ALUOp::SubLogical64 => ("slgrk", true),
ALUOp::Mul32 => ("msrkc", true),
ALUOp::Mul64 => ("msgrkc", true),
ALUOp::And32 => ("nrk", true),
ALUOp::And64 => ("ngrk", true),
ALUOp::Orr32 => ("ork", true),
ALUOp::Orr64 => ("ogrk", true),
ALUOp::Xor32 => ("xrk", true),
ALUOp::Xor64 => ("xgrk", true),
ALUOp::NotAnd32 => ("nnrk", false),
ALUOp::NotAnd64 => ("nngrk", false),
ALUOp::NotOrr32 => ("nork", false),
ALUOp::NotOrr64 => ("nogrk", false),
ALUOp::NotXor32 => ("nxrk", false),
ALUOp::NotXor64 => ("nxgrk", false),
ALUOp::AndNot32 => ("ncrk", false),
ALUOp::AndNot64 => ("ncgrk", false),
ALUOp::OrrNot32 => ("ocrk", false),
ALUOp::OrrNot64 => ("ocgrk", false),
_ => unreachable!(),
};
if have_rr && rd.to_reg() == rn {
let inst = Inst::AluRR {
alu_op,
rd,
ri: rd.to_reg(),
rm,
};
return inst.print_with_state(state, &mut empty_allocs);
}
let rd = pretty_print_reg(rd.to_reg(), &mut empty_allocs);
let rn = pretty_print_reg(rn, &mut empty_allocs);
let rm = pretty_print_reg(rm, &mut empty_allocs);
format!("{} {}, {}, {}", op, rd, rn, rm)
}
&Inst::AluRRSImm16 {
alu_op,
rd,
rn,
imm,
} => {
let rd = allocs.next_writable(rd);
let rn = allocs.next(rn);
if rd.to_reg() == rn {
let inst = Inst::AluRSImm16 {
alu_op,
rd,
ri: rd.to_reg(),
imm,
};
return inst.print_with_state(state, &mut empty_allocs);
}
let op = match alu_op {
ALUOp::Add32 => "ahik",
ALUOp::Add64 => "aghik",
_ => unreachable!(),
};
let rd = pretty_print_reg(rd.to_reg(), &mut empty_allocs);
let rn = pretty_print_reg(rn, &mut empty_allocs);
format!("{} {}, {}, {}", op, rd, rn, imm)
}
&Inst::AluRR { alu_op, rd, ri, rm } => {
let op = match alu_op {
ALUOp::Add32 => "ar",
ALUOp::Add64 => "agr",
ALUOp::Add64Ext32 => "agfr",
ALUOp::AddLogical32 => "alr",
ALUOp::AddLogical64 => "algr",
ALUOp::AddLogical64Ext32 => "algfr",
ALUOp::Sub32 => "sr",
ALUOp::Sub64 => "sgr",
ALUOp::Sub64Ext32 => "sgfr",
ALUOp::SubLogical32 => "slr",
ALUOp::SubLogical64 => "slgr",
ALUOp::SubLogical64Ext32 => "slgfr",
ALUOp::Mul32 => "msr",
ALUOp::Mul64 => "msgr",
ALUOp::Mul64Ext32 => "msgfr",
ALUOp::And32 => "nr",
ALUOp::And64 => "ngr",
ALUOp::Orr32 => "or",
ALUOp::Orr64 => "ogr",
ALUOp::Xor32 => "xr",
ALUOp::Xor64 => "xgr",
_ => unreachable!(),
};
let rd = pretty_print_reg_mod(rd, ri, allocs);
let rm = pretty_print_reg(rm, allocs);
format!("{} {}, {}", op, rd, rm)
}
&Inst::AluRX {
alu_op,
rd,
ri,
ref mem,
} => {
let (opcode_rx, opcode_rxy) = match alu_op {
ALUOp::Add32 => (Some("a"), Some("ay")),
ALUOp::Add32Ext16 => (Some("ah"), Some("ahy")),
ALUOp::Add64 => (None, Some("ag")),
ALUOp::Add64Ext16 => (None, Some("agh")),
ALUOp::Add64Ext32 => (None, Some("agf")),
ALUOp::AddLogical32 => (Some("al"), Some("aly")),
ALUOp::AddLogical64 => (None, Some("alg")),
ALUOp::AddLogical64Ext32 => (None, Some("algf")),
ALUOp::Sub32 => (Some("s"), Some("sy")),
ALUOp::Sub32Ext16 => (Some("sh"), Some("shy")),
ALUOp::Sub64 => (None, Some("sg")),
ALUOp::Sub64Ext16 => (None, Some("sgh")),
ALUOp::Sub64Ext32 => (None, Some("sgf")),
ALUOp::SubLogical32 => (Some("sl"), Some("sly")),
ALUOp::SubLogical64 => (None, Some("slg")),
ALUOp::SubLogical64Ext32 => (None, Some("slgf")),
ALUOp::Mul32 => (Some("ms"), Some("msy")),
ALUOp::Mul32Ext16 => (Some("mh"), Some("mhy")),
ALUOp::Mul64 => (None, Some("msg")),
ALUOp::Mul64Ext16 => (None, Some("mgh")),
ALUOp::Mul64Ext32 => (None, Some("msgf")),
ALUOp::And32 => (Some("n"), Some("ny")),
ALUOp::And64 => (None, Some("ng")),
ALUOp::Orr32 => (Some("o"), Some("oy")),
ALUOp::Orr64 => (None, Some("og")),
ALUOp::Xor32 => (Some("x"), Some("xy")),
ALUOp::Xor64 => (None, Some("xg")),
_ => unreachable!(),
};
let rd = pretty_print_reg_mod(rd, ri, allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: opcode_rx.is_some(),
have_d20: opcode_rxy.is_some(),
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: true,
},
);
let op = match &mem {
&MemArg::BXD12 { .. } => opcode_rx,
&MemArg::BXD20 { .. } => opcode_rxy,
_ => unreachable!(),
};
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, op.unwrap(), rd, mem)
}
&Inst::AluRSImm16 {
alu_op,
rd,
ri,
imm,
} => {
let op = match alu_op {
ALUOp::Add32 => "ahi",
ALUOp::Add64 => "aghi",
ALUOp::Mul32 => "mhi",
ALUOp::Mul64 => "mghi",
_ => unreachable!(),
};
let rd = pretty_print_reg_mod(rd, ri, allocs);
format!("{} {}, {}", op, rd, imm)
}
&Inst::AluRSImm32 {
alu_op,
rd,
ri,
imm,
} => {
let op = match alu_op {
ALUOp::Add32 => "afi",
ALUOp::Add64 => "agfi",
ALUOp::Mul32 => "msfi",
ALUOp::Mul64 => "msgfi",
_ => unreachable!(),
};
let rd = pretty_print_reg_mod(rd, ri, allocs);
format!("{} {}, {}", op, rd, imm)
}
&Inst::AluRUImm32 {
alu_op,
rd,
ri,
imm,
} => {
let op = match alu_op {
ALUOp::AddLogical32 => "alfi",
ALUOp::AddLogical64 => "algfi",
ALUOp::SubLogical32 => "slfi",
ALUOp::SubLogical64 => "slgfi",
_ => unreachable!(),
};
let rd = pretty_print_reg_mod(rd, ri, allocs);
format!("{} {}, {}", op, rd, imm)
}
&Inst::AluRUImm16Shifted {
alu_op,
rd,
ri,
imm,
} => {
let op = match (alu_op, imm.shift) {
(ALUOp::And32, 0) => "nill",
(ALUOp::And32, 1) => "nilh",
(ALUOp::And64, 0) => "nill",
(ALUOp::And64, 1) => "nilh",
(ALUOp::And64, 2) => "nihl",
(ALUOp::And64, 3) => "nihh",
(ALUOp::Orr32, 0) => "oill",
(ALUOp::Orr32, 1) => "oilh",
(ALUOp::Orr64, 0) => "oill",
(ALUOp::Orr64, 1) => "oilh",
(ALUOp::Orr64, 2) => "oihl",
(ALUOp::Orr64, 3) => "oihh",
_ => unreachable!(),
};
let rd = pretty_print_reg_mod(rd, ri, allocs);
format!("{} {}, {}", op, rd, imm.bits)
}
&Inst::AluRUImm32Shifted {
alu_op,
rd,
ri,
imm,
} => {
let op = match (alu_op, imm.shift) {
(ALUOp::And32, 0) => "nilf",
(ALUOp::And64, 0) => "nilf",
(ALUOp::And64, 1) => "nihf",
(ALUOp::Orr32, 0) => "oilf",
(ALUOp::Orr64, 0) => "oilf",
(ALUOp::Orr64, 1) => "oihf",
(ALUOp::Xor32, 0) => "xilf",
(ALUOp::Xor64, 0) => "xilf",
(ALUOp::Xor64, 1) => "xihf",
_ => unreachable!(),
};
let rd = pretty_print_reg_mod(rd, ri, allocs);
format!("{} {}, {}", op, rd, imm.bits)
}
&Inst::SMulWide { rd, rn, rm } => {
let op = "mgrk";
let rn = pretty_print_reg(rn, allocs);
let rm = pretty_print_reg(rm, allocs);
let rd = pretty_print_regpair(rd.to_regpair(), allocs);
format!("{} {}, {}, {}", op, rd, rn, rm)
}
&Inst::UMulWide { rd, ri, rn } => {
let op = "mlgr";
let rn = pretty_print_reg(rn, allocs);
let rd = pretty_print_regpair_mod_lo(rd, ri, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::SDivMod32 { rd, ri, rn } => {
let op = "dsgfr";
let rn = pretty_print_reg(rn, allocs);
let rd = pretty_print_regpair_mod_lo(rd, ri, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::SDivMod64 { rd, ri, rn } => {
let op = "dsgr";
let rn = pretty_print_reg(rn, allocs);
let rd = pretty_print_regpair_mod_lo(rd, ri, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::UDivMod32 { rd, ri, rn } => {
let op = "dlr";
let rn = pretty_print_reg(rn, allocs);
let rd = pretty_print_regpair_mod(rd, ri, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::UDivMod64 { rd, ri, rn } => {
let op = "dlgr";
let rn = pretty_print_reg(rn, allocs);
let rd = pretty_print_regpair_mod(rd, ri, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::Flogr { rd, rn } => {
let op = "flogr";
let rn = pretty_print_reg(rn, allocs);
let rd = pretty_print_regpair(rd.to_regpair(), allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::ShiftRR {
shift_op,
rd,
rn,
shift_imm,
shift_reg,
} => {
let op = match shift_op {
ShiftOp::RotL32 => "rll",
ShiftOp::RotL64 => "rllg",
ShiftOp::LShL32 => "sllk",
ShiftOp::LShL64 => "sllg",
ShiftOp::LShR32 => "srlk",
ShiftOp::LShR64 => "srlg",
ShiftOp::AShR32 => "srak",
ShiftOp::AShR64 => "srag",
};
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
let shift_reg = if shift_reg != zero_reg() {
format!("({})", pretty_print_reg(shift_reg, allocs))
} else {
"".to_string()
};
format!("{} {}, {}, {}{}", op, rd, rn, shift_imm, shift_reg)
}
&Inst::RxSBG {
op,
rd,
ri,
rn,
start_bit,
end_bit,
rotate_amt,
} => {
let op = match op {
RxSBGOp::Insert => "risbgn",
RxSBGOp::And => "rnsbg",
RxSBGOp::Or => "rosbg",
RxSBGOp::Xor => "rxsbg",
};
let rd = pretty_print_reg_mod(rd, ri, allocs);
let rn = pretty_print_reg(rn, allocs);
format!(
"{} {}, {}, {}, {}, {}",
op,
rd,
rn,
start_bit,
end_bit,
(rotate_amt as u8) & 63
)
}
&Inst::RxSBGTest {
op,
rd,
rn,
start_bit,
end_bit,
rotate_amt,
} => {
let op = match op {
RxSBGOp::And => "rnsbg",
RxSBGOp::Or => "rosbg",
RxSBGOp::Xor => "rxsbg",
_ => unreachable!(),
};
let rd = pretty_print_reg(rd, allocs);
let rn = pretty_print_reg(rn, allocs);
format!(
"{} {}, {}, {}, {}, {}",
op,
rd,
rn,
start_bit | 0x80,
end_bit,
(rotate_amt as u8) & 63
)
}
&Inst::UnaryRR { op, rd, rn } => {
let (op, extra) = match op {
UnaryOp::Abs32 => ("lpr", ""),
UnaryOp::Abs64 => ("lpgr", ""),
UnaryOp::Abs64Ext32 => ("lpgfr", ""),
UnaryOp::Neg32 => ("lcr", ""),
UnaryOp::Neg64 => ("lcgr", ""),
UnaryOp::Neg64Ext32 => ("lcgfr", ""),
UnaryOp::PopcntByte => ("popcnt", ""),
UnaryOp::PopcntReg => ("popcnt", ", 8"),
UnaryOp::BSwap32 => ("lrvr", ""),
UnaryOp::BSwap64 => ("lrvgr", ""),
};
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
format!("{} {}, {}{}", op, rd, rn, extra)
}
&Inst::CmpRR { op, rn, rm } => {
let op = match op {
CmpOp::CmpS32 => "cr",
CmpOp::CmpS64 => "cgr",
CmpOp::CmpS64Ext32 => "cgfr",
CmpOp::CmpL32 => "clr",
CmpOp::CmpL64 => "clgr",
CmpOp::CmpL64Ext32 => "clgfr",
_ => unreachable!(),
};
let rn = pretty_print_reg(rn, allocs);
let rm = pretty_print_reg(rm, allocs);
format!("{} {}, {}", op, rn, rm)
}
&Inst::CmpRX { op, rn, ref mem } => {
let (opcode_rx, opcode_rxy, opcode_ril) = match op {
CmpOp::CmpS32 => (Some("c"), Some("cy"), Some("crl")),
CmpOp::CmpS32Ext16 => (Some("ch"), Some("chy"), Some("chrl")),
CmpOp::CmpS64 => (None, Some("cg"), Some("cgrl")),
CmpOp::CmpS64Ext16 => (None, Some("cgh"), Some("cghrl")),
CmpOp::CmpS64Ext32 => (None, Some("cgf"), Some("cgfrl")),
CmpOp::CmpL32 => (Some("cl"), Some("cly"), Some("clrl")),
CmpOp::CmpL32Ext16 => (None, None, Some("clhrl")),
CmpOp::CmpL64 => (None, Some("clg"), Some("clgrl")),
CmpOp::CmpL64Ext16 => (None, None, Some("clghrl")),
CmpOp::CmpL64Ext32 => (None, Some("clgf"), Some("clgfrl")),
};
let rn = pretty_print_reg(rn, allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: opcode_rx.is_some(),
have_d20: opcode_rxy.is_some(),
have_pcrel: opcode_ril.is_some(),
have_unaligned_pcrel: false,
have_index: true,
},
);
let op = match &mem {
&MemArg::BXD12 { .. } => opcode_rx,
&MemArg::BXD20 { .. } => opcode_rxy,
&MemArg::Label { .. } | &MemArg::Symbol { .. } => opcode_ril,
_ => unreachable!(),
};
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, op.unwrap(), rn, mem)
}
&Inst::CmpRSImm16 { op, rn, imm } => {
let op = match op {
CmpOp::CmpS32 => "chi",
CmpOp::CmpS64 => "cghi",
_ => unreachable!(),
};
let rn = pretty_print_reg(rn, allocs);
format!("{} {}, {}", op, rn, imm)
}
&Inst::CmpRSImm32 { op, rn, imm } => {
let op = match op {
CmpOp::CmpS32 => "cfi",
CmpOp::CmpS64 => "cgfi",
_ => unreachable!(),
};
let rn = pretty_print_reg(rn, allocs);
format!("{} {}, {}", op, rn, imm)
}
&Inst::CmpRUImm32 { op, rn, imm } => {
let op = match op {
CmpOp::CmpL32 => "clfi",
CmpOp::CmpL64 => "clgfi",
_ => unreachable!(),
};
let rn = pretty_print_reg(rn, allocs);
format!("{} {}, {}", op, rn, imm)
}
&Inst::CmpTrapRR {
op, rn, rm, cond, ..
} => {
let op = match op {
CmpOp::CmpS32 => "crt",
CmpOp::CmpS64 => "cgrt",
CmpOp::CmpL32 => "clrt",
CmpOp::CmpL64 => "clgrt",
_ => unreachable!(),
};
let rn = pretty_print_reg(rn, allocs);
let rm = pretty_print_reg(rm, allocs);
let cond = cond.pretty_print_default();
format!("{}{} {}, {}", op, cond, rn, rm)
}
&Inst::CmpTrapRSImm16 {
op, rn, imm, cond, ..
} => {
let op = match op {
CmpOp::CmpS32 => "cit",
CmpOp::CmpS64 => "cgit",
_ => unreachable!(),
};
let rn = pretty_print_reg(rn, allocs);
let cond = cond.pretty_print_default();
format!("{}{} {}, {}", op, cond, rn, imm)
}
&Inst::CmpTrapRUImm16 {
op, rn, imm, cond, ..
} => {
let op = match op {
CmpOp::CmpL32 => "clfit",
CmpOp::CmpL64 => "clgit",
_ => unreachable!(),
};
let rn = pretty_print_reg(rn, allocs);
let cond = cond.pretty_print_default();
format!("{}{} {}, {}", op, cond, rn, imm)
}
&Inst::AtomicRmw {
alu_op,
rd,
rn,
ref mem,
} => {
let op = match alu_op {
ALUOp::Add32 => "laa",
ALUOp::Add64 => "laag",
ALUOp::AddLogical32 => "laal",
ALUOp::AddLogical64 => "laalg",
ALUOp::And32 => "lan",
ALUOp::And64 => "lang",
ALUOp::Orr32 => "lao",
ALUOp::Orr64 => "laog",
ALUOp::Xor32 => "lax",
ALUOp::Xor64 => "laxg",
_ => unreachable!(),
};
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: false,
have_d20: true,
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: false,
},
);
let mem = mem.pretty_print_default();
format!("{}{} {}, {}, {}", mem_str, op, rd, rn, mem)
}
&Inst::AtomicCas32 {
rd,
ri,
rn,
ref mem,
}
| &Inst::AtomicCas64 {
rd,
ri,
rn,
ref mem,
} => {
let (opcode_rs, opcode_rsy) = match self {
&Inst::AtomicCas32 { .. } => (Some("cs"), Some("csy")),
&Inst::AtomicCas64 { .. } => (None, Some("csg")),
_ => unreachable!(),
};
let rd = pretty_print_reg_mod(rd, ri, allocs);
let rn = pretty_print_reg(rn, allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: opcode_rs.is_some(),
have_d20: opcode_rsy.is_some(),
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: false,
},
);
let op = match &mem {
&MemArg::BXD12 { .. } => opcode_rs,
&MemArg::BXD20 { .. } => opcode_rsy,
_ => unreachable!(),
};
let mem = mem.pretty_print_default();
format!("{}{} {}, {}, {}", mem_str, op.unwrap(), rd, rn, mem)
}
&Inst::Fence => "bcr 14, 0".to_string(),
&Inst::Load32 { rd, ref mem }
| &Inst::Load32ZExt8 { rd, ref mem }
| &Inst::Load32SExt8 { rd, ref mem }
| &Inst::Load32ZExt16 { rd, ref mem }
| &Inst::Load32SExt16 { rd, ref mem }
| &Inst::Load64 { rd, ref mem }
| &Inst::Load64ZExt8 { rd, ref mem }
| &Inst::Load64SExt8 { rd, ref mem }
| &Inst::Load64ZExt16 { rd, ref mem }
| &Inst::Load64SExt16 { rd, ref mem }
| &Inst::Load64ZExt32 { rd, ref mem }
| &Inst::Load64SExt32 { rd, ref mem }
| &Inst::LoadRev16 { rd, ref mem }
| &Inst::LoadRev32 { rd, ref mem }
| &Inst::LoadRev64 { rd, ref mem } => {
let (opcode_rx, opcode_rxy, opcode_ril) = match self {
&Inst::Load32 { .. } => (Some("l"), Some("ly"), Some("lrl")),
&Inst::Load32ZExt8 { .. } => (None, Some("llc"), None),
&Inst::Load32SExt8 { .. } => (None, Some("lb"), None),
&Inst::Load32ZExt16 { .. } => (None, Some("llh"), Some("llhrl")),
&Inst::Load32SExt16 { .. } => (Some("lh"), Some("lhy"), Some("lhrl")),
&Inst::Load64 { .. } => (None, Some("lg"), Some("lgrl")),
&Inst::Load64ZExt8 { .. } => (None, Some("llgc"), None),
&Inst::Load64SExt8 { .. } => (None, Some("lgb"), None),
&Inst::Load64ZExt16 { .. } => (None, Some("llgh"), Some("llghrl")),
&Inst::Load64SExt16 { .. } => (None, Some("lgh"), Some("lghrl")),
&Inst::Load64ZExt32 { .. } => (None, Some("llgf"), Some("llgfrl")),
&Inst::Load64SExt32 { .. } => (None, Some("lgf"), Some("lgfrl")),
&Inst::LoadRev16 { .. } => (None, Some("lrvh"), None),
&Inst::LoadRev32 { .. } => (None, Some("lrv"), None),
&Inst::LoadRev64 { .. } => (None, Some("lrvg"), None),
_ => unreachable!(),
};
let rd = pretty_print_reg(rd.to_reg(), allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: opcode_rx.is_some(),
have_d20: opcode_rxy.is_some(),
have_pcrel: opcode_ril.is_some(),
have_unaligned_pcrel: false,
have_index: true,
},
);
let op = match &mem {
&MemArg::BXD12 { .. } => opcode_rx,
&MemArg::BXD20 { .. } => opcode_rxy,
&MemArg::Label { .. } | &MemArg::Symbol { .. } => opcode_ril,
_ => unreachable!(),
};
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, op.unwrap(), rd, mem)
}
&Inst::Store8 { rd, ref mem }
| &Inst::Store16 { rd, ref mem }
| &Inst::Store32 { rd, ref mem }
| &Inst::Store64 { rd, ref mem }
| &Inst::StoreRev16 { rd, ref mem }
| &Inst::StoreRev32 { rd, ref mem }
| &Inst::StoreRev64 { rd, ref mem } => {
let (opcode_rx, opcode_rxy, opcode_ril) = match self {
&Inst::Store8 { .. } => (Some("stc"), Some("stcy"), None),
&Inst::Store16 { .. } => (Some("sth"), Some("sthy"), Some("sthrl")),
&Inst::Store32 { .. } => (Some("st"), Some("sty"), Some("strl")),
&Inst::Store64 { .. } => (None, Some("stg"), Some("stgrl")),
&Inst::StoreRev16 { .. } => (None, Some("strvh"), None),
&Inst::StoreRev32 { .. } => (None, Some("strv"), None),
&Inst::StoreRev64 { .. } => (None, Some("strvg"), None),
_ => unreachable!(),
};
let rd = pretty_print_reg(rd, allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: opcode_rx.is_some(),
have_d20: opcode_rxy.is_some(),
have_pcrel: opcode_ril.is_some(),
have_unaligned_pcrel: false,
have_index: true,
},
);
let op = match &mem {
&MemArg::BXD12 { .. } => opcode_rx,
&MemArg::BXD20 { .. } => opcode_rxy,
&MemArg::Label { .. } | &MemArg::Symbol { .. } => opcode_ril,
_ => unreachable!(),
};
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, op.unwrap(), rd, mem)
}
&Inst::StoreImm8 { imm, ref mem } => {
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: true,
have_d20: true,
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: false,
},
);
let op = match &mem {
&MemArg::BXD12 { .. } => "mvi",
&MemArg::BXD20 { .. } => "mviy",
_ => unreachable!(),
};
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, op, mem, imm)
}
&Inst::StoreImm16 { imm, ref mem }
| &Inst::StoreImm32SExt16 { imm, ref mem }
| &Inst::StoreImm64SExt16 { imm, ref mem } => {
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: false,
have_d20: true,
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: false,
},
);
let op = match self {
&Inst::StoreImm16 { .. } => "mvhhi",
&Inst::StoreImm32SExt16 { .. } => "mvhi",
&Inst::StoreImm64SExt16 { .. } => "mvghi",
_ => unreachable!(),
};
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, op, mem, imm)
}
&Inst::Mvc {
ref dst,
ref src,
len_minus_one,
} => {
let dst = dst.with_allocs(allocs);
let src = src.with_allocs(allocs);
format!(
"mvc {}({},{}), {}({})",
dst.disp.pretty_print_default(),
len_minus_one,
show_reg(dst.base),
src.disp.pretty_print_default(),
show_reg(src.base)
)
}
&Inst::LoadMultiple64 { rt, rt2, ref mem } => {
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: false,
have_d20: true,
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: false,
},
);
let rt = pretty_print_reg(rt.to_reg(), &mut empty_allocs);
let rt2 = pretty_print_reg(rt2.to_reg(), &mut empty_allocs);
let mem = mem.pretty_print_default();
format!("{}lmg {}, {}, {}", mem_str, rt, rt2, mem)
}
&Inst::StoreMultiple64 { rt, rt2, ref mem } => {
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: false,
have_d20: true,
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: false,
},
);
let rt = pretty_print_reg(rt, &mut empty_allocs);
let rt2 = pretty_print_reg(rt2, &mut empty_allocs);
let mem = mem.pretty_print_default();
format!("{}stmg {}, {}, {}", mem_str, rt, rt2, mem)
}
&Inst::Mov64 { rd, rm } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rm = pretty_print_reg(rm, allocs);
format!("lgr {}, {}", rd, rm)
}
&Inst::MovPReg { rd, rm } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rm = show_reg(rm.into());
format!("lgr {}, {}", rd, rm)
}
&Inst::Mov32 { rd, rm } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rm = pretty_print_reg(rm, allocs);
format!("lr {}, {}", rd, rm)
}
&Inst::Mov32Imm { rd, ref imm } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
format!("iilf {}, {}", rd, imm)
}
&Inst::Mov32SImm16 { rd, ref imm } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
format!("lhi {}, {}", rd, imm)
}
&Inst::Mov64SImm16 { rd, ref imm } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
format!("lghi {}, {}", rd, imm)
}
&Inst::Mov64SImm32 { rd, ref imm } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
format!("lgfi {}, {}", rd, imm)
}
&Inst::Mov64UImm16Shifted { rd, ref imm } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let op = match imm.shift {
0 => "llill",
1 => "llilh",
2 => "llihl",
3 => "llihh",
_ => unreachable!(),
};
format!("{} {}, {}", op, rd, imm.bits)
}
&Inst::Mov64UImm32Shifted { rd, ref imm } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let op = match imm.shift {
0 => "llilf",
1 => "llihf",
_ => unreachable!(),
};
format!("{} {}, {}", op, rd, imm.bits)
}
&Inst::Insert64UImm16Shifted { rd, ri, ref imm } => {
let rd = pretty_print_reg_mod(rd, ri, allocs);
let op = match imm.shift {
0 => "iill",
1 => "iilh",
2 => "iihl",
3 => "iihh",
_ => unreachable!(),
};
format!("{} {}, {}", op, rd, imm.bits)
}
&Inst::Insert64UImm32Shifted { rd, ri, ref imm } => {
let rd = pretty_print_reg_mod(rd, ri, allocs);
let op = match imm.shift {
0 => "iilf",
1 => "iihf",
_ => unreachable!(),
};
format!("{} {}, {}", op, rd, imm.bits)
}
&Inst::LoadAR { rd, ar } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
format!("ear {}, %a{}", rd, ar)
}
&Inst::InsertAR { rd, ri, ar } => {
let rd = pretty_print_reg_mod(rd, ri, allocs);
format!("ear {}, %a{}", rd, ar)
}
&Inst::CMov32 { rd, cond, ri, rm } => {
let rd = pretty_print_reg_mod(rd, ri, allocs);
let rm = pretty_print_reg(rm, allocs);
let cond = cond.pretty_print_default();
format!("locr{} {}, {}", cond, rd, rm)
}
&Inst::CMov64 { rd, cond, ri, rm } => {
let rd = pretty_print_reg_mod(rd, ri, allocs);
let rm = pretty_print_reg(rm, allocs);
let cond = cond.pretty_print_default();
format!("locgr{} {}, {}", cond, rd, rm)
}
&Inst::CMov32SImm16 {
rd,
cond,
ri,
ref imm,
} => {
let rd = pretty_print_reg_mod(rd, ri, allocs);
let cond = cond.pretty_print_default();
format!("lochi{} {}, {}", cond, rd, imm)
}
&Inst::CMov64SImm16 {
rd,
cond,
ri,
ref imm,
} => {
let rd = pretty_print_reg_mod(rd, ri, allocs);
let cond = cond.pretty_print_default();
format!("locghi{} {}, {}", cond, rd, imm)
}
&Inst::FpuMove32 { rd, rn } => {
let (rd, rd_fpr) = pretty_print_fpr(rd.to_reg(), allocs);
let (rn, rn_fpr) = pretty_print_fpr(rn, allocs);
if rd_fpr.is_some() && rn_fpr.is_some() {
format!("ler {}, {}", rd_fpr.unwrap(), rn_fpr.unwrap())
} else {
format!("vlr {}, {}", rd, rn)
}
}
&Inst::FpuMove64 { rd, rn } => {
let (rd, rd_fpr) = pretty_print_fpr(rd.to_reg(), allocs);
let (rn, rn_fpr) = pretty_print_fpr(rn, allocs);
if rd_fpr.is_some() && rn_fpr.is_some() {
format!("ldr {}, {}", rd_fpr.unwrap(), rn_fpr.unwrap())
} else {
format!("vlr {}, {}", rd, rn)
}
}
&Inst::FpuCMov32 { rd, cond, ri, rm } => {
let (rd, rd_fpr) = pretty_print_fpr(rd.to_reg(), allocs);
let _ri = allocs.next(ri);
let (rm, rm_fpr) = pretty_print_fpr(rm, allocs);
if rd_fpr.is_some() && rm_fpr.is_some() {
let cond = cond.invert().pretty_print_default();
format!("j{} 6 ; ler {}, {}", cond, rd_fpr.unwrap(), rm_fpr.unwrap())
} else {
let cond = cond.invert().pretty_print_default();
format!("j{} 10 ; vlr {}, {}", cond, rd, rm)
}
}
&Inst::FpuCMov64 { rd, cond, ri, rm } => {
let (rd, rd_fpr) = pretty_print_fpr(rd.to_reg(), allocs);
let _ri = allocs.next(ri);
let (rm, rm_fpr) = pretty_print_fpr(rm, allocs);
if rd_fpr.is_some() && rm_fpr.is_some() {
let cond = cond.invert().pretty_print_default();
format!("j{} 6 ; ldr {}, {}", cond, rd_fpr.unwrap(), rm_fpr.unwrap())
} else {
let cond = cond.invert().pretty_print_default();
format!("j{} 10 ; vlr {}, {}", cond, rd, rm)
}
}
&Inst::FpuRR { fpu_op, rd, rn } => {
let (op, op_fpr) = match fpu_op {
FPUOp1::Abs32 => ("wflpsb", Some("lpebr")),
FPUOp1::Abs64 => ("wflpdb", Some("lpdbr")),
FPUOp1::Abs32x4 => ("vflpsb", None),
FPUOp1::Abs64x2 => ("vflpdb", None),
FPUOp1::Neg32 => ("wflcsb", Some("lcebr")),
FPUOp1::Neg64 => ("wflcdb", Some("lcdbr")),
FPUOp1::Neg32x4 => ("vflcsb", None),
FPUOp1::Neg64x2 => ("vflcdb", None),
FPUOp1::NegAbs32 => ("wflnsb", Some("lnebr")),
FPUOp1::NegAbs64 => ("wflndb", Some("lndbr")),
FPUOp1::NegAbs32x4 => ("vflnsb", None),
FPUOp1::NegAbs64x2 => ("vflndb", None),
FPUOp1::Sqrt32 => ("wfsqsb", Some("sqebr")),
FPUOp1::Sqrt64 => ("wfsqdb", Some("sqdbr")),
FPUOp1::Sqrt32x4 => ("vfsqsb", None),
FPUOp1::Sqrt64x2 => ("vfsqdb", None),
FPUOp1::Cvt32To64 => ("wldeb", Some("ldebr")),
FPUOp1::Cvt32x4To64x2 => ("vldeb", None),
};
let (rd, rd_fpr) = pretty_print_fpr(rd.to_reg(), allocs);
let (rn, rn_fpr) = pretty_print_fpr(rn, allocs);
if op_fpr.is_some() && rd_fpr.is_some() && rn_fpr.is_some() {
format!(
"{} {}, {}",
op_fpr.unwrap(),
rd_fpr.unwrap(),
rn_fpr.unwrap()
)
} else if op.starts_with('w') {
format!("{} {}, {}", op, rd_fpr.unwrap_or(rd), rn_fpr.unwrap_or(rn))
} else {
format!("{} {}, {}", op, rd, rn)
}
}
&Inst::FpuRRR { fpu_op, rd, rn, rm } => {
let (op, opt_m6, op_fpr) = match fpu_op {
FPUOp2::Add32 => ("wfasb", "", Some("aebr")),
FPUOp2::Add64 => ("wfadb", "", Some("adbr")),
FPUOp2::Add32x4 => ("vfasb", "", None),
FPUOp2::Add64x2 => ("vfadb", "", None),
FPUOp2::Sub32 => ("wfssb", "", Some("sebr")),
FPUOp2::Sub64 => ("wfsdb", "", Some("sdbr")),
FPUOp2::Sub32x4 => ("vfssb", "", None),
FPUOp2::Sub64x2 => ("vfsdb", "", None),
FPUOp2::Mul32 => ("wfmsb", "", Some("meebr")),
FPUOp2::Mul64 => ("wfmdb", "", Some("mdbr")),
FPUOp2::Mul32x4 => ("vfmsb", "", None),
FPUOp2::Mul64x2 => ("vfmdb", "", None),
FPUOp2::Div32 => ("wfdsb", "", Some("debr")),
FPUOp2::Div64 => ("wfddb", "", Some("ddbr")),
FPUOp2::Div32x4 => ("vfdsb", "", None),
FPUOp2::Div64x2 => ("vfddb", "", None),
FPUOp2::Max32 => ("wfmaxsb", ", 1", None),
FPUOp2::Max64 => ("wfmaxdb", ", 1", None),
FPUOp2::Max32x4 => ("vfmaxsb", ", 1", None),
FPUOp2::Max64x2 => ("vfmaxdb", ", 1", None),
FPUOp2::Min32 => ("wfminsb", ", 1", None),
FPUOp2::Min64 => ("wfmindb", ", 1", None),
FPUOp2::Min32x4 => ("vfminsb", ", 1", None),
FPUOp2::Min64x2 => ("vfmindb", ", 1", None),
FPUOp2::MaxPseudo32 => ("wfmaxsb", ", 3", None),
FPUOp2::MaxPseudo64 => ("wfmaxdb", ", 3", None),
FPUOp2::MaxPseudo32x4 => ("vfmaxsb", ", 3", None),
FPUOp2::MaxPseudo64x2 => ("vfmaxdb", ", 3", None),
FPUOp2::MinPseudo32 => ("wfminsb", ", 3", None),
FPUOp2::MinPseudo64 => ("wfmindb", ", 3", None),
FPUOp2::MinPseudo32x4 => ("vfminsb", ", 3", None),
FPUOp2::MinPseudo64x2 => ("vfmindb", ", 3", None),
};
let (rd, rd_fpr) = pretty_print_fpr(rd.to_reg(), allocs);
let (rn, rn_fpr) = pretty_print_fpr(rn, allocs);
let (rm, rm_fpr) = pretty_print_fpr(rm, allocs);
if op_fpr.is_some() && rd == rn && rd_fpr.is_some() && rm_fpr.is_some() {
format!(
"{} {}, {}",
op_fpr.unwrap(),
rd_fpr.unwrap(),
rm_fpr.unwrap()
)
} else if op.starts_with('w') {
format!(
"{} {}, {}, {}{}",
op,
rd_fpr.unwrap_or(rd),
rn_fpr.unwrap_or(rn),
rm_fpr.unwrap_or(rm),
opt_m6
)
} else {
format!("{} {}, {}, {}{}", op, rd, rn, rm, opt_m6)
}
}
&Inst::FpuRRRR {
fpu_op,
rd,
rn,
rm,
ra,
} => {
let (op, op_fpr) = match fpu_op {
FPUOp3::MAdd32 => ("wfmasb", Some("maebr")),
FPUOp3::MAdd64 => ("wfmadb", Some("madbr")),
FPUOp3::MAdd32x4 => ("vfmasb", None),
FPUOp3::MAdd64x2 => ("vfmadb", None),
FPUOp3::MSub32 => ("wfmssb", Some("msebr")),
FPUOp3::MSub64 => ("wfmsdb", Some("msdbr")),
FPUOp3::MSub32x4 => ("vfmssb", None),
FPUOp3::MSub64x2 => ("vfmsdb", None),
};
let (rd, rd_fpr) = pretty_print_fpr(rd.to_reg(), allocs);
let (rn, rn_fpr) = pretty_print_fpr(rn, allocs);
let (rm, rm_fpr) = pretty_print_fpr(rm, allocs);
let (ra, ra_fpr) = pretty_print_fpr(ra, allocs);
if op_fpr.is_some()
&& rd == ra
&& rd_fpr.is_some()
&& rn_fpr.is_some()
&& rm_fpr.is_some()
{
format!(
"{} {}, {}, {}",
op_fpr.unwrap(),
rd_fpr.unwrap(),
rn_fpr.unwrap(),
rm_fpr.unwrap()
)
} else if op.starts_with('w') {
format!(
"{} {}, {}, {}, {}",
op,
rd_fpr.unwrap_or(rd),
rn_fpr.unwrap_or(rn),
rm_fpr.unwrap_or(rm),
ra_fpr.unwrap_or(ra)
)
} else {
format!("{} {}, {}, {}, {}", op, rd, rn, rm, ra)
}
}
&Inst::FpuCmp32 { rn, rm } => {
let (rn, rn_fpr) = pretty_print_fpr(rn, allocs);
let (rm, rm_fpr) = pretty_print_fpr(rm, allocs);
if rn_fpr.is_some() && rm_fpr.is_some() {
format!("cebr {}, {}", rn_fpr.unwrap(), rm_fpr.unwrap())
} else {
format!("wfcsb {}, {}", rn_fpr.unwrap_or(rn), rm_fpr.unwrap_or(rm))
}
}
&Inst::FpuCmp64 { rn, rm } => {
let (rn, rn_fpr) = pretty_print_fpr(rn, allocs);
let (rm, rm_fpr) = pretty_print_fpr(rm, allocs);
if rn_fpr.is_some() && rm_fpr.is_some() {
format!("cdbr {}, {}", rn_fpr.unwrap(), rm_fpr.unwrap())
} else {
format!("wfcdb {}, {}", rn_fpr.unwrap_or(rn), rm_fpr.unwrap_or(rm))
}
}
&Inst::LoadFpuConst32 { rd, const_data } => {
let (rd, rd_fpr) = pretty_print_fpr(rd.to_reg(), allocs);
let tmp = pretty_print_reg(writable_spilltmp_reg().to_reg(), &mut empty_allocs);
if rd_fpr.is_some() {
format!(
"bras {}, 8 ; data.f32 {} ; le {}, 0({})",
tmp,
f32::from_bits(const_data),
rd_fpr.unwrap(),
tmp
)
} else {
format!(
"bras {}, 8 ; data.f32 {} ; vlef {}, 0({}), 0",
tmp,
f32::from_bits(const_data),
rd,
tmp
)
}
}
&Inst::LoadFpuConst64 { rd, const_data } => {
let (rd, rd_fpr) = pretty_print_fpr(rd.to_reg(), allocs);
let tmp = pretty_print_reg(writable_spilltmp_reg().to_reg(), &mut empty_allocs);
if rd_fpr.is_some() {
format!(
"bras {}, 12 ; data.f64 {} ; ld {}, 0({})",
tmp,
f64::from_bits(const_data),
rd_fpr.unwrap(),
tmp
)
} else {
format!(
"bras {}, 12 ; data.f64 {} ; vleg {}, 0({}), 0",
tmp,
f64::from_bits(const_data),
rd,
tmp
)
}
}
&Inst::FpuRound { op, mode, rd, rn } => {
let mode = match mode {
FpuRoundMode::Current => 0,
FpuRoundMode::ToNearest => 1,
FpuRoundMode::ShorterPrecision => 3,
FpuRoundMode::ToNearestTiesToEven => 4,
FpuRoundMode::ToZero => 5,
FpuRoundMode::ToPosInfinity => 6,
FpuRoundMode::ToNegInfinity => 7,
};
let (opcode, opcode_fpr) = match op {
FpuRoundOp::Cvt64To32 => ("wledb", Some("ledbra")),
FpuRoundOp::Cvt64x2To32x4 => ("vledb", None),
FpuRoundOp::Round32 => ("wfisb", Some("fiebr")),
FpuRoundOp::Round64 => ("wfidb", Some("fidbr")),
FpuRoundOp::Round32x4 => ("vfisb", None),
FpuRoundOp::Round64x2 => ("vfidb", None),
FpuRoundOp::ToSInt32 => ("wcfeb", None),
FpuRoundOp::ToSInt64 => ("wcgdb", None),
FpuRoundOp::ToUInt32 => ("wclfeb", None),
FpuRoundOp::ToUInt64 => ("wclgdb", None),
FpuRoundOp::ToSInt32x4 => ("vcfeb", None),
FpuRoundOp::ToSInt64x2 => ("vcgdb", None),
FpuRoundOp::ToUInt32x4 => ("vclfeb", None),
FpuRoundOp::ToUInt64x2 => ("vclgdb", None),
FpuRoundOp::FromSInt32 => ("wcefb", None),
FpuRoundOp::FromSInt64 => ("wcdgb", None),
FpuRoundOp::FromUInt32 => ("wcelfb", None),
FpuRoundOp::FromUInt64 => ("wcdlgb", None),
FpuRoundOp::FromSInt32x4 => ("vcefb", None),
FpuRoundOp::FromSInt64x2 => ("vcdgb", None),
FpuRoundOp::FromUInt32x4 => ("vcelfb", None),
FpuRoundOp::FromUInt64x2 => ("vcdlgb", None),
};
let (rd, rd_fpr) = pretty_print_fpr(rd.to_reg(), allocs);
let (rn, rn_fpr) = pretty_print_fpr(rn, allocs);
if opcode_fpr.is_some() && rd_fpr.is_some() && rn_fpr.is_some() {
format!(
"{} {}, {}, {}{}",
opcode_fpr.unwrap(),
rd_fpr.unwrap(),
mode,
rn_fpr.unwrap(),
if opcode_fpr.unwrap().ends_with('a') {
", 0"
} else {
""
}
)
} else if opcode.starts_with('w') {
format!(
"{} {}, {}, 0, {}",
opcode,
rd_fpr.unwrap_or(rd),
rn_fpr.unwrap_or(rn),
mode
)
} else {
format!("{} {}, {}, 0, {}", opcode, rd, rn, mode)
}
}
&Inst::VecRRR { op, rd, rn, rm } => {
let op = match op {
VecBinaryOp::Add8x16 => "vab",
VecBinaryOp::Add16x8 => "vah",
VecBinaryOp::Add32x4 => "vaf",
VecBinaryOp::Add64x2 => "vag",
VecBinaryOp::Add128 => "vaq",
VecBinaryOp::Sub8x16 => "vsb",
VecBinaryOp::Sub16x8 => "vsh",
VecBinaryOp::Sub32x4 => "vsf",
VecBinaryOp::Sub64x2 => "vsg",
VecBinaryOp::Sub128 => "vsq",
VecBinaryOp::Mul8x16 => "vmlb",
VecBinaryOp::Mul16x8 => "vmlhw",
VecBinaryOp::Mul32x4 => "vmlf",
VecBinaryOp::UMulHi8x16 => "vmlhb",
VecBinaryOp::UMulHi16x8 => "vmlhh",
VecBinaryOp::UMulHi32x4 => "vmlhf",
VecBinaryOp::SMulHi8x16 => "vmhb",
VecBinaryOp::SMulHi16x8 => "vmhh",
VecBinaryOp::SMulHi32x4 => "vmhf",
VecBinaryOp::UMulEven8x16 => "vmleb",
VecBinaryOp::UMulEven16x8 => "vmleh",
VecBinaryOp::UMulEven32x4 => "vmlef",
VecBinaryOp::SMulEven8x16 => "vmeb",
VecBinaryOp::SMulEven16x8 => "vmeh",
VecBinaryOp::SMulEven32x4 => "vmef",
VecBinaryOp::UMulOdd8x16 => "vmlob",
VecBinaryOp::UMulOdd16x8 => "vmloh",
VecBinaryOp::UMulOdd32x4 => "vmlof",
VecBinaryOp::SMulOdd8x16 => "vmob",
VecBinaryOp::SMulOdd16x8 => "vmoh",
VecBinaryOp::SMulOdd32x4 => "vmof",
VecBinaryOp::UMax8x16 => "vmxlb",
VecBinaryOp::UMax16x8 => "vmxlh",
VecBinaryOp::UMax32x4 => "vmxlf",
VecBinaryOp::UMax64x2 => "vmxlg",
VecBinaryOp::SMax8x16 => "vmxb",
VecBinaryOp::SMax16x8 => "vmxh",
VecBinaryOp::SMax32x4 => "vmxf",
VecBinaryOp::SMax64x2 => "vmxg",
VecBinaryOp::UMin8x16 => "vmnlb",
VecBinaryOp::UMin16x8 => "vmnlh",
VecBinaryOp::UMin32x4 => "vmnlf",
VecBinaryOp::UMin64x2 => "vmnlg",
VecBinaryOp::SMin8x16 => "vmnb",
VecBinaryOp::SMin16x8 => "vmnh",
VecBinaryOp::SMin32x4 => "vmnf",
VecBinaryOp::SMin64x2 => "vmng",
VecBinaryOp::UAvg8x16 => "vavglb",
VecBinaryOp::UAvg16x8 => "vavglh",
VecBinaryOp::UAvg32x4 => "vavglf",
VecBinaryOp::UAvg64x2 => "vavglg",
VecBinaryOp::SAvg8x16 => "vavgb",
VecBinaryOp::SAvg16x8 => "vavgh",
VecBinaryOp::SAvg32x4 => "vavgf",
VecBinaryOp::SAvg64x2 => "vavgg",
VecBinaryOp::And128 => "vn",
VecBinaryOp::Orr128 => "vo",
VecBinaryOp::Xor128 => "vx",
VecBinaryOp::NotAnd128 => "vnn",
VecBinaryOp::NotOrr128 => "vno",
VecBinaryOp::NotXor128 => "vnx",
VecBinaryOp::AndNot128 => "vnc",
VecBinaryOp::OrrNot128 => "voc",
VecBinaryOp::BitPermute128 => "vbperm",
VecBinaryOp::LShLByByte128 => "vslb",
VecBinaryOp::LShRByByte128 => "vsrlb",
VecBinaryOp::AShRByByte128 => "vsrab",
VecBinaryOp::LShLByBit128 => "vsl",
VecBinaryOp::LShRByBit128 => "vsrl",
VecBinaryOp::AShRByBit128 => "vsra",
VecBinaryOp::Pack16x8 => "vpkh",
VecBinaryOp::Pack32x4 => "vpkf",
VecBinaryOp::Pack64x2 => "vpkg",
VecBinaryOp::PackUSat16x8 => "vpklsh",
VecBinaryOp::PackUSat32x4 => "vpklsf",
VecBinaryOp::PackUSat64x2 => "vpklsg",
VecBinaryOp::PackSSat16x8 => "vpksh",
VecBinaryOp::PackSSat32x4 => "vpksf",
VecBinaryOp::PackSSat64x2 => "vpksg",
VecBinaryOp::MergeLow8x16 => "vmrlb",
VecBinaryOp::MergeLow16x8 => "vmrlh",
VecBinaryOp::MergeLow32x4 => "vmrlf",
VecBinaryOp::MergeLow64x2 => "vmrlg",
VecBinaryOp::MergeHigh8x16 => "vmrhb",
VecBinaryOp::MergeHigh16x8 => "vmrhh",
VecBinaryOp::MergeHigh32x4 => "vmrhf",
VecBinaryOp::MergeHigh64x2 => "vmrhg",
};
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
let rm = pretty_print_reg(rm, allocs);
format!("{} {}, {}, {}", op, rd, rn, rm)
}
&Inst::VecRR { op, rd, rn } => {
let op = match op {
VecUnaryOp::Abs8x16 => "vlpb",
VecUnaryOp::Abs16x8 => "vlph",
VecUnaryOp::Abs32x4 => "vlpf",
VecUnaryOp::Abs64x2 => "vlpg",
VecUnaryOp::Neg8x16 => "vlcb",
VecUnaryOp::Neg16x8 => "vlch",
VecUnaryOp::Neg32x4 => "vlcf",
VecUnaryOp::Neg64x2 => "vlcg",
VecUnaryOp::Popcnt8x16 => "vpopctb",
VecUnaryOp::Popcnt16x8 => "vpopcth",
VecUnaryOp::Popcnt32x4 => "vpopctf",
VecUnaryOp::Popcnt64x2 => "vpopctg",
VecUnaryOp::Clz8x16 => "vclzb",
VecUnaryOp::Clz16x8 => "vclzh",
VecUnaryOp::Clz32x4 => "vclzf",
VecUnaryOp::Clz64x2 => "vclzg",
VecUnaryOp::Ctz8x16 => "vctzb",
VecUnaryOp::Ctz16x8 => "vctzh",
VecUnaryOp::Ctz32x4 => "vctzf",
VecUnaryOp::Ctz64x2 => "vctzg",
VecUnaryOp::UnpackULow8x16 => "vupllb",
VecUnaryOp::UnpackULow16x8 => "vupllh",
VecUnaryOp::UnpackULow32x4 => "vupllf",
VecUnaryOp::UnpackUHigh8x16 => "vuplhb",
VecUnaryOp::UnpackUHigh16x8 => "vuplhh",
VecUnaryOp::UnpackUHigh32x4 => "vuplhf",
VecUnaryOp::UnpackSLow8x16 => "vuplb",
VecUnaryOp::UnpackSLow16x8 => "vuplh",
VecUnaryOp::UnpackSLow32x4 => "vuplf",
VecUnaryOp::UnpackSHigh8x16 => "vuphb",
VecUnaryOp::UnpackSHigh16x8 => "vuphh",
VecUnaryOp::UnpackSHigh32x4 => "vuphf",
};
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::VecShiftRR {
shift_op,
rd,
rn,
shift_imm,
shift_reg,
} => {
let op = match shift_op {
VecShiftOp::RotL8x16 => "verllb",
VecShiftOp::RotL16x8 => "verllh",
VecShiftOp::RotL32x4 => "verllf",
VecShiftOp::RotL64x2 => "verllg",
VecShiftOp::LShL8x16 => "veslb",
VecShiftOp::LShL16x8 => "veslh",
VecShiftOp::LShL32x4 => "veslf",
VecShiftOp::LShL64x2 => "veslg",
VecShiftOp::LShR8x16 => "vesrlb",
VecShiftOp::LShR16x8 => "vesrlh",
VecShiftOp::LShR32x4 => "vesrlf",
VecShiftOp::LShR64x2 => "vesrlg",
VecShiftOp::AShR8x16 => "vesrab",
VecShiftOp::AShR16x8 => "vesrah",
VecShiftOp::AShR32x4 => "vesraf",
VecShiftOp::AShR64x2 => "vesrag",
};
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
let shift_reg = if shift_reg != zero_reg() {
format!("({})", pretty_print_reg(shift_reg, allocs))
} else {
"".to_string()
};
format!("{} {}, {}, {}{}", op, rd, rn, shift_imm, shift_reg)
}
&Inst::VecSelect { rd, rn, rm, ra } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
let rm = pretty_print_reg(rm, allocs);
let ra = pretty_print_reg(ra, allocs);
format!("vsel {}, {}, {}, {}", rd, rn, rm, ra)
}
&Inst::VecPermute { rd, rn, rm, ra } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
let rm = pretty_print_reg(rm, allocs);
let ra = pretty_print_reg(ra, allocs);
format!("vperm {}, {}, {}, {}", rd, rn, rm, ra)
}
&Inst::VecPermuteDWImm {
rd,
rn,
rm,
idx1,
idx2,
} => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
let rm = pretty_print_reg(rm, allocs);
let m4 = (idx1 & 1) * 4 + (idx2 & 1);
format!("vpdi {}, {}, {}, {}", rd, rn, rm, m4)
}
&Inst::VecIntCmp { op, rd, rn, rm } | &Inst::VecIntCmpS { op, rd, rn, rm } => {
let op = match op {
VecIntCmpOp::CmpEq8x16 => "vceqb",
VecIntCmpOp::CmpEq16x8 => "vceqh",
VecIntCmpOp::CmpEq32x4 => "vceqf",
VecIntCmpOp::CmpEq64x2 => "vceqg",
VecIntCmpOp::SCmpHi8x16 => "vchb",
VecIntCmpOp::SCmpHi16x8 => "vchh",
VecIntCmpOp::SCmpHi32x4 => "vchf",
VecIntCmpOp::SCmpHi64x2 => "vchg",
VecIntCmpOp::UCmpHi8x16 => "vchlb",
VecIntCmpOp::UCmpHi16x8 => "vchlh",
VecIntCmpOp::UCmpHi32x4 => "vchlf",
VecIntCmpOp::UCmpHi64x2 => "vchlg",
};
let s = match self {
&Inst::VecIntCmp { .. } => "",
&Inst::VecIntCmpS { .. } => "s",
_ => unreachable!(),
};
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
let rm = pretty_print_reg(rm, allocs);
format!("{}{} {}, {}, {}", op, s, rd, rn, rm)
}
&Inst::VecFloatCmp { op, rd, rn, rm } | &Inst::VecFloatCmpS { op, rd, rn, rm } => {
let op = match op {
VecFloatCmpOp::CmpEq32x4 => "vfcesb",
VecFloatCmpOp::CmpEq64x2 => "vfcedb",
VecFloatCmpOp::CmpHi32x4 => "vfchsb",
VecFloatCmpOp::CmpHi64x2 => "vfchdb",
VecFloatCmpOp::CmpHiEq32x4 => "vfchesb",
VecFloatCmpOp::CmpHiEq64x2 => "vfchedb",
};
let s = match self {
&Inst::VecFloatCmp { .. } => "",
&Inst::VecFloatCmpS { .. } => "s",
_ => unreachable!(),
};
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
let rm = pretty_print_reg(rm, allocs);
format!("{}{} {}, {}, {}", op, s, rd, rn, rm)
}
&Inst::VecInt128SCmpHi { tmp, rn, rm } | &Inst::VecInt128UCmpHi { tmp, rn, rm } => {
let op = match self {
&Inst::VecInt128SCmpHi { .. } => "vecg",
&Inst::VecInt128UCmpHi { .. } => "veclg",
_ => unreachable!(),
};
let tmp = pretty_print_reg(tmp.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
let rm = pretty_print_reg(rm, allocs);
format!(
"{} {}, {} ; jne 10 ; vchlgs {}, {}, {}",
op, rm, rn, tmp, rn, rm
)
}
&Inst::VecLoad { rd, ref mem }
| &Inst::VecLoadRev { rd, ref mem }
| &Inst::VecLoadByte16Rev { rd, ref mem }
| &Inst::VecLoadByte32Rev { rd, ref mem }
| &Inst::VecLoadByte64Rev { rd, ref mem }
| &Inst::VecLoadElt16Rev { rd, ref mem }
| &Inst::VecLoadElt32Rev { rd, ref mem }
| &Inst::VecLoadElt64Rev { rd, ref mem } => {
let opcode = match self {
&Inst::VecLoad { .. } => "vl",
&Inst::VecLoadRev { .. } => "vlbrq",
&Inst::VecLoadByte16Rev { .. } => "vlbrh",
&Inst::VecLoadByte32Rev { .. } => "vlbrf",
&Inst::VecLoadByte64Rev { .. } => "vlbrg",
&Inst::VecLoadElt16Rev { .. } => "vlerh",
&Inst::VecLoadElt32Rev { .. } => "vlerf",
&Inst::VecLoadElt64Rev { .. } => "vlerg",
_ => unreachable!(),
};
let rd = pretty_print_reg(rd.to_reg(), allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: true,
have_d20: false,
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: true,
},
);
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, opcode, rd, mem)
}
&Inst::VecStore { rd, ref mem }
| &Inst::VecStoreRev { rd, ref mem }
| &Inst::VecStoreByte16Rev { rd, ref mem }
| &Inst::VecStoreByte32Rev { rd, ref mem }
| &Inst::VecStoreByte64Rev { rd, ref mem }
| &Inst::VecStoreElt16Rev { rd, ref mem }
| &Inst::VecStoreElt32Rev { rd, ref mem }
| &Inst::VecStoreElt64Rev { rd, ref mem } => {
let opcode = match self {
&Inst::VecStore { .. } => "vst",
&Inst::VecStoreRev { .. } => "vstbrq",
&Inst::VecStoreByte16Rev { .. } => "vstbrh",
&Inst::VecStoreByte32Rev { .. } => "vstbrf",
&Inst::VecStoreByte64Rev { .. } => "vstbrg",
&Inst::VecStoreElt16Rev { .. } => "vsterh",
&Inst::VecStoreElt32Rev { .. } => "vsterf",
&Inst::VecStoreElt64Rev { .. } => "vsterg",
_ => unreachable!(),
};
let rd = pretty_print_reg(rd, allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: true,
have_d20: false,
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: true,
},
);
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, opcode, rd, mem)
}
&Inst::VecLoadReplicate { size, rd, ref mem }
| &Inst::VecLoadReplicateRev { size, rd, ref mem } => {
let opcode = match (self, size) {
(&Inst::VecLoadReplicate { .. }, 8) => "vlrepb",
(&Inst::VecLoadReplicate { .. }, 16) => "vlreph",
(&Inst::VecLoadReplicate { .. }, 32) => "vlrepf",
(&Inst::VecLoadReplicate { .. }, 64) => "vlrepg",
(&Inst::VecLoadReplicateRev { .. }, 16) => "vlbrreph",
(&Inst::VecLoadReplicateRev { .. }, 32) => "vlbrrepf",
(&Inst::VecLoadReplicateRev { .. }, 64) => "vlbrrepg",
_ => unreachable!(),
};
let rd = pretty_print_reg(rd.to_reg(), allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: true,
have_d20: false,
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: true,
},
);
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, opcode, rd, mem)
}
&Inst::VecMov { rd, rn } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
format!("vlr {}, {}", rd, rn)
}
&Inst::VecCMov { rd, cond, ri, rm } => {
let rd = pretty_print_reg_mod(rd, ri, allocs);
let rm = pretty_print_reg(rm, allocs);
let cond = cond.invert().pretty_print_default();
format!("j{} 10 ; vlr {}, {}", cond, rd, rm)
}
&Inst::MovToVec128 { rd, rn, rm } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
let rm = pretty_print_reg(rm, allocs);
format!("vlvgp {}, {}, {}", rd, rn, rm)
}
&Inst::VecLoadConst { rd, const_data } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let tmp = pretty_print_reg(writable_spilltmp_reg().to_reg(), &mut empty_allocs);
format!(
"bras {}, 20 ; data.u128 0x{:032x} ; vl {}, 0({})",
tmp, const_data, rd, tmp
)
}
&Inst::VecLoadConstReplicate {
size,
rd,
const_data,
} => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let tmp = pretty_print_reg(writable_spilltmp_reg().to_reg(), &mut empty_allocs);
let (opcode, data) = match size {
32 => ("vlrepf", format!("0x{:08x}", const_data as u32)),
64 => ("vlrepg", format!("0x{:016x}", const_data)),
_ => unreachable!(),
};
format!(
"bras {}, {} ; data.u{} {} ; {} {}, 0({})",
tmp,
4 + size / 8,
size,
data,
opcode,
rd,
tmp
)
}
&Inst::VecImmByteMask { rd, mask } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
format!("vgbm {}, {}", rd, mask)
}
&Inst::VecImmBitMask {
size,
rd,
start_bit,
end_bit,
} => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let op = match size {
8 => "vgmb",
16 => "vgmh",
32 => "vgmf",
64 => "vgmg",
_ => unreachable!(),
};
format!("{} {}, {}, {}", op, rd, start_bit, end_bit)
}
&Inst::VecImmReplicate { size, rd, imm } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let op = match size {
8 => "vrepib",
16 => "vrepih",
32 => "vrepif",
64 => "vrepig",
_ => unreachable!(),
};
format!("{} {}, {}", op, rd, imm)
}
&Inst::VecLoadLane {
size,
rd,
ri,
ref mem,
lane_imm,
}
| &Inst::VecLoadLaneRev {
size,
rd,
ri,
ref mem,
lane_imm,
} => {
let opcode_vrx = match (self, size) {
(&Inst::VecLoadLane { .. }, 8) => "vleb",
(&Inst::VecLoadLane { .. }, 16) => "vleh",
(&Inst::VecLoadLane { .. }, 32) => "vlef",
(&Inst::VecLoadLane { .. }, 64) => "vleg",
(&Inst::VecLoadLaneRev { .. }, 16) => "vlebrh",
(&Inst::VecLoadLaneRev { .. }, 32) => "vlebrf",
(&Inst::VecLoadLaneRev { .. }, 64) => "vlebrg",
_ => unreachable!(),
};
let (rd, _) = pretty_print_fpr(rd.to_reg(), allocs);
let _ri = allocs.next(ri);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: true,
have_d20: false,
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: true,
},
);
let mem = mem.pretty_print_default();
format!("{}{} {}, {}, {}", mem_str, opcode_vrx, rd, mem, lane_imm)
}
&Inst::VecLoadLaneUndef {
size,
rd,
ref mem,
lane_imm,
}
| &Inst::VecLoadLaneRevUndef {
size,
rd,
ref mem,
lane_imm,
} => {
let (opcode_vrx, opcode_rx, opcode_rxy) = match (self, size) {
(&Inst::VecLoadLaneUndef { .. }, 8) => ("vleb", None, None),
(&Inst::VecLoadLaneUndef { .. }, 16) => ("vleh", None, None),
(&Inst::VecLoadLaneUndef { .. }, 32) => ("vlef", Some("le"), Some("ley")),
(&Inst::VecLoadLaneUndef { .. }, 64) => ("vleg", Some("ld"), Some("ldy")),
(&Inst::VecLoadLaneRevUndef { .. }, 16) => ("vlebrh", None, None),
(&Inst::VecLoadLaneRevUndef { .. }, 32) => ("vlebrf", None, None),
(&Inst::VecLoadLaneRevUndef { .. }, 64) => ("vlebrg", None, None),
_ => unreachable!(),
};
let (rd, rd_fpr) = pretty_print_fpr(rd.to_reg(), allocs);
let mem = mem.with_allocs(allocs);
if lane_imm == 0 && rd_fpr.is_some() && opcode_rx.is_some() {
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: true,
have_d20: true,
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: true,
},
);
let op = match &mem {
&MemArg::BXD12 { .. } => opcode_rx,
&MemArg::BXD20 { .. } => opcode_rxy,
_ => unreachable!(),
};
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, op.unwrap(), rd_fpr.unwrap(), mem)
} else {
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: true,
have_d20: false,
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: true,
},
);
let mem = mem.pretty_print_default();
format!("{}{} {}, {}, {}", mem_str, opcode_vrx, rd, mem, lane_imm)
}
}
&Inst::VecStoreLane {
size,
rd,
ref mem,
lane_imm,
}
| &Inst::VecStoreLaneRev {
size,
rd,
ref mem,
lane_imm,
} => {
let (opcode_vrx, opcode_rx, opcode_rxy) = match (self, size) {
(&Inst::VecStoreLane { .. }, 8) => ("vsteb", None, None),
(&Inst::VecStoreLane { .. }, 16) => ("vsteh", None, None),
(&Inst::VecStoreLane { .. }, 32) => ("vstef", Some("ste"), Some("stey")),
(&Inst::VecStoreLane { .. }, 64) => ("vsteg", Some("std"), Some("stdy")),
(&Inst::VecStoreLaneRev { .. }, 16) => ("vstebrh", None, None),
(&Inst::VecStoreLaneRev { .. }, 32) => ("vstebrf", None, None),
(&Inst::VecStoreLaneRev { .. }, 64) => ("vstebrg", None, None),
_ => unreachable!(),
};
let (rd, rd_fpr) = pretty_print_fpr(rd, allocs);
let mem = mem.with_allocs(allocs);
if lane_imm == 0 && rd_fpr.is_some() && opcode_rx.is_some() {
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: true,
have_d20: true,
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: true,
},
);
let op = match &mem {
&MemArg::BXD12 { .. } => opcode_rx,
&MemArg::BXD20 { .. } => opcode_rxy,
_ => unreachable!(),
};
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, op.unwrap(), rd_fpr.unwrap(), mem)
} else {
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: true,
have_d20: false,
have_pcrel: false,
have_unaligned_pcrel: false,
have_index: true,
},
);
let mem = mem.pretty_print_default();
format!("{}{} {}, {}, {}", mem_str, opcode_vrx, rd, mem, lane_imm,)
}
}
&Inst::VecInsertLane {
size,
rd,
ri,
rn,
lane_imm,
lane_reg,
} => {
let op = match size {
8 => "vlvgb",
16 => "vlvgh",
32 => "vlvgf",
64 => "vlvgg",
_ => unreachable!(),
};
let rd = pretty_print_reg_mod(rd, ri, allocs);
let rn = pretty_print_reg(rn, allocs);
let lane_reg = if lane_reg != zero_reg() {
format!("({})", pretty_print_reg(lane_reg, allocs))
} else {
"".to_string()
};
format!("{} {}, {}, {}{}", op, rd, rn, lane_imm, lane_reg)
}
&Inst::VecInsertLaneUndef {
size,
rd,
rn,
lane_imm,
lane_reg,
} => {
let (opcode_vrs, opcode_rre) = match size {
8 => ("vlvgb", None),
16 => ("vlvgh", None),
32 => ("vlvgf", None),
64 => ("vlvgg", Some("ldgr")),
_ => unreachable!(),
};
let (rd, rd_fpr) = pretty_print_fpr(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
let lane_reg = if lane_reg != zero_reg() {
format!("({})", pretty_print_reg(lane_reg, allocs))
} else {
"".to_string()
};
if opcode_rre.is_some() && lane_imm == 0 && lane_reg.is_empty() && rd_fpr.is_some()
{
format!("{} {}, {}", opcode_rre.unwrap(), rd_fpr.unwrap(), rn)
} else {
format!("{} {}, {}, {}{}", opcode_vrs, rd, rn, lane_imm, lane_reg)
}
}
&Inst::VecExtractLane {
size,
rd,
rn,
lane_imm,
lane_reg,
} => {
let (opcode_vrs, opcode_rre) = match size {
8 => ("vlgvb", None),
16 => ("vlgvh", None),
32 => ("vlgvf", None),
64 => ("vlgvg", Some("lgdr")),
_ => unreachable!(),
};
let rd = pretty_print_reg(rd.to_reg(), allocs);
let (rn, rn_fpr) = pretty_print_fpr(rn, allocs);
let lane_reg = if lane_reg != zero_reg() {
format!("({})", pretty_print_reg(lane_reg, allocs))
} else {
"".to_string()
};
if opcode_rre.is_some() && lane_imm == 0 && lane_reg.is_empty() && rn_fpr.is_some()
{
format!("{} {}, {}", opcode_rre.unwrap(), rd, rn_fpr.unwrap())
} else {
format!("{} {}, {}, {}{}", opcode_vrs, rd, rn, lane_imm, lane_reg)
}
}
&Inst::VecInsertLaneImm {
size,
rd,
ri,
imm,
lane_imm,
} => {
let op = match size {
8 => "vleib",
16 => "vleih",
32 => "vleif",
64 => "vleig",
_ => unreachable!(),
};
let rd = pretty_print_reg_mod(rd, ri, allocs);
format!("{} {}, {}, {}", op, rd, imm, lane_imm)
}
&Inst::VecReplicateLane {
size,
rd,
rn,
lane_imm,
} => {
let op = match size {
8 => "vrepb",
16 => "vreph",
32 => "vrepf",
64 => "vrepg",
_ => unreachable!(),
};
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
format!("{} {}, {}, {}", op, rd, rn, lane_imm)
}
&Inst::Extend {
rd,
rn,
signed,
from_bits,
to_bits,
} => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
let op = match (signed, from_bits, to_bits) {
(_, 1, 32) => "llcr",
(_, 1, 64) => "llgcr",
(false, 8, 32) => "llcr",
(false, 8, 64) => "llgcr",
(true, 8, 32) => "lbr",
(true, 8, 64) => "lgbr",
(false, 16, 32) => "llhr",
(false, 16, 64) => "llghr",
(true, 16, 32) => "lhr",
(true, 16, 64) => "lghr",
(false, 32, 64) => "llgfr",
(true, 32, 64) => "lgfr",
_ => panic!("Unsupported Extend case: {:?}", self),
};
format!("{} {}, {}", op, rd, rn)
}
&Inst::Call { link, ref info, .. } => {
let link = link.to_reg();
let tls_symbol = match &info.tls_symbol {
None => "".to_string(),
Some(SymbolReloc::TlsGd { name }) => {
format!(":tls_gdcall:{}", name.display(None))
}
_ => unreachable!(),
};
debug_assert_eq!(link, gpr(14));
format!(
"brasl {}, {}{}",
show_reg(link),
info.dest.display(None),
tls_symbol
)
}
&Inst::CallInd { link, ref info, .. } => {
let link = link.to_reg();
let rn = pretty_print_reg(info.rn, allocs);
debug_assert_eq!(link, gpr(14));
format!("basr {}, {}", show_reg(link), rn)
}
&Inst::Args { ref args } => {
let mut s = "args".to_string();
for arg in args {
let preg = pretty_print_reg(arg.preg, &mut empty_allocs);
let def = pretty_print_reg(arg.vreg.to_reg(), allocs);
write!(&mut s, " {}={}", def, preg).unwrap();
}
s
}
&Inst::Rets { ref rets } => {
let mut s = "rets".to_string();
for ret in rets {
let preg = pretty_print_reg(ret.preg, &mut empty_allocs);
let vreg = pretty_print_reg(ret.vreg, allocs);
write!(&mut s, " {}={}", vreg, preg).unwrap();
}
s
}
&Inst::Ret { link } => {
debug_assert_eq!(link, gpr(14));
let link = show_reg(link);
format!("br {link}")
}
&Inst::Jump { dest } => {
let dest = dest.to_string();
format!("jg {}", dest)
}
&Inst::IndirectBr { rn, .. } => {
let rn = pretty_print_reg(rn, allocs);
format!("br {}", rn)
}
&Inst::CondBr {
taken,
not_taken,
cond,
} => {
let taken = taken.to_string();
let not_taken = not_taken.to_string();
let cond = cond.pretty_print_default();
format!("jg{} {} ; jg {}", cond, taken, not_taken)
}
&Inst::OneWayCondBr { target, cond } => {
let target = target.to_string();
let cond = cond.pretty_print_default();
format!("jg{} {}", cond, target)
}
&Inst::Debugtrap => ".word 0x0001 # debugtrap".to_string(),
&Inst::Trap { trap_code } => {
format!(".word 0x0000 # trap={}", trap_code)
}
&Inst::TrapIf { cond, trap_code } => {
let cond = cond.pretty_print_default();
format!("jg{} .+2 # trap={}", cond, trap_code)
}
&Inst::JTSequence { ridx, ref targets } => {
let ridx = pretty_print_reg(ridx, allocs);
let rtmp = pretty_print_reg(writable_spilltmp_reg().to_reg(), &mut empty_allocs);
// The first entry is the default target, which is not emitted
// into the jump table, so we skip it here. It is only in the
// list so MachTerminator will see the potential target.
let jt_entries: String = targets
.iter()
.skip(1)
.map(|label| format!(" {}", label.to_string()))
.collect();
format!(
concat!(
"larl {}, 14 ; ",
"agf {}, 0({}, {}) ; ",
"br {} ; ",
"jt_entries{}"
),
rtmp, rtmp, rtmp, ridx, rtmp, jt_entries,
)
}
&Inst::LoadSymbolReloc {
rd,
ref symbol_reloc,
} => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let tmp = pretty_print_reg(writable_spilltmp_reg().to_reg(), &mut empty_allocs);
let symbol = match &**symbol_reloc {
SymbolReloc::Absolute { name, offset } => {
format!("{} + {}", name.display(None), offset)
}
SymbolReloc::TlsGd { name } => format!("{}@tlsgd", name.display(None)),
};
format!("bras {}, 12 ; data {} ; lg {}, 0({})", tmp, symbol, rd, tmp)
}
&Inst::LoadAddr { rd, ref mem } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(
&mem,
state,
MemInstType {
have_d12: true,
have_d20: true,
have_pcrel: true,
have_unaligned_pcrel: true,
have_index: true,
},
);
let op = match &mem {
&MemArg::BXD12 { .. } => "la",
&MemArg::BXD20 { .. } => "lay",
&MemArg::Label { .. } | &MemArg::Symbol { .. } => "larl",
_ => unreachable!(),
};
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, op, rd, mem)
}
&Inst::Loop { ref body, cond } => {
let body = body
.into_iter()
.map(|inst| inst.print_with_state(state, allocs))
.collect::<Vec<_>>()
.join(" ; ");
let cond = cond.pretty_print_default();
format!("0: {} ; jg{} 0b ; 1:", body, cond)
}
&Inst::CondBreak { cond } => {
let cond = cond.pretty_print_default();
format!("jg{} 1f", cond)
}
&Inst::VirtualSPOffsetAdj { offset } => {
state.virtual_sp_offset += offset;
format!("virtual_sp_offset_adjust {}", offset)
}
&Inst::Unwind { ref inst } => {
format!("unwind {:?}", inst)
}
&Inst::DummyUse { reg } => {
let reg = pretty_print_reg(reg, allocs);
format!("dummy_use {}", reg)
}
}
}
}
//=============================================================================
// Label fixups and jump veneers.
/// Different forms of label references for different instruction formats.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum LabelUse {
#[allow(dead_code)]
/// RI-format branch. 16-bit signed offset. PC-relative, offset is imm << 1.
BranchRI,
/// RIL-format branch. 32-bit signed offset. PC-relative, offset is imm << 1.
BranchRIL,
/// 32-bit PC relative constant offset (from address of constant itself),
/// signed. Used in jump tables.
PCRel32,
/// 32-bit PC relative constant offset (from address of call instruction),
/// signed. Offset is imm << 1. Used for call relocations.
PCRel32Dbl,
}
impl MachInstLabelUse for LabelUse {
/// Alignment for veneer code.
const ALIGN: CodeOffset = 2;
/// Maximum PC-relative range (positive), inclusive.
fn max_pos_range(self) -> CodeOffset {
match self {
// 16-bit signed immediate, left-shifted by 1.
LabelUse::BranchRI => ((1 << 15) - 1) << 1,
// 32-bit signed immediate, left-shifted by 1.
LabelUse::BranchRIL => 0xffff_fffe,
// 32-bit signed immediate.
LabelUse::PCRel32 => 0x7fff_ffff,
// 32-bit signed immediate, left-shifted by 1, offset by 2.
LabelUse::PCRel32Dbl => 0xffff_fffc,
}
}
/// Maximum PC-relative range (negative).
fn max_neg_range(self) -> CodeOffset {
match self {
// 16-bit signed immediate, left-shifted by 1.
LabelUse::BranchRI => (1 << 15) << 1,
// 32-bit signed immediate, left-shifted by 1.
// NOTE: This should be 4GB, but CodeOffset is only u32.
LabelUse::BranchRIL => 0xffff_ffff,
// 32-bit signed immediate.
LabelUse::PCRel32 => 0x8000_0000,
// 32-bit signed immediate, left-shifted by 1, offset by 2.
// NOTE: This should be 4GB + 2, but CodeOffset is only u32.
LabelUse::PCRel32Dbl => 0xffff_ffff,
}
}
/// Size of window into code needed to do the patch.
fn patch_size(self) -> CodeOffset {
match self {
LabelUse::BranchRI => 4,
LabelUse::BranchRIL => 6,
LabelUse::PCRel32 => 4,
LabelUse::PCRel32Dbl => 4,
}
}
/// Perform the patch.
fn patch(self, buffer: &mut [u8], use_offset: CodeOffset, label_offset: CodeOffset) {
let pc_rel = (label_offset as i64) - (use_offset as i64);
debug_assert!(pc_rel <= self.max_pos_range() as i64);
debug_assert!(pc_rel >= -(self.max_neg_range() as i64));
debug_assert!(pc_rel & 1 == 0);
let pc_rel_shifted = pc_rel >> 1;
match self {
LabelUse::BranchRI => {
buffer[2..4].clone_from_slice(&u16::to_be_bytes(pc_rel_shifted as u16));
}
LabelUse::BranchRIL => {
buffer[2..6].clone_from_slice(&u32::to_be_bytes(pc_rel_shifted as u32));
}
LabelUse::PCRel32 => {
let insn_word = u32::from_be_bytes([buffer[0], buffer[1], buffer[2], buffer[3]]);
let insn_word = insn_word.wrapping_add(pc_rel as u32);
buffer[0..4].clone_from_slice(&u32::to_be_bytes(insn_word));
}
LabelUse::PCRel32Dbl => {
let insn_word = u32::from_be_bytes([buffer[0], buffer[1], buffer[2], buffer[3]]);
let insn_word = insn_word.wrapping_add((pc_rel_shifted + 1) as u32);
buffer[0..4].clone_from_slice(&u32::to_be_bytes(insn_word));
}
}
}
/// Is a veneer supported for this label reference type?
fn supports_veneer(self) -> bool {
false
}
/// How large is the veneer, if supported?
fn veneer_size(self) -> CodeOffset {
0
}
fn worst_case_veneer_size() -> CodeOffset {
0
}
/// Generate a veneer into the buffer, given that this veneer is at `veneer_offset`, and return
/// an offset and label-use for the veneer's use of the original label.
fn generate_veneer(
self,
_buffer: &mut [u8],
_veneer_offset: CodeOffset,
) -> (CodeOffset, LabelUse) {
unreachable!();
}
fn from_reloc(reloc: Reloc, addend: Addend) -> Option<Self> {
match (reloc, addend) {
(Reloc::S390xPCRel32Dbl, 2) => Some(LabelUse::PCRel32Dbl),
(Reloc::S390xPLTRel32Dbl, 2) => Some(LabelUse::PCRel32Dbl),
_ => None,
}
}
}