blob: e916d9e723593b7a335e2500f4e5c4d67593aaa9 [file] [log] [blame]
//! This module defines aarch64-specific machine instruction types.
use crate::binemit::{Addend, CodeOffset, Reloc};
use crate::ir::types::{F32, F64, I128, I16, I32, I64, I8, I8X16, R32, R64};
use crate::ir::{types, ExternalName, MemFlags, Opcode, Type};
use crate::isa::{CallConv, FunctionAlignment};
use crate::machinst::*;
use crate::{settings, CodegenError, CodegenResult};
use crate::machinst::{PrettyPrint, Reg, RegClass, Writable};
use alloc::vec::Vec;
use regalloc2::{PRegSet, VReg};
use smallvec::{smallvec, SmallVec};
use std::fmt::Write;
use std::string::{String, ToString};
pub(crate) mod regs;
pub(crate) use self::regs::*;
pub mod imms;
pub use self::imms::*;
pub mod args;
pub use self::args::*;
pub mod emit;
pub(crate) use self::emit::*;
use crate::isa::aarch64::abi::AArch64MachineDeps;
pub(crate) mod unwind;
#[cfg(test)]
mod emit_tests;
//=============================================================================
// Instructions (top level): definition
pub use crate::isa::aarch64::lower::isle::generated_code::{
ALUOp, ALUOp3, AMode, APIKey, AtomicRMWLoopOp, AtomicRMWOp, BitOp, BranchTargetType, FPUOp1,
FPUOp2, FPUOp3, FpuRoundMode, FpuToIntOp, IntToFpuOp, MInst as Inst, MoveWideOp, VecALUModOp,
VecALUOp, VecExtendOp, VecLanesOp, VecMisc2, VecPairOp, VecRRLongOp, VecRRNarrowOp,
VecRRPairLongOp, VecRRRLongModOp, VecRRRLongOp, VecShiftImmModOp, VecShiftImmOp,
};
/// A floating-point unit (FPU) operation with two args, a register and an immediate.
#[derive(Copy, Clone, Debug)]
pub enum FPUOpRI {
/// Unsigned right shift. Rd = Rn << #imm
UShr32(FPURightShiftImm),
/// Unsigned right shift. Rd = Rn << #imm
UShr64(FPURightShiftImm),
}
/// A floating-point unit (FPU) operation with two args, a register and
/// an immediate that modifies its dest (so takes that input value as a
/// separate virtual register).
#[derive(Copy, Clone, Debug)]
pub enum FPUOpRIMod {
/// Shift left and insert. Rd |= Rn << #imm
Sli32(FPULeftShiftImm),
/// Shift left and insert. Rd |= Rn << #imm
Sli64(FPULeftShiftImm),
}
impl BitOp {
/// Get the assembly mnemonic for this opcode.
pub fn op_str(&self) -> &'static str {
match self {
BitOp::RBit => "rbit",
BitOp::Clz => "clz",
BitOp::Cls => "cls",
BitOp::Rev16 => "rev16",
BitOp::Rev32 => "rev32",
BitOp::Rev64 => "rev64",
}
}
}
/// Additional information for (direct) Call instructions, left out of line to lower the size of
/// the Inst enum.
#[derive(Clone, Debug)]
pub struct CallInfo {
/// Call destination.
pub dest: ExternalName,
/// Arguments to the call instruction.
pub uses: CallArgList,
/// Return values from the call instruction.
pub defs: CallRetList,
/// Clobbers register set.
pub clobbers: PRegSet,
/// Instruction opcode.
pub opcode: Opcode,
/// Caller calling convention.
pub caller_callconv: CallConv,
/// Callee calling convention.
pub callee_callconv: CallConv,
/// The number of bytes that the callee will pop from the stack for the
/// caller, if any. (Used for popping stack arguments with the `tail`
/// calling convention.)
pub callee_pop_size: u32,
}
/// Additional information for CallInd instructions, left out of line to lower the size of the Inst
/// enum.
#[derive(Clone, Debug)]
pub struct CallIndInfo {
/// Function pointer for indirect call.
pub rn: Reg,
/// Arguments to the call instruction.
pub uses: SmallVec<[CallArgPair; 8]>,
/// Return values from the call instruction.
pub defs: SmallVec<[CallRetPair; 8]>,
/// Clobbers register set.
pub clobbers: PRegSet,
/// Instruction opcode.
pub opcode: Opcode,
/// Caller calling convention.
pub caller_callconv: CallConv,
/// Callee calling convention.
pub callee_callconv: CallConv,
/// The number of bytes that the callee will pop from the stack for the
/// caller, if any. (Used for popping stack arguments with the `tail`
/// calling convention.)
pub callee_pop_size: u32,
}
/// Additional information for `return_call[_ind]` instructions, left out of
/// line to lower the size of the `Inst` enum.
#[derive(Clone, Debug)]
pub struct ReturnCallInfo {
/// Arguments to the call instruction.
pub uses: CallArgList,
/// Instruction opcode.
pub opcode: Opcode,
/// The size of the current/old stack frame's stack arguments.
pub old_stack_arg_size: u32,
/// The size of the new stack frame's stack arguments. This is necessary
/// for copying the frame over our current frame. It must already be
/// allocated on the stack.
pub new_stack_arg_size: u32,
/// API key to use to restore the return address, if any.
pub key: Option<APIKey>,
}
fn count_zero_half_words(mut value: u64, num_half_words: u8) -> usize {
let mut count = 0;
for _ in 0..num_half_words {
if value & 0xffff == 0 {
count += 1;
}
value >>= 16;
}
count
}
#[test]
fn inst_size_test() {
// This test will help with unintentionally growing the size
// of the Inst enum.
assert_eq!(32, std::mem::size_of::<Inst>());
}
impl Inst {
/// Create an instruction that loads a constant, using one of serveral options (MOVZ, MOVN,
/// logical immediate, or constant pool).
pub fn load_constant<F: FnMut(Type) -> Writable<Reg>>(
rd: Writable<Reg>,
value: u64,
alloc_tmp: &mut F,
) -> SmallVec<[Inst; 4]> {
// NB: this is duplicated in `lower/isle.rs` and `inst.isle` right now,
// if modifications are made here before this is deleted after moving to
// ISLE then those locations should be updated as well.
if let Some(imm) = MoveWideConst::maybe_from_u64(value) {
// 16-bit immediate (shifted by 0, 16, 32 or 48 bits) in MOVZ
smallvec![Inst::MovWide {
op: MoveWideOp::MovZ,
rd,
imm,
size: OperandSize::Size64
}]
} else if let Some(imm) = MoveWideConst::maybe_from_u64(!value) {
// 16-bit immediate (shifted by 0, 16, 32 or 48 bits) in MOVN
smallvec![Inst::MovWide {
op: MoveWideOp::MovN,
rd,
imm,
size: OperandSize::Size64
}]
} else if let Some(imml) = ImmLogic::maybe_from_u64(value, I64) {
// Weird logical-instruction immediate in ORI using zero register
smallvec![Inst::AluRRImmLogic {
alu_op: ALUOp::Orr,
size: OperandSize::Size64,
rd,
rn: zero_reg(),
imml,
}]
} else {
let mut insts = smallvec![];
// If the top 32 bits are zero, use 32-bit `mov` operations.
let (num_half_words, size, negated) = if value >> 32 == 0 {
(2, OperandSize::Size32, (!value << 32) >> 32)
} else {
(4, OperandSize::Size64, !value)
};
// If the number of 0xffff half words is greater than the number of 0x0000 half words
// it is more efficient to use `movn` for the first instruction.
let first_is_inverted = count_zero_half_words(negated, num_half_words)
> count_zero_half_words(value, num_half_words);
// Either 0xffff or 0x0000 half words can be skipped, depending on the first
// instruction used.
let ignored_halfword = if first_is_inverted { 0xffff } else { 0 };
let halfwords: SmallVec<[_; 4]> = (0..num_half_words)
.filter_map(|i| {
let imm16 = (value >> (16 * i)) & 0xffff;
if imm16 == ignored_halfword {
None
} else {
Some((i, imm16))
}
})
.collect();
let mut prev_result = None;
let last_index = halfwords.last().unwrap().0;
for (i, imm16) in halfwords {
let shift = i * 16;
let rd = if i == last_index { rd } else { alloc_tmp(I16) };
if let Some(rn) = prev_result {
let imm = MoveWideConst::maybe_with_shift(imm16 as u16, shift).unwrap();
insts.push(Inst::MovK { rd, rn, imm, size });
} else {
if first_is_inverted {
let imm =
MoveWideConst::maybe_with_shift(((!imm16) & 0xffff) as u16, shift)
.unwrap();
insts.push(Inst::MovWide {
op: MoveWideOp::MovN,
rd,
imm,
size,
});
} else {
let imm = MoveWideConst::maybe_with_shift(imm16 as u16, shift).unwrap();
insts.push(Inst::MovWide {
op: MoveWideOp::MovZ,
rd,
imm,
size,
});
}
}
prev_result = Some(rd.to_reg());
}
assert!(prev_result.is_some());
insts
}
}
/// Generic constructor for a load (zero-extending where appropriate).
pub fn gen_load(into_reg: Writable<Reg>, mem: AMode, ty: Type, flags: MemFlags) -> Inst {
match ty {
I8 => Inst::ULoad8 {
rd: into_reg,
mem,
flags,
},
I16 => Inst::ULoad16 {
rd: into_reg,
mem,
flags,
},
I32 | R32 => Inst::ULoad32 {
rd: into_reg,
mem,
flags,
},
I64 | R64 => Inst::ULoad64 {
rd: into_reg,
mem,
flags,
},
F32 => Inst::FpuLoad32 {
rd: into_reg,
mem,
flags,
},
F64 => Inst::FpuLoad64 {
rd: into_reg,
mem,
flags,
},
_ => {
if ty.is_vector() {
let bits = ty_bits(ty);
let rd = into_reg;
if bits == 128 {
Inst::FpuLoad128 { rd, mem, flags }
} else {
assert_eq!(bits, 64);
Inst::FpuLoad64 { rd, mem, flags }
}
} else {
unimplemented!("gen_load({})", ty);
}
}
}
}
/// Generic constructor for a store.
pub fn gen_store(mem: AMode, from_reg: Reg, ty: Type, flags: MemFlags) -> Inst {
match ty {
I8 => Inst::Store8 {
rd: from_reg,
mem,
flags,
},
I16 => Inst::Store16 {
rd: from_reg,
mem,
flags,
},
I32 | R32 => Inst::Store32 {
rd: from_reg,
mem,
flags,
},
I64 | R64 => Inst::Store64 {
rd: from_reg,
mem,
flags,
},
F32 => Inst::FpuStore32 {
rd: from_reg,
mem,
flags,
},
F64 => Inst::FpuStore64 {
rd: from_reg,
mem,
flags,
},
_ => {
if ty.is_vector() {
let bits = ty_bits(ty);
let rd = from_reg;
if bits == 128 {
Inst::FpuStore128 { rd, mem, flags }
} else {
assert_eq!(bits, 64);
Inst::FpuStore64 { rd, mem, flags }
}
} else {
unimplemented!("gen_store({})", ty);
}
}
}
}
}
//=============================================================================
// Instructions: get_regs
fn memarg_operands<F: Fn(VReg) -> VReg>(memarg: &AMode, collector: &mut OperandCollector<'_, F>) {
// This should match `AMode::with_allocs()`.
match memarg {
&AMode::Unscaled { rn, .. } | &AMode::UnsignedOffset { rn, .. } => {
collector.reg_use(rn);
}
&AMode::RegReg { rn, rm, .. }
| &AMode::RegScaled { rn, rm, .. }
| &AMode::RegScaledExtended { rn, rm, .. }
| &AMode::RegExtended { rn, rm, .. } => {
collector.reg_use(rn);
collector.reg_use(rm);
}
&AMode::Label { .. } => {}
&AMode::SPPreIndexed { .. } | &AMode::SPPostIndexed { .. } => {}
&AMode::FPOffset { .. } => {}
&AMode::SPOffset { .. } | &AMode::NominalSPOffset { .. } => {}
&AMode::RegOffset { rn, .. } => {
collector.reg_use(rn);
}
&AMode::Const { .. } => {}
}
}
fn pairmemarg_operands<F: Fn(VReg) -> VReg>(
pairmemarg: &PairAMode,
collector: &mut OperandCollector<'_, F>,
) {
// This should match `PairAMode::with_allocs()`.
match pairmemarg {
&PairAMode::SignedOffset { reg, .. } => {
collector.reg_use(reg);
}
&PairAMode::SPPreIndexed { .. } | &PairAMode::SPPostIndexed { .. } => {}
}
}
fn aarch64_get_operands<F: Fn(VReg) -> VReg>(inst: &Inst, collector: &mut OperandCollector<'_, F>) {
match inst {
&Inst::AluRRR { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::AluRRRR { rd, rn, rm, ra, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
collector.reg_use(ra);
}
&Inst::AluRRImm12 { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::AluRRImmLogic { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::AluRRImmShift { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::AluRRRShift { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::AluRRRExtend { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::BitRR { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::ULoad8 { rd, ref mem, .. }
| &Inst::SLoad8 { rd, ref mem, .. }
| &Inst::ULoad16 { rd, ref mem, .. }
| &Inst::SLoad16 { rd, ref mem, .. }
| &Inst::ULoad32 { rd, ref mem, .. }
| &Inst::SLoad32 { rd, ref mem, .. }
| &Inst::ULoad64 { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::Store8 { rd, ref mem, .. }
| &Inst::Store16 { rd, ref mem, .. }
| &Inst::Store32 { rd, ref mem, .. }
| &Inst::Store64 { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::StoreP64 {
rt, rt2, ref mem, ..
} => {
collector.reg_use(rt);
collector.reg_use(rt2);
pairmemarg_operands(mem, collector);
}
&Inst::LoadP64 {
rt, rt2, ref mem, ..
} => {
collector.reg_def(rt);
collector.reg_def(rt2);
pairmemarg_operands(mem, collector);
}
&Inst::Mov { rd, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rm);
}
&Inst::MovFromPReg { rd, rm } => {
debug_assert!(rd.to_reg().is_virtual());
collector.reg_def(rd);
collector.reg_fixed_nonallocatable(rm);
}
&Inst::MovToPReg { rd, rm } => {
debug_assert!(rm.is_virtual());
collector.reg_fixed_nonallocatable(rd);
collector.reg_use(rm);
}
&Inst::MovK { rd, rn, .. } => {
collector.reg_use(rn);
collector.reg_reuse_def(rd, 0); // `rn` == `rd`.
}
&Inst::MovWide { rd, .. } => {
collector.reg_def(rd);
}
&Inst::CSel { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::CSNeg { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::CSet { rd, .. } | &Inst::CSetm { rd, .. } => {
collector.reg_def(rd);
}
&Inst::CCmp { rn, rm, .. } => {
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::CCmpImm { rn, .. } => {
collector.reg_use(rn);
}
&Inst::AtomicRMWLoop {
op,
addr,
operand,
oldval,
scratch1,
scratch2,
..
} => {
collector.reg_fixed_use(addr, xreg(25));
collector.reg_fixed_use(operand, xreg(26));
collector.reg_fixed_def(oldval, xreg(27));
collector.reg_fixed_def(scratch1, xreg(24));
if op != AtomicRMWLoopOp::Xchg {
collector.reg_fixed_def(scratch2, xreg(28));
}
}
&Inst::AtomicRMW { rs, rt, rn, .. } => {
collector.reg_use(rs);
collector.reg_def(rt);
collector.reg_use(rn);
}
&Inst::AtomicCAS { rd, rs, rt, rn, .. } => {
collector.reg_reuse_def(rd, 1); // reuse `rs`.
collector.reg_use(rs);
collector.reg_use(rt);
collector.reg_use(rn);
}
&Inst::AtomicCASLoop {
addr,
expected,
replacement,
oldval,
scratch,
..
} => {
collector.reg_fixed_use(addr, xreg(25));
collector.reg_fixed_use(expected, xreg(26));
collector.reg_fixed_use(replacement, xreg(28));
collector.reg_fixed_def(oldval, xreg(27));
collector.reg_fixed_def(scratch, xreg(24));
}
&Inst::LoadAcquire { rt, rn, .. } => {
collector.reg_use(rn);
collector.reg_def(rt);
}
&Inst::StoreRelease { rt, rn, .. } => {
collector.reg_use(rn);
collector.reg_use(rt);
}
&Inst::Fence {} | &Inst::Csdb {} => {}
&Inst::FpuMove64 { rd, rn } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::FpuMove128 { rd, rn } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::FpuMoveFromVec { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::FpuExtend { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::FpuRR { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::FpuRRR { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::FpuRRI { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::FpuRRIMod { rd, ri, rn, .. } => {
collector.reg_reuse_def(rd, 1); // reuse `ri`.
collector.reg_use(ri);
collector.reg_use(rn);
}
&Inst::FpuRRRR { rd, rn, rm, ra, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
collector.reg_use(ra);
}
&Inst::VecMisc { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecLanes { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecShiftImm { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecShiftImmMod { rd, ri, rn, .. } => {
collector.reg_reuse_def(rd, 1); // `rd` == `ri`.
collector.reg_use(ri);
collector.reg_use(rn);
}
&Inst::VecExtract { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::VecTbl { rd, rn, rm } => {
collector.reg_use(rn);
collector.reg_use(rm);
collector.reg_def(rd);
}
&Inst::VecTblExt { rd, ri, rn, rm } => {
collector.reg_use(rn);
collector.reg_use(rm);
collector.reg_reuse_def(rd, 3); // `rd` == `ri`.
collector.reg_use(ri);
}
&Inst::VecTbl2 { rd, rn, rn2, rm } => {
// Constrain to v30 / v31 so that we satisfy the "adjacent
// registers" constraint without use of pinned vregs in
// lowering.
collector.reg_fixed_use(rn, vreg(30));
collector.reg_fixed_use(rn2, vreg(31));
collector.reg_use(rm);
collector.reg_def(rd);
}
&Inst::VecTbl2Ext {
rd,
ri,
rn,
rn2,
rm,
} => {
// Constrain to v30 / v31 so that we satisfy the "adjacent
// registers" constraint without use of pinned vregs in
// lowering.
collector.reg_fixed_use(rn, vreg(30));
collector.reg_fixed_use(rn2, vreg(31));
collector.reg_use(rm);
collector.reg_reuse_def(rd, 4); // `rd` == `ri`.
collector.reg_use(ri);
}
&Inst::VecLoadReplicate { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecCSel { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::FpuCmp { rn, rm, .. } => {
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::FpuLoad32 { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::FpuLoad64 { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::FpuLoad128 { rd, ref mem, .. } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::FpuStore32 { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::FpuStore64 { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::FpuStore128 { rd, ref mem, .. } => {
collector.reg_use(rd);
memarg_operands(mem, collector);
}
&Inst::FpuLoadP64 {
rt, rt2, ref mem, ..
} => {
collector.reg_def(rt);
collector.reg_def(rt2);
pairmemarg_operands(mem, collector);
}
&Inst::FpuStoreP64 {
rt, rt2, ref mem, ..
} => {
collector.reg_use(rt);
collector.reg_use(rt2);
pairmemarg_operands(mem, collector);
}
&Inst::FpuLoadP128 {
rt, rt2, ref mem, ..
} => {
collector.reg_def(rt);
collector.reg_def(rt2);
pairmemarg_operands(mem, collector);
}
&Inst::FpuStoreP128 {
rt, rt2, ref mem, ..
} => {
collector.reg_use(rt);
collector.reg_use(rt2);
pairmemarg_operands(mem, collector);
}
&Inst::FpuToInt { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::IntToFpu { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::FpuCSel32 { rd, rn, rm, .. } | &Inst::FpuCSel64 { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::FpuRound { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::MovToFpu { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::FpuMoveFPImm { rd, .. } => {
collector.reg_def(rd);
}
&Inst::MovToVec { rd, ri, rn, .. } => {
collector.reg_reuse_def(rd, 1); // `rd` == `ri`.
collector.reg_use(ri);
collector.reg_use(rn);
}
&Inst::MovFromVec { rd, rn, .. } | &Inst::MovFromVecSigned { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecDup { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecDupFromFpu { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecDupFPImm { rd, .. } => {
collector.reg_def(rd);
}
&Inst::VecDupImm { rd, .. } => {
collector.reg_def(rd);
}
&Inst::VecExtend { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecMovElement { rd, ri, rn, .. } => {
collector.reg_reuse_def(rd, 1); // `rd` == `ri`.
collector.reg_use(ri);
collector.reg_use(rn);
}
&Inst::VecRRLong { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecRRNarrowLow { rd, rn, .. } => {
collector.reg_use(rn);
collector.reg_def(rd);
}
&Inst::VecRRNarrowHigh { rd, ri, rn, .. } => {
collector.reg_use(rn);
collector.reg_reuse_def(rd, 2); // `rd` == `ri`.
collector.reg_use(ri);
}
&Inst::VecRRPair { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecRRRLong { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::VecRRRLongMod { rd, ri, rn, rm, .. } => {
collector.reg_reuse_def(rd, 1); // `rd` == `ri`.
collector.reg_use(ri);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::VecRRPairLong { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::VecRRR { rd, rn, rm, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::VecRRRMod { rd, ri, rn, rm, .. } | &Inst::VecFmlaElem { rd, ri, rn, rm, .. } => {
collector.reg_reuse_def(rd, 1); // `rd` == `ri`.
collector.reg_use(ri);
collector.reg_use(rn);
collector.reg_use(rm);
}
&Inst::MovToNZCV { rn } => {
collector.reg_use(rn);
}
&Inst::MovFromNZCV { rd } => {
collector.reg_def(rd);
}
&Inst::Extend { rd, rn, .. } => {
collector.reg_def(rd);
collector.reg_use(rn);
}
&Inst::Args { ref args } => {
for arg in args {
collector.reg_fixed_def(arg.vreg, arg.preg);
}
}
&Inst::Rets { ref rets } => {
for ret in rets {
collector.reg_fixed_use(ret.vreg, ret.preg);
}
}
&Inst::Ret { .. } | &Inst::AuthenticatedRet { .. } => {}
&Inst::Jump { .. } => {}
&Inst::Call { ref info, .. } => {
for u in &info.uses {
collector.reg_fixed_use(u.vreg, u.preg);
}
for d in &info.defs {
collector.reg_fixed_def(d.vreg, d.preg);
}
collector.reg_clobbers(info.clobbers);
}
&Inst::CallInd { ref info, .. } => {
if info.callee_callconv == CallConv::Tail {
// TODO(https://github.com/bytecodealliance/regalloc2/issues/145):
// This shouldn't be a fixed register constraint.
collector.reg_fixed_use(info.rn, xreg(1));
} else {
collector.reg_use(info.rn);
}
for u in &info.uses {
collector.reg_fixed_use(u.vreg, u.preg);
}
for d in &info.defs {
collector.reg_fixed_def(d.vreg, d.preg);
}
collector.reg_clobbers(info.clobbers);
}
&Inst::ReturnCall {
ref info,
callee: _,
} => {
for u in &info.uses {
collector.reg_fixed_use(u.vreg, u.preg);
}
}
&Inst::ReturnCallInd { ref info, callee } => {
collector.reg_use(callee);
for u in &info.uses {
collector.reg_fixed_use(u.vreg, u.preg);
}
}
&Inst::CondBr { ref kind, .. } => match kind {
CondBrKind::Zero(rt) | CondBrKind::NotZero(rt) => {
collector.reg_use(*rt);
}
CondBrKind::Cond(_) => {}
},
&Inst::IndirectBr { rn, .. } => {
collector.reg_use(rn);
}
&Inst::Nop0 | Inst::Nop4 => {}
&Inst::Brk => {}
&Inst::Udf { .. } => {}
&Inst::TrapIf { ref kind, .. } => match kind {
CondBrKind::Zero(rt) | CondBrKind::NotZero(rt) => {
collector.reg_use(*rt);
}
CondBrKind::Cond(_) => {}
},
&Inst::Adr { rd, .. } | &Inst::Adrp { rd, .. } => {
collector.reg_def(rd);
}
&Inst::Word4 { .. } | &Inst::Word8 { .. } => {}
&Inst::JTSequence {
ridx, rtmp1, rtmp2, ..
} => {
collector.reg_use(ridx);
collector.reg_early_def(rtmp1);
collector.reg_early_def(rtmp2);
}
&Inst::LoadExtName { rd, .. } => {
collector.reg_def(rd);
}
&Inst::LoadAddr { rd, ref mem } => {
collector.reg_def(rd);
memarg_operands(mem, collector);
}
&Inst::Paci { .. } | &Inst::Xpaclri => {
// Neither LR nor SP is an allocatable register, so there is no need
// to do anything.
}
&Inst::Bti { .. } => {}
&Inst::VirtualSPOffsetAdj { .. } => {}
&Inst::ElfTlsGetAddr { rd, .. } => {
collector.reg_fixed_def(rd, regs::xreg(0));
let mut clobbers = AArch64MachineDeps::get_regs_clobbered_by_call(CallConv::SystemV);
clobbers.remove(regs::xreg_preg(0));
collector.reg_clobbers(clobbers);
}
&Inst::MachOTlsGetAddr { rd, .. } => {
collector.reg_fixed_def(rd, regs::xreg(0));
let mut clobbers =
AArch64MachineDeps::get_regs_clobbered_by_call(CallConv::AppleAarch64);
clobbers.remove(regs::xreg_preg(0));
collector.reg_clobbers(clobbers);
}
&Inst::Unwind { .. } => {}
&Inst::EmitIsland { .. } => {}
&Inst::DummyUse { reg } => {
collector.reg_use(reg);
}
&Inst::StackProbeLoop { start, end, .. } => {
collector.reg_early_def(start);
collector.reg_use(end);
}
}
}
//=============================================================================
// Instructions: misc functions and external interface
impl MachInst for Inst {
type ABIMachineSpec = AArch64MachineDeps;
type LabelUse = LabelUse;
// "CLIF" in hex, to make the trap recognizable during
// debugging.
const TRAP_OPCODE: &'static [u8] = &0xc11f_u32.to_le_bytes();
fn get_operands<F: Fn(VReg) -> VReg>(&self, collector: &mut OperandCollector<'_, F>) {
aarch64_get_operands(self, collector);
}
fn is_move(&self) -> Option<(Writable<Reg>, Reg)> {
match self {
&Inst::Mov {
size: OperandSize::Size64,
rd,
rm,
} => Some((rd, rm)),
&Inst::FpuMove64 { rd, rn } => Some((rd, rn)),
&Inst::FpuMove128 { rd, rn } => Some((rd, rn)),
_ => None,
}
}
fn is_included_in_clobbers(&self) -> bool {
let (caller_callconv, callee_callconv) = match self {
Inst::Args { .. } => return false,
Inst::Call { info } => (info.caller_callconv, info.callee_callconv),
Inst::CallInd { info } => (info.caller_callconv, info.callee_callconv),
_ => return true,
};
// We exclude call instructions from the clobber-set when they are calls
// from caller to callee that both clobber the same register (such as
// using the same or similar ABIs). Such calls cannot possibly force any
// new registers to be saved in the prologue, because anything that the
// callee clobbers, the caller is also allowed to clobber. This both
// saves work and enables us to more precisely follow the
// half-caller-save, half-callee-save SysV ABI for some vector
// registers.
//
// See the note in [crate::isa::aarch64::abi::is_caller_save_reg] for
// more information on this ABI-implementation hack.
let caller_clobbers = AArch64MachineDeps::get_regs_clobbered_by_call(caller_callconv);
let callee_clobbers = AArch64MachineDeps::get_regs_clobbered_by_call(callee_callconv);
let mut all_clobbers = caller_clobbers;
all_clobbers.union_from(callee_clobbers);
all_clobbers != caller_clobbers
}
fn is_trap(&self) -> bool {
match self {
Self::Udf { .. } => true,
_ => false,
}
}
fn is_args(&self) -> bool {
match self {
Self::Args { .. } => true,
_ => false,
}
}
fn is_term(&self) -> MachTerminator {
match self {
&Inst::Rets { .. } => MachTerminator::Ret,
&Inst::ReturnCall { .. } | &Inst::ReturnCallInd { .. } => MachTerminator::RetCall,
&Inst::Jump { .. } => MachTerminator::Uncond,
&Inst::CondBr { .. } => MachTerminator::Cond,
&Inst::IndirectBr { .. } => MachTerminator::Indirect,
&Inst::JTSequence { .. } => MachTerminator::Indirect,
_ => MachTerminator::None,
}
}
fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Inst {
let bits = ty.bits();
assert!(bits <= 128);
assert!(to_reg.to_reg().class() == from_reg.class());
match from_reg.class() {
RegClass::Int => Inst::Mov {
size: OperandSize::Size64,
rd: to_reg,
rm: from_reg,
},
RegClass::Float => {
if bits > 64 {
Inst::FpuMove128 {
rd: to_reg,
rn: from_reg,
}
} else {
Inst::FpuMove64 {
rd: to_reg,
rn: from_reg,
}
}
}
RegClass::Vector => unreachable!(),
}
}
fn is_safepoint(&self) -> bool {
match self {
&Inst::Call { .. }
| &Inst::CallInd { .. }
| &Inst::TrapIf { .. }
| &Inst::Udf { .. } => true,
_ => false,
}
}
fn gen_dummy_use(reg: Reg) -> Inst {
Inst::DummyUse { reg }
}
fn gen_nop(preferred_size: usize) -> Inst {
if preferred_size == 0 {
return Inst::Nop0;
}
// We can't give a NOP (or any insn) < 4 bytes.
assert!(preferred_size >= 4);
Inst::Nop4
}
fn rc_for_type(ty: Type) -> CodegenResult<(&'static [RegClass], &'static [Type])> {
match ty {
I8 => Ok((&[RegClass::Int], &[I8])),
I16 => Ok((&[RegClass::Int], &[I16])),
I32 => Ok((&[RegClass::Int], &[I32])),
I64 => Ok((&[RegClass::Int], &[I64])),
R32 => panic!("32-bit reftype pointer should never be seen on AArch64"),
R64 => Ok((&[RegClass::Int], &[R64])),
F32 => Ok((&[RegClass::Float], &[F32])),
F64 => Ok((&[RegClass::Float], &[F64])),
I128 => Ok((&[RegClass::Int, RegClass::Int], &[I64, I64])),
_ if ty.is_vector() => {
assert!(ty.bits() <= 128);
Ok((&[RegClass::Float], &[I8X16]))
}
_ if ty.is_dynamic_vector() => Ok((&[RegClass::Float], &[I8X16])),
_ => Err(CodegenError::Unsupported(format!(
"Unexpected SSA-value type: {}",
ty
))),
}
}
fn canonical_type_for_rc(rc: RegClass) -> Type {
match rc {
RegClass::Float => types::I8X16,
RegClass::Int => types::I64,
RegClass::Vector => unreachable!(),
}
}
fn gen_jump(target: MachLabel) -> Inst {
Inst::Jump {
dest: BranchTarget::Label(target),
}
}
fn worst_case_size() -> CodeOffset {
// The maximum size, in bytes, of any `Inst`'s emitted code. We have at least one case of
// an 8-instruction sequence (saturating int-to-float conversions) with three embedded
// 64-bit f64 constants.
//
// Note that inline jump-tables handle island/pool insertion separately, so we do not need
// to account for them here (otherwise the worst case would be 2^31 * 4, clearly not
// feasible for other reasons).
44
}
fn ref_type_regclass(_: &settings::Flags) -> RegClass {
RegClass::Int
}
fn gen_block_start(
is_indirect_branch_target: bool,
is_forward_edge_cfi_enabled: bool,
) -> Option<Self> {
if is_indirect_branch_target && is_forward_edge_cfi_enabled {
Some(Inst::Bti {
targets: BranchTargetType::J,
})
} else {
None
}
}
fn function_alignment() -> FunctionAlignment {
// We use 32-byte alignment for performance reasons, but for correctness
// we would only need 4-byte alignment.
FunctionAlignment {
minimum: 4,
preferred: 32,
}
}
}
//=============================================================================
// Pretty-printing of instructions.
fn mem_finalize_for_show(mem: &AMode, state: &EmitState) -> (String, AMode) {
let (mem_insts, mem) = mem_finalize(None, mem, state);
let mut mem_str = mem_insts
.into_iter()
.map(|inst| {
inst.print_with_state(&mut EmitState::default(), &mut AllocationConsumer::new(&[]))
})
.collect::<Vec<_>>()
.join(" ; ");
if !mem_str.is_empty() {
mem_str += " ; ";
}
(mem_str, mem)
}
impl Inst {
fn print_with_state(&self, state: &mut EmitState, allocs: &mut AllocationConsumer) -> String {
let mut empty_allocs = AllocationConsumer::default();
fn op_name(alu_op: ALUOp) -> &'static str {
match alu_op {
ALUOp::Add => "add",
ALUOp::Sub => "sub",
ALUOp::Orr => "orr",
ALUOp::And => "and",
ALUOp::AndS => "ands",
ALUOp::Eor => "eor",
ALUOp::AddS => "adds",
ALUOp::SubS => "subs",
ALUOp::SMulH => "smulh",
ALUOp::UMulH => "umulh",
ALUOp::SDiv => "sdiv",
ALUOp::UDiv => "udiv",
ALUOp::AndNot => "bic",
ALUOp::OrrNot => "orn",
ALUOp::EorNot => "eon",
ALUOp::RotR => "ror",
ALUOp::Lsr => "lsr",
ALUOp::Asr => "asr",
ALUOp::Lsl => "lsl",
ALUOp::Adc => "adc",
ALUOp::AdcS => "adcs",
ALUOp::Sbc => "sbc",
ALUOp::SbcS => "sbcs",
}
}
// N.B.: order of `allocs` consumption (via register
// pretty-printing or memarg.with_allocs()) needs to match the
// order in `aarch64_get_operands` above.
match self {
&Inst::Nop0 => "nop-zero-len".to_string(),
&Inst::Nop4 => "nop".to_string(),
&Inst::AluRRR {
alu_op,
size,
rd,
rn,
rm,
} => {
let op = op_name(alu_op);
let rd = pretty_print_ireg(rd.to_reg(), size, allocs);
let rn = pretty_print_ireg(rn, size, allocs);
let rm = pretty_print_ireg(rm, size, allocs);
format!("{} {}, {}, {}", op, rd, rn, rm)
}
&Inst::AluRRRR {
alu_op,
size,
rd,
rn,
rm,
ra,
} => {
let (op, da_size) = match alu_op {
ALUOp3::MAdd => ("madd", size),
ALUOp3::MSub => ("msub", size),
ALUOp3::UMAddL => ("umaddl", OperandSize::Size64),
ALUOp3::SMAddL => ("smaddl", OperandSize::Size64),
};
let rd = pretty_print_ireg(rd.to_reg(), da_size, allocs);
let rn = pretty_print_ireg(rn, size, allocs);
let rm = pretty_print_ireg(rm, size, allocs);
let ra = pretty_print_ireg(ra, da_size, allocs);
format!("{} {}, {}, {}, {}", op, rd, rn, rm, ra)
}
&Inst::AluRRImm12 {
alu_op,
size,
rd,
rn,
ref imm12,
} => {
let op = op_name(alu_op);
let rd = pretty_print_ireg(rd.to_reg(), size, allocs);
let rn = pretty_print_ireg(rn, size, allocs);
if imm12.bits == 0 && alu_op == ALUOp::Add && size.is64() {
// special-case MOV (used for moving into SP).
format!("mov {}, {}", rd, rn)
} else {
let imm12 = imm12.pretty_print(0, allocs);
format!("{} {}, {}, {}", op, rd, rn, imm12)
}
}
&Inst::AluRRImmLogic {
alu_op,
size,
rd,
rn,
ref imml,
} => {
let op = op_name(alu_op);
let rd = pretty_print_ireg(rd.to_reg(), size, allocs);
let rn = pretty_print_ireg(rn, size, allocs);
let imml = imml.pretty_print(0, allocs);
format!("{} {}, {}, {}", op, rd, rn, imml)
}
&Inst::AluRRImmShift {
alu_op,
size,
rd,
rn,
ref immshift,
} => {
let op = op_name(alu_op);
let rd = pretty_print_ireg(rd.to_reg(), size, allocs);
let rn = pretty_print_ireg(rn, size, allocs);
let immshift = immshift.pretty_print(0, allocs);
format!("{} {}, {}, {}", op, rd, rn, immshift)
}
&Inst::AluRRRShift {
alu_op,
size,
rd,
rn,
rm,
ref shiftop,
} => {
let op = op_name(alu_op);
let rd = pretty_print_ireg(rd.to_reg(), size, allocs);
let rn = pretty_print_ireg(rn, size, allocs);
let rm = pretty_print_ireg(rm, size, allocs);
let shiftop = shiftop.pretty_print(0, allocs);
format!("{} {}, {}, {}, {}", op, rd, rn, rm, shiftop)
}
&Inst::AluRRRExtend {
alu_op,
size,
rd,
rn,
rm,
ref extendop,
} => {
let op = op_name(alu_op);
let rd = pretty_print_ireg(rd.to_reg(), size, allocs);
let rn = pretty_print_ireg(rn, size, allocs);
let rm = pretty_print_ireg(rm, size, allocs);
let extendop = extendop.pretty_print(0, allocs);
format!("{} {}, {}, {}, {}", op, rd, rn, rm, extendop)
}
&Inst::BitRR { op, size, rd, rn } => {
let op = op.op_str();
let rd = pretty_print_ireg(rd.to_reg(), size, allocs);
let rn = pretty_print_ireg(rn, size, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::ULoad8 { rd, ref mem, .. }
| &Inst::SLoad8 { rd, ref mem, .. }
| &Inst::ULoad16 { rd, ref mem, .. }
| &Inst::SLoad16 { rd, ref mem, .. }
| &Inst::ULoad32 { rd, ref mem, .. }
| &Inst::SLoad32 { rd, ref mem, .. }
| &Inst::ULoad64 { rd, ref mem, .. } => {
let is_unscaled = match &mem {
&AMode::Unscaled { .. } => true,
_ => false,
};
let (op, size) = match (self, is_unscaled) {
(&Inst::ULoad8 { .. }, false) => ("ldrb", OperandSize::Size32),
(&Inst::ULoad8 { .. }, true) => ("ldurb", OperandSize::Size32),
(&Inst::SLoad8 { .. }, false) => ("ldrsb", OperandSize::Size64),
(&Inst::SLoad8 { .. }, true) => ("ldursb", OperandSize::Size64),
(&Inst::ULoad16 { .. }, false) => ("ldrh", OperandSize::Size32),
(&Inst::ULoad16 { .. }, true) => ("ldurh", OperandSize::Size32),
(&Inst::SLoad16 { .. }, false) => ("ldrsh", OperandSize::Size64),
(&Inst::SLoad16 { .. }, true) => ("ldursh", OperandSize::Size64),
(&Inst::ULoad32 { .. }, false) => ("ldr", OperandSize::Size32),
(&Inst::ULoad32 { .. }, true) => ("ldur", OperandSize::Size32),
(&Inst::SLoad32 { .. }, false) => ("ldrsw", OperandSize::Size64),
(&Inst::SLoad32 { .. }, true) => ("ldursw", OperandSize::Size64),
(&Inst::ULoad64 { .. }, false) => ("ldr", OperandSize::Size64),
(&Inst::ULoad64 { .. }, true) => ("ldur", OperandSize::Size64),
_ => unreachable!(),
};
let rd = pretty_print_ireg(rd.to_reg(), size, allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(&mem, state);
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, op, rd, mem)
}
&Inst::Store8 { rd, ref mem, .. }
| &Inst::Store16 { rd, ref mem, .. }
| &Inst::Store32 { rd, ref mem, .. }
| &Inst::Store64 { rd, ref mem, .. } => {
let is_unscaled = match &mem {
&AMode::Unscaled { .. } => true,
_ => false,
};
let (op, size) = match (self, is_unscaled) {
(&Inst::Store8 { .. }, false) => ("strb", OperandSize::Size32),
(&Inst::Store8 { .. }, true) => ("sturb", OperandSize::Size32),
(&Inst::Store16 { .. }, false) => ("strh", OperandSize::Size32),
(&Inst::Store16 { .. }, true) => ("sturh", OperandSize::Size32),
(&Inst::Store32 { .. }, false) => ("str", OperandSize::Size32),
(&Inst::Store32 { .. }, true) => ("stur", OperandSize::Size32),
(&Inst::Store64 { .. }, false) => ("str", OperandSize::Size64),
(&Inst::Store64 { .. }, true) => ("stur", OperandSize::Size64),
_ => unreachable!(),
};
let rd = pretty_print_ireg(rd, size, allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(&mem, state);
let mem = mem.pretty_print_default();
format!("{}{} {}, {}", mem_str, op, rd, mem)
}
&Inst::StoreP64 {
rt, rt2, ref mem, ..
} => {
let rt = pretty_print_ireg(rt, OperandSize::Size64, allocs);
let rt2 = pretty_print_ireg(rt2, OperandSize::Size64, allocs);
let mem = mem.with_allocs(allocs);
let mem = mem.pretty_print_default();
format!("stp {}, {}, {}", rt, rt2, mem)
}
&Inst::LoadP64 {
rt, rt2, ref mem, ..
} => {
let rt = pretty_print_ireg(rt.to_reg(), OperandSize::Size64, allocs);
let rt2 = pretty_print_ireg(rt2.to_reg(), OperandSize::Size64, allocs);
let mem = mem.with_allocs(allocs);
let mem = mem.pretty_print_default();
format!("ldp {}, {}, {}", rt, rt2, mem)
}
&Inst::Mov { size, rd, rm } => {
let rd = pretty_print_ireg(rd.to_reg(), size, allocs);
let rm = pretty_print_ireg(rm, size, allocs);
format!("mov {}, {}", rd, rm)
}
&Inst::MovFromPReg { rd, rm } => {
let rd = pretty_print_ireg(rd.to_reg(), OperandSize::Size64, allocs);
allocs.next_fixed_nonallocatable(rm);
let rm = show_ireg_sized(rm.into(), OperandSize::Size64);
format!("mov {}, {}", rd, rm)
}
&Inst::MovToPReg { rd, rm } => {
allocs.next_fixed_nonallocatable(rd);
let rd = show_ireg_sized(rd.into(), OperandSize::Size64);
let rm = pretty_print_ireg(rm, OperandSize::Size64, allocs);
format!("mov {}, {}", rd, rm)
}
&Inst::MovWide {
op,
rd,
ref imm,
size,
} => {
let op_str = match op {
MoveWideOp::MovZ => "movz",
MoveWideOp::MovN => "movn",
};
let rd = pretty_print_ireg(rd.to_reg(), size, allocs);
let imm = imm.pretty_print(0, allocs);
format!("{} {}, {}", op_str, rd, imm)
}
&Inst::MovK {
rd,
rn,
ref imm,
size,
} => {
let rn = pretty_print_ireg(rn, size, allocs);
let rd = pretty_print_ireg(rd.to_reg(), size, allocs);
let imm = imm.pretty_print(0, allocs);
format!("movk {}, {}, {}", rd, rn, imm)
}
&Inst::CSel { rd, rn, rm, cond } => {
let rd = pretty_print_ireg(rd.to_reg(), OperandSize::Size64, allocs);
let rn = pretty_print_ireg(rn, OperandSize::Size64, allocs);
let rm = pretty_print_ireg(rm, OperandSize::Size64, allocs);
let cond = cond.pretty_print(0, allocs);
format!("csel {}, {}, {}, {}", rd, rn, rm, cond)
}
&Inst::CSNeg { rd, rn, rm, cond } => {
let rd = pretty_print_ireg(rd.to_reg(), OperandSize::Size64, allocs);
let rn = pretty_print_ireg(rn, OperandSize::Size64, allocs);
let rm = pretty_print_ireg(rm, OperandSize::Size64, allocs);
let cond = cond.pretty_print(0, allocs);
format!("csneg {}, {}, {}, {}", rd, rn, rm, cond)
}
&Inst::CSet { rd, cond } => {
let rd = pretty_print_ireg(rd.to_reg(), OperandSize::Size64, allocs);
let cond = cond.pretty_print(0, allocs);
format!("cset {}, {}", rd, cond)
}
&Inst::CSetm { rd, cond } => {
let rd = pretty_print_ireg(rd.to_reg(), OperandSize::Size64, allocs);
let cond = cond.pretty_print(0, allocs);
format!("csetm {}, {}", rd, cond)
}
&Inst::CCmp {
size,
rn,
rm,
nzcv,
cond,
} => {
let rn = pretty_print_ireg(rn, size, allocs);
let rm = pretty_print_ireg(rm, size, allocs);
let nzcv = nzcv.pretty_print(0, allocs);
let cond = cond.pretty_print(0, allocs);
format!("ccmp {}, {}, {}, {}", rn, rm, nzcv, cond)
}
&Inst::CCmpImm {
size,
rn,
imm,
nzcv,
cond,
} => {
let rn = pretty_print_ireg(rn, size, allocs);
let imm = imm.pretty_print(0, allocs);
let nzcv = nzcv.pretty_print(0, allocs);
let cond = cond.pretty_print(0, allocs);
format!("ccmp {}, {}, {}, {}", rn, imm, nzcv, cond)
}
&Inst::AtomicRMW {
rs, rt, rn, ty, op, ..
} => {
let op = match op {
AtomicRMWOp::Add => "ldaddal",
AtomicRMWOp::Clr => "ldclral",
AtomicRMWOp::Eor => "ldeoral",
AtomicRMWOp::Set => "ldsetal",
AtomicRMWOp::Smax => "ldsmaxal",
AtomicRMWOp::Umax => "ldumaxal",
AtomicRMWOp::Smin => "ldsminal",
AtomicRMWOp::Umin => "lduminal",
AtomicRMWOp::Swp => "swpal",
};
let size = OperandSize::from_ty(ty);
let rs = pretty_print_ireg(rs, size, allocs);
let rt = pretty_print_ireg(rt.to_reg(), size, allocs);
let rn = pretty_print_ireg(rn, OperandSize::Size64, allocs);
let ty_suffix = match ty {
I8 => "b",
I16 => "h",
_ => "",
};
format!("{}{} {}, {}, [{}]", op, ty_suffix, rs, rt, rn)
}
&Inst::AtomicRMWLoop {
ty,
op,
addr,
operand,
oldval,
scratch1,
scratch2,
..
} => {
let op = match op {
AtomicRMWLoopOp::Add => "add",
AtomicRMWLoopOp::Sub => "sub",
AtomicRMWLoopOp::Eor => "eor",
AtomicRMWLoopOp::Orr => "orr",
AtomicRMWLoopOp::And => "and",
AtomicRMWLoopOp::Nand => "nand",
AtomicRMWLoopOp::Smin => "smin",
AtomicRMWLoopOp::Smax => "smax",
AtomicRMWLoopOp::Umin => "umin",
AtomicRMWLoopOp::Umax => "umax",
AtomicRMWLoopOp::Xchg => "xchg",
};
let addr = pretty_print_ireg(addr, OperandSize::Size64, allocs);
let operand = pretty_print_ireg(operand, OperandSize::Size64, allocs);
let oldval = pretty_print_ireg(oldval.to_reg(), OperandSize::Size64, allocs);
let scratch1 = pretty_print_ireg(scratch1.to_reg(), OperandSize::Size64, allocs);
let scratch2 = pretty_print_ireg(scratch2.to_reg(), OperandSize::Size64, allocs);
format!(
"atomic_rmw_loop_{}_{} addr={} operand={} oldval={} scratch1={} scratch2={}",
op,
ty.bits(),
addr,
operand,
oldval,
scratch1,
scratch2,
)
}
&Inst::AtomicCAS {
rd, rs, rt, rn, ty, ..
} => {
let op = match ty {
I8 => "casalb",
I16 => "casalh",
I32 | I64 => "casal",
_ => panic!("Unsupported type: {}", ty),
};
let size = OperandSize::from_ty(ty);
let rd = pretty_print_ireg(rd.to_reg(), size, allocs);
let rs = pretty_print_ireg(rs, size, allocs);
let rt = pretty_print_ireg(rt, size, allocs);
let rn = pretty_print_ireg(rn, OperandSize::Size64, allocs);
format!("{} {}, {}, {}, [{}]", op, rd, rs, rt, rn)
}
&Inst::AtomicCASLoop {
ty,
addr,
expected,
replacement,
oldval,
scratch,
..
} => {
let addr = pretty_print_ireg(addr, OperandSize::Size64, allocs);
let expected = pretty_print_ireg(expected, OperandSize::Size64, allocs);
let replacement = pretty_print_ireg(replacement, OperandSize::Size64, allocs);
let oldval = pretty_print_ireg(oldval.to_reg(), OperandSize::Size64, allocs);
let scratch = pretty_print_ireg(scratch.to_reg(), OperandSize::Size64, allocs);
format!(
"atomic_cas_loop_{} addr={}, expect={}, replacement={}, oldval={}, scratch={}",
ty.bits(),
addr,
expected,
replacement,
oldval,
scratch,
)
}
&Inst::LoadAcquire {
access_ty, rt, rn, ..
} => {
let (op, ty) = match access_ty {
I8 => ("ldarb", I32),
I16 => ("ldarh", I32),
I32 => ("ldar", I32),
I64 => ("ldar", I64),
_ => panic!("Unsupported type: {}", access_ty),
};
let size = OperandSize::from_ty(ty);
let rn = pretty_print_ireg(rn, OperandSize::Size64, allocs);
let rt = pretty_print_ireg(rt.to_reg(), size, allocs);
format!("{} {}, [{}]", op, rt, rn)
}
&Inst::StoreRelease {
access_ty, rt, rn, ..
} => {
let (op, ty) = match access_ty {
I8 => ("stlrb", I32),
I16 => ("stlrh", I32),
I32 => ("stlr", I32),
I64 => ("stlr", I64),
_ => panic!("Unsupported type: {}", access_ty),
};
let size = OperandSize::from_ty(ty);
let rn = pretty_print_ireg(rn, OperandSize::Size64, allocs);
let rt = pretty_print_ireg(rt, size, allocs);
format!("{} {}, [{}]", op, rt, rn)
}
&Inst::Fence {} => {
format!("dmb ish")
}
&Inst::Csdb {} => {
format!("csdb")
}
&Inst::FpuMove64 { rd, rn } => {
let rd = pretty_print_vreg_scalar(rd.to_reg(), ScalarSize::Size64, allocs);
let rn = pretty_print_vreg_scalar(rn, ScalarSize::Size64, allocs);
format!("fmov {}, {}", rd, rn)
}
&Inst::FpuMove128 { rd, rn } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rn = pretty_print_reg(rn, allocs);
format!("mov {}.16b, {}.16b", rd, rn)
}
&Inst::FpuMoveFromVec { rd, rn, idx, size } => {
let rd = pretty_print_vreg_scalar(rd.to_reg(), size.lane_size(), allocs);
let rn = pretty_print_vreg_element(rn, idx as usize, size.lane_size(), allocs);
format!("mov {}, {}", rd, rn)
}
&Inst::FpuExtend { rd, rn, size } => {
let rd = pretty_print_vreg_scalar(rd.to_reg(), size, allocs);
let rn = pretty_print_vreg_scalar(rn, size, allocs);
format!("fmov {}, {}", rd, rn)
}
&Inst::FpuRR {
fpu_op,
size,
rd,
rn,
} => {
let op = match fpu_op {
FPUOp1::Abs => "fabs",
FPUOp1::Neg => "fneg",
FPUOp1::Sqrt => "fsqrt",
FPUOp1::Cvt32To64 | FPUOp1::Cvt64To32 => "fcvt",
};
let dst_size = match fpu_op {
FPUOp1::Cvt32To64 => ScalarSize::Size64,
FPUOp1::Cvt64To32 => ScalarSize::Size32,
_ => size,
};
let rd = pretty_print_vreg_scalar(rd.to_reg(), dst_size, allocs);
let rn = pretty_print_vreg_scalar(rn, size, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::FpuRRR {
fpu_op,
size,
rd,
rn,
rm,
} => {
let op = match fpu_op {
FPUOp2::Add => "fadd",
FPUOp2::Sub => "fsub",
FPUOp2::Mul => "fmul",
FPUOp2::Div => "fdiv",
FPUOp2::Max => "fmax",
FPUOp2::Min => "fmin",
};
let rd = pretty_print_vreg_scalar(rd.to_reg(), size, allocs);
let rn = pretty_print_vreg_scalar(rn, size, allocs);
let rm = pretty_print_vreg_scalar(rm, size, allocs);
format!("{} {}, {}, {}", op, rd, rn, rm)
}
&Inst::FpuRRI { fpu_op, rd, rn } => {
let (op, imm, vector) = match fpu_op {
FPUOpRI::UShr32(imm) => ("ushr", imm.pretty_print(0, allocs), true),
FPUOpRI::UShr64(imm) => ("ushr", imm.pretty_print(0, allocs), false),
};
let (rd, rn) = if vector {
(
pretty_print_vreg_vector(rd.to_reg(), VectorSize::Size32x2, allocs),
pretty_print_vreg_vector(rn, VectorSize::Size32x2, allocs),
)
} else {
(
pretty_print_vreg_scalar(rd.to_reg(), ScalarSize::Size64, allocs),
pretty_print_vreg_scalar(rn, ScalarSize::Size64, allocs),
)
};
format!("{} {}, {}, {}", op, rd, rn, imm)
}
&Inst::FpuRRIMod { fpu_op, rd, ri, rn } => {
let (op, imm, vector) = match fpu_op {
FPUOpRIMod::Sli32(imm) => ("sli", imm.pretty_print(0, allocs), true),
FPUOpRIMod::Sli64(imm) => ("sli", imm.pretty_print(0, allocs), false),
};
let (rd, ri, rn) = if vector {
(
pretty_print_vreg_vector(rd.to_reg(), VectorSize::Size32x2, allocs),
pretty_print_vreg_vector(ri, VectorSize::Size32x2, allocs),
pretty_print_vreg_vector(rn, VectorSize::Size32x2, allocs),
)
} else {
(
pretty_print_vreg_scalar(rd.to_reg(), ScalarSize::Size64, allocs),
pretty_print_vreg_scalar(ri, ScalarSize::Size64, allocs),
pretty_print_vreg_scalar(rn, ScalarSize::Size64, allocs),
)
};
format!("{} {}, {}, {}, {}", op, rd, ri, rn, imm)
}
&Inst::FpuRRRR {
fpu_op,
size,
rd,
rn,
rm,
ra,
} => {
let op = match fpu_op {
FPUOp3::MAdd => "fmadd",
};
let rd = pretty_print_vreg_scalar(rd.to_reg(), size, allocs);
let rn = pretty_print_vreg_scalar(rn, size, allocs);
let rm = pretty_print_vreg_scalar(rm, size, allocs);
let ra = pretty_print_vreg_scalar(ra, size, allocs);
format!("{} {}, {}, {}, {}", op, rd, rn, rm, ra)
}
&Inst::FpuCmp { size, rn, rm } => {
let rn = pretty_print_vreg_scalar(rn, size, allocs);
let rm = pretty_print_vreg_scalar(rm, size, allocs);
format!("fcmp {}, {}", rn, rm)
}
&Inst::FpuLoad32 { rd, ref mem, .. } => {
let rd = pretty_print_vreg_scalar(rd.to_reg(), ScalarSize::Size32, allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(&mem, state);
let mem = mem.pretty_print_default();
format!("{}ldr {}, {}", mem_str, rd, mem)
}
&Inst::FpuLoad64 { rd, ref mem, .. } => {
let rd = pretty_print_vreg_scalar(rd.to_reg(), ScalarSize::Size64, allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(&mem, state);
let mem = mem.pretty_print_default();
format!("{}ldr {}, {}", mem_str, rd, mem)
}
&Inst::FpuLoad128 { rd, ref mem, .. } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
let rd = "q".to_string() + &rd[1..];
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(&mem, state);
let mem = mem.pretty_print_default();
format!("{}ldr {}, {}", mem_str, rd, mem)
}
&Inst::FpuStore32 { rd, ref mem, .. } => {
let rd = pretty_print_vreg_scalar(rd, ScalarSize::Size32, allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(&mem, state);
let mem = mem.pretty_print_default();
format!("{}str {}, {}", mem_str, rd, mem)
}
&Inst::FpuStore64 { rd, ref mem, .. } => {
let rd = pretty_print_vreg_scalar(rd, ScalarSize::Size64, allocs);
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(&mem, state);
let mem = mem.pretty_print_default();
format!("{}str {}, {}", mem_str, rd, mem)
}
&Inst::FpuStore128 { rd, ref mem, .. } => {
let rd = pretty_print_reg(rd, allocs);
let rd = "q".to_string() + &rd[1..];
let mem = mem.with_allocs(allocs);
let (mem_str, mem) = mem_finalize_for_show(&mem, state);
let mem = mem.pretty_print_default();
format!("{}str {}, {}", mem_str, rd, mem)
}
&Inst::FpuLoadP64 {
rt, rt2, ref mem, ..
} => {
let rt = pretty_print_vreg_scalar(rt.to_reg(), ScalarSize::Size64, allocs);
let rt2 = pretty_print_vreg_scalar(rt2.to_reg(), ScalarSize::Size64, allocs);
let mem = mem.with_allocs(allocs);
let mem = mem.pretty_print_default();
format!("ldp {}, {}, {}", rt, rt2, mem)
}
&Inst::FpuStoreP64 {
rt, rt2, ref mem, ..
} => {
let rt = pretty_print_vreg_scalar(rt, ScalarSize::Size64, allocs);
let rt2 = pretty_print_vreg_scalar(rt2, ScalarSize::Size64, allocs);
let mem = mem.with_allocs(allocs);
let mem = mem.pretty_print_default();
format!("stp {}, {}, {}", rt, rt2, mem)
}
&Inst::FpuLoadP128 {
rt, rt2, ref mem, ..
} => {
let rt = pretty_print_vreg_scalar(rt.to_reg(), ScalarSize::Size128, allocs);
let rt2 = pretty_print_vreg_scalar(rt2.to_reg(), ScalarSize::Size128, allocs);
let mem = mem.with_allocs(allocs);
let mem = mem.pretty_print_default();
format!("ldp {}, {}, {}", rt, rt2, mem)
}
&Inst::FpuStoreP128 {
rt, rt2, ref mem, ..
} => {
let rt = pretty_print_vreg_scalar(rt, ScalarSize::Size128, allocs);
let rt2 = pretty_print_vreg_scalar(rt2, ScalarSize::Size128, allocs);
let mem = mem.with_allocs(allocs);
let mem = mem.pretty_print_default();
format!("stp {}, {}, {}", rt, rt2, mem)
}
&Inst::FpuToInt { op, rd, rn } => {
let (op, sizesrc, sizedest) = match op {
FpuToIntOp::F32ToI32 => ("fcvtzs", ScalarSize::Size32, OperandSize::Size32),
FpuToIntOp::F32ToU32 => ("fcvtzu", ScalarSize::Size32, OperandSize::Size32),
FpuToIntOp::F32ToI64 => ("fcvtzs", ScalarSize::Size32, OperandSize::Size64),
FpuToIntOp::F32ToU64 => ("fcvtzu", ScalarSize::Size32, OperandSize::Size64),
FpuToIntOp::F64ToI32 => ("fcvtzs", ScalarSize::Size64, OperandSize::Size32),
FpuToIntOp::F64ToU32 => ("fcvtzu", ScalarSize::Size64, OperandSize::Size32),
FpuToIntOp::F64ToI64 => ("fcvtzs", ScalarSize::Size64, OperandSize::Size64),
FpuToIntOp::F64ToU64 => ("fcvtzu", ScalarSize::Size64, OperandSize::Size64),
};
let rd = pretty_print_ireg(rd.to_reg(), sizedest, allocs);
let rn = pretty_print_vreg_scalar(rn, sizesrc, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::IntToFpu { op, rd, rn } => {
let (op, sizesrc, sizedest) = match op {
IntToFpuOp::I32ToF32 => ("scvtf", OperandSize::Size32, ScalarSize::Size32),
IntToFpuOp::U32ToF32 => ("ucvtf", OperandSize::Size32, ScalarSize::Size32),
IntToFpuOp::I64ToF32 => ("scvtf", OperandSize::Size64, ScalarSize::Size32),
IntToFpuOp::U64ToF32 => ("ucvtf", OperandSize::Size64, ScalarSize::Size32),
IntToFpuOp::I32ToF64 => ("scvtf", OperandSize::Size32, ScalarSize::Size64),
IntToFpuOp::U32ToF64 => ("ucvtf", OperandSize::Size32, ScalarSize::Size64),
IntToFpuOp::I64ToF64 => ("scvtf", OperandSize::Size64, ScalarSize::Size64),
IntToFpuOp::U64ToF64 => ("ucvtf", OperandSize::Size64, ScalarSize::Size64),
};
let rd = pretty_print_vreg_scalar(rd.to_reg(), sizedest, allocs);
let rn = pretty_print_ireg(rn, sizesrc, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::FpuCSel32 { rd, rn, rm, cond } => {
let rd = pretty_print_vreg_scalar(rd.to_reg(), ScalarSize::Size32, allocs);
let rn = pretty_print_vreg_scalar(rn, ScalarSize::Size32, allocs);
let rm = pretty_print_vreg_scalar(rm, ScalarSize::Size32, allocs);
let cond = cond.pretty_print(0, allocs);
format!("fcsel {}, {}, {}, {}", rd, rn, rm, cond)
}
&Inst::FpuCSel64 { rd, rn, rm, cond } => {
let rd = pretty_print_vreg_scalar(rd.to_reg(), ScalarSize::Size64, allocs);
let rn = pretty_print_vreg_scalar(rn, ScalarSize::Size64, allocs);
let rm = pretty_print_vreg_scalar(rm, ScalarSize::Size64, allocs);
let cond = cond.pretty_print(0, allocs);
format!("fcsel {}, {}, {}, {}", rd, rn, rm, cond)
}
&Inst::FpuRound { op, rd, rn } => {
let (inst, size) = match op {
FpuRoundMode::Minus32 => ("frintm", ScalarSize::Size32),
FpuRoundMode::Minus64 => ("frintm", ScalarSize::Size64),
FpuRoundMode::Plus32 => ("frintp", ScalarSize::Size32),
FpuRoundMode::Plus64 => ("frintp", ScalarSize::Size64),
FpuRoundMode::Zero32 => ("frintz", ScalarSize::Size32),
FpuRoundMode::Zero64 => ("frintz", ScalarSize::Size64),
FpuRoundMode::Nearest32 => ("frintn", ScalarSize::Size32),
FpuRoundMode::Nearest64 => ("frintn", ScalarSize::Size64),
};
let rd = pretty_print_vreg_scalar(rd.to_reg(), size, allocs);
let rn = pretty_print_vreg_scalar(rn, size, allocs);
format!("{} {}, {}", inst, rd, rn)
}
&Inst::MovToFpu { rd, rn, size } => {
let operand_size = size.operand_size();
let rd = pretty_print_vreg_scalar(rd.to_reg(), size, allocs);
let rn = pretty_print_ireg(rn, operand_size, allocs);
format!("fmov {}, {}", rd, rn)
}
&Inst::FpuMoveFPImm { rd, imm, size } => {
let imm = imm.pretty_print(0, allocs);
let rd = pretty_print_vreg_scalar(rd.to_reg(), size, allocs);
format!("fmov {}, {}", rd, imm)
}
&Inst::MovToVec {
rd,
ri,
rn,
idx,
size,
} => {
let rd =
pretty_print_vreg_element(rd.to_reg(), idx as usize, size.lane_size(), allocs);
let ri = pretty_print_vreg_element(ri, idx as usize, size.lane_size(), allocs);
let rn = pretty_print_ireg(rn, size.operand_size(), allocs);
format!("mov {}, {}, {}", rd, ri, rn)
}
&Inst::MovFromVec { rd, rn, idx, size } => {
let op = match size {
ScalarSize::Size8 => "umov",
ScalarSize::Size16 => "umov",
ScalarSize::Size32 => "mov",
ScalarSize::Size64 => "mov",
_ => unimplemented!(),
};
let rd = pretty_print_ireg(rd.to_reg(), size.operand_size(), allocs);
let rn = pretty_print_vreg_element(rn, idx as usize, size, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::MovFromVecSigned {
rd,
rn,
idx,
size,
scalar_size,
} => {
let rd = pretty_print_ireg(rd.to_reg(), scalar_size, allocs);
let rn = pretty_print_vreg_element(rn, idx as usize, size.lane_size(), allocs);
format!("smov {}, {}", rd, rn)
}
&Inst::VecDup { rd, rn, size } => {
let rd = pretty_print_vreg_vector(rd.to_reg(), size, allocs);
let rn = pretty_print_ireg(rn, size.operand_size(), allocs);
format!("dup {}, {}", rd, rn)
}
&Inst::VecDupFromFpu { rd, rn, size, lane } => {
let rd = pretty_print_vreg_vector(rd.to_reg(), size, allocs);
let rn = pretty_print_vreg_element(rn, lane.into(), size.lane_size(), allocs);
format!("dup {}, {}", rd, rn)
}
&Inst::VecDupFPImm { rd, imm, size } => {
let imm = imm.pretty_print(0, allocs);
let rd = pretty_print_vreg_vector(rd.to_reg(), size, allocs);
format!("fmov {}, {}", rd, imm)
}
&Inst::VecDupImm {
rd,
imm,
invert,
size,
} => {
let imm = imm.pretty_print(0, allocs);
let op = if invert { "mvni" } else { "movi" };
let rd = pretty_print_vreg_vector(rd.to_reg(), size, allocs);
format!("{} {}, {}", op, rd, imm)
}
&Inst::VecExtend {
t,
rd,
rn,
high_half,
lane_size,
} => {
let vec64 = VectorSize::from_lane_size(lane_size.narrow(), false);
let vec128 = VectorSize::from_lane_size(lane_size.narrow(), true);
let rd_size = VectorSize::from_lane_size(lane_size, true);
let (op, rn_size) = match (t, high_half) {
(VecExtendOp::Sxtl, false) => ("sxtl", vec64),
(VecExtendOp::Sxtl, true) => ("sxtl2", vec128),
(VecExtendOp::Uxtl, false) => ("uxtl", vec64),
(VecExtendOp::Uxtl, true) => ("uxtl2", vec128),
};
let rd = pretty_print_vreg_vector(rd.to_reg(), rd_size, allocs);
let rn = pretty_print_vreg_vector(rn, rn_size, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::VecMovElement {
rd,
ri,
rn,
dest_idx,
src_idx,
size,
} => {
let rd = pretty_print_vreg_element(
rd.to_reg(),
dest_idx as usize,
size.lane_size(),
allocs,
);
let ri = pretty_print_vreg_element(ri, dest_idx as usize, size.lane_size(), allocs);
let rn = pretty_print_vreg_element(rn, src_idx as usize, size.lane_size(), allocs);
format!("mov {}, {}, {}", rd, ri, rn)
}
&Inst::VecRRLong {
op,
rd,
rn,
high_half,
} => {
let (op, rd_size, size, suffix) = match (op, high_half) {
(VecRRLongOp::Fcvtl16, false) => {
("fcvtl", VectorSize::Size32x4, VectorSize::Size16x4, "")
}
(VecRRLongOp::Fcvtl16, true) => {
("fcvtl2", VectorSize::Size32x4, VectorSize::Size16x8, "")
}
(VecRRLongOp::Fcvtl32, false) => {
("fcvtl", VectorSize::Size64x2, VectorSize::Size32x2, "")
}
(VecRRLongOp::Fcvtl32, true) => {
("fcvtl2", VectorSize::Size64x2, VectorSize::Size32x4, "")
}
(VecRRLongOp::Shll8, false) => {
("shll", VectorSize::Size16x8, VectorSize::Size8x8, ", #8")
}
(VecRRLongOp::Shll8, true) => {
("shll2", VectorSize::Size16x8, VectorSize::Size8x16, ", #8")
}
(VecRRLongOp::Shll16, false) => {
("shll", VectorSize::Size32x4, VectorSize::Size16x4, ", #16")
}
(VecRRLongOp::Shll16, true) => {
("shll2", VectorSize::Size32x4, VectorSize::Size16x8, ", #16")
}
(VecRRLongOp::Shll32, false) => {
("shll", VectorSize::Size64x2, VectorSize::Size32x2, ", #32")
}
(VecRRLongOp::Shll32, true) => {
("shll2", VectorSize::Size64x2, VectorSize::Size32x4, ", #32")
}
};
let rd = pretty_print_vreg_vector(rd.to_reg(), rd_size, allocs);
let rn = pretty_print_vreg_vector(rn, size, allocs);
format!("{} {}, {}{}", op, rd, rn, suffix)
}
&Inst::VecRRNarrowLow {
op,
rd,
rn,
lane_size,
..
}
| &Inst::VecRRNarrowHigh {
op,
rd,
rn,
lane_size,
..
} => {
let vec64 = VectorSize::from_lane_size(lane_size, false);
let vec128 = VectorSize::from_lane_size(lane_size, true);
let rn_size = VectorSize::from_lane_size(lane_size.widen(), true);
let high_half = match self {
&Inst::VecRRNarrowLow { .. } => false,
&Inst::VecRRNarrowHigh { .. } => true,
_ => unreachable!(),
};
let (op, rd_size) = match (op, high_half) {
(VecRRNarrowOp::Xtn, false) => ("xtn", vec64),
(VecRRNarrowOp::Xtn, true) => ("xtn2", vec128),
(VecRRNarrowOp::Sqxtn, false) => ("sqxtn", vec64),
(VecRRNarrowOp::Sqxtn, true) => ("sqxtn2", vec128),
(VecRRNarrowOp::Sqxtun, false) => ("sqxtun", vec64),
(VecRRNarrowOp::Sqxtun, true) => ("sqxtun2", vec128),
(VecRRNarrowOp::Uqxtn, false) => ("uqxtn", vec64),
(VecRRNarrowOp::Uqxtn, true) => ("uqxtn2", vec128),
(VecRRNarrowOp::Fcvtn, false) => ("fcvtn", vec64),
(VecRRNarrowOp::Fcvtn, true) => ("fcvtn2", vec128),
};
let rn = pretty_print_vreg_vector(rn, rn_size, allocs);
let rd = pretty_print_vreg_vector(rd.to_reg(), rd_size, allocs);
let ri = match self {
&Inst::VecRRNarrowLow { .. } => "".to_string(),
&Inst::VecRRNarrowHigh { ri, .. } => {
format!("{}, ", pretty_print_vreg_vector(ri, rd_size, allocs))
}
_ => unreachable!(),
};
format!("{} {}, {}{}", op, rd, ri, rn)
}
&Inst::VecRRPair { op, rd, rn } => {
let op = match op {
VecPairOp::Addp => "addp",
};
let rd = pretty_print_vreg_scalar(rd.to_reg(), ScalarSize::Size64, allocs);
let rn = pretty_print_vreg_vector(rn, VectorSize::Size64x2, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::VecRRPairLong { op, rd, rn } => {
let (op, dest, src) = match op {
VecRRPairLongOp::Saddlp8 => {
("saddlp", VectorSize::Size16x8, VectorSize::Size8x16)
}
VecRRPairLongOp::Saddlp16 => {
("saddlp", VectorSize::Size32x4, VectorSize::Size16x8)
}
VecRRPairLongOp::Uaddlp8 => {
("uaddlp", VectorSize::Size16x8, VectorSize::Size8x16)
}
VecRRPairLongOp::Uaddlp16 => {
("uaddlp", VectorSize::Size32x4, VectorSize::Size16x8)
}
};
let rd = pretty_print_vreg_vector(rd.to_reg(), dest, allocs);
let rn = pretty_print_vreg_vector(rn, src, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::VecRRR {
rd,
rn,
rm,
alu_op,
size,
} => {
let (op, size) = match alu_op {
VecALUOp::Sqadd => ("sqadd", size),
VecALUOp::Uqadd => ("uqadd", size),
VecALUOp::Sqsub => ("sqsub", size),
VecALUOp::Uqsub => ("uqsub", size),
VecALUOp::Cmeq => ("cmeq", size),
VecALUOp::Cmge => ("cmge", size),
VecALUOp::Cmgt => ("cmgt", size),
VecALUOp::Cmhs => ("cmhs", size),
VecALUOp::Cmhi => ("cmhi", size),
VecALUOp::Fcmeq => ("fcmeq", size),
VecALUOp::Fcmgt => ("fcmgt", size),
VecALUOp::Fcmge => ("fcmge", size),
VecALUOp::And => ("and", VectorSize::Size8x16),
VecALUOp::Bic => ("bic", VectorSize::Size8x16),
VecALUOp::Orr => ("orr", VectorSize::Size8x16),
VecALUOp::Eor => ("eor", VectorSize::Size8x16),
VecALUOp::Umaxp => ("umaxp", size),
VecALUOp::Add => ("add", size),
VecALUOp::Sub => ("sub", size),
VecALUOp::Mul => ("mul", size),
VecALUOp::Sshl => ("sshl", size),
VecALUOp::Ushl => ("ushl", size),
VecALUOp::Umin => ("umin", size),
VecALUOp::Smin => ("smin", size),
VecALUOp::Umax => ("umax", size),
VecALUOp::Smax => ("smax", size),
VecALUOp::Urhadd => ("urhadd", size),
VecALUOp::Fadd => ("fadd", size),
VecALUOp::Fsub => ("fsub", size),
VecALUOp::Fdiv => ("fdiv", size),
VecALUOp::Fmax => ("fmax", size),
VecALUOp::Fmin => ("fmin", size),
VecALUOp::Fmul => ("fmul", size),
VecALUOp::Addp => ("addp", size),
VecALUOp::Zip1 => ("zip1", size),
VecALUOp::Zip2 => ("zip2", size),
VecALUOp::Sqrdmulh => ("sqrdmulh", size),
VecALUOp::Uzp1 => ("uzp1", size),
VecALUOp::Uzp2 => ("uzp2", size),
VecALUOp::Trn1 => ("trn1", size),
VecALUOp::Trn2 => ("trn2", size),
};
let rd = pretty_print_vreg_vector(rd.to_reg(), size, allocs);
let rn = pretty_print_vreg_vector(rn, size, allocs);
let rm = pretty_print_vreg_vector(rm, size, allocs);
format!("{} {}, {}, {}", op, rd, rn, rm)
}
&Inst::VecRRRMod {
rd,
ri,
rn,
rm,
alu_op,
size,
} => {
let (op, size) = match alu_op {
VecALUModOp::Bsl => ("bsl", VectorSize::Size8x16),
VecALUModOp::Fmla => ("fmla", size),
VecALUModOp::Fmls => ("fmls", size),
};
let rd = pretty_print_vreg_vector(rd.to_reg(), size, allocs);
let ri = pretty_print_vreg_vector(ri, size, allocs);
let rn = pretty_print_vreg_vector(rn, size, allocs);
let rm = pretty_print_vreg_vector(rm, size, allocs);
format!("{} {}, {}, {}, {}", op, rd, ri, rn, rm)
}
&Inst::VecFmlaElem {
rd,
ri,
rn,
rm,
alu_op,
size,
idx,
} => {
let (op, size) = match alu_op {
VecALUModOp::Fmla => ("fmla", size),
VecALUModOp::Fmls => ("fmls", size),
_ => unreachable!(),
};
let rd = pretty_print_vreg_vector(rd.to_reg(), size, allocs);
let ri = pretty_print_vreg_vector(ri, size, allocs);
let rn = pretty_print_vreg_vector(rn, size, allocs);
let rm = pretty_print_vreg_element(rm, idx.into(), size.lane_size(), allocs);
format!("{} {}, {}, {}, {}", op, rd, ri, rn, rm)
}
&Inst::VecRRRLong {
rd,
rn,
rm,
alu_op,
high_half,
} => {
let (op, dest_size, src_size) = match (alu_op, high_half) {
(VecRRRLongOp::Smull8, false) => {
("smull", VectorSize::Size16x8, VectorSize::Size8x8)
}
(VecRRRLongOp::Smull8, true) => {
("smull2", VectorSize::Size16x8, VectorSize::Size8x16)
}
(VecRRRLongOp::Smull16, false) => {
("smull", VectorSize::Size32x4, VectorSize::Size16x4)
}
(VecRRRLongOp::Smull16, true) => {
("smull2", VectorSize::Size32x4, VectorSize::Size16x8)
}
(VecRRRLongOp::Smull32, false) => {
("smull", VectorSize::Size64x2, VectorSize::Size32x2)
}
(VecRRRLongOp::Smull32, true) => {
("smull2", VectorSize::Size64x2, VectorSize::Size32x4)
}
(VecRRRLongOp::Umull8, false) => {
("umull", VectorSize::Size16x8, VectorSize::Size8x8)
}
(VecRRRLongOp::Umull8, true) => {
("umull2", VectorSize::Size16x8, VectorSize::Size8x16)
}
(VecRRRLongOp::Umull16, false) => {
("umull", VectorSize::Size32x4, VectorSize::Size16x4)
}
(VecRRRLongOp::Umull16, true) => {
("umull2", VectorSize::Size32x4, VectorSize::Size16x8)
}
(VecRRRLongOp::Umull32, false) => {
("umull", VectorSize::Size64x2, VectorSize::Size32x2)
}
(VecRRRLongOp::Umull32, true) => {
("umull2", VectorSize::Size64x2, VectorSize::Size32x4)
}
};
let rd = pretty_print_vreg_vector(rd.to_reg(), dest_size, allocs);
let rn = pretty_print_vreg_vector(rn, src_size, allocs);
let rm = pretty_print_vreg_vector(rm, src_size, allocs);
format!("{} {}, {}, {}", op, rd, rn, rm)
}
&Inst::VecRRRLongMod {
rd,
ri,
rn,
rm,
alu_op,
high_half,
} => {
let (op, dest_size, src_size) = match (alu_op, high_half) {
(VecRRRLongModOp::Umlal8, false) => {
("umlal", VectorSize::Size16x8, VectorSize::Size8x8)
}
(VecRRRLongModOp::Umlal8, true) => {
("umlal2", VectorSize::Size16x8, VectorSize::Size8x16)
}
(VecRRRLongModOp::Umlal16, false) => {
("umlal", VectorSize::Size32x4, VectorSize::Size16x4)
}
(VecRRRLongModOp::Umlal16, true) => {
("umlal2", VectorSize::Size32x4, VectorSize::Size16x8)
}
(VecRRRLongModOp::Umlal32, false) => {
("umlal", VectorSize::Size64x2, VectorSize::Size32x2)
}
(VecRRRLongModOp::Umlal32, true) => {
("umlal2", VectorSize::Size64x2, VectorSize::Size32x4)
}
};
let rd = pretty_print_vreg_vector(rd.to_reg(), dest_size, allocs);
let ri = pretty_print_vreg_vector(ri, dest_size, allocs);
let rn = pretty_print_vreg_vector(rn, src_size, allocs);
let rm = pretty_print_vreg_vector(rm, src_size, allocs);
format!("{} {}, {}, {}, {}", op, rd, ri, rn, rm)
}
&Inst::VecMisc { op, rd, rn, size } => {
let (op, size, suffix) = match op {
VecMisc2::Not => (
"mvn",
if size.is_128bits() {
VectorSize::Size8x16
} else {
VectorSize::Size8x8
},
"",
),
VecMisc2::Neg => ("neg", size, ""),
VecMisc2::Abs => ("abs", size, ""),
VecMisc2::Fabs => ("fabs", size, ""),
VecMisc2::Fneg => ("fneg", size, ""),
VecMisc2::Fsqrt => ("fsqrt", size, ""),
VecMisc2::Rev16 => ("rev16", size, ""),
VecMisc2::Rev32 => ("rev32", size, ""),
VecMisc2::Rev64 => ("rev64", size, ""),
VecMisc2::Fcvtzs => ("fcvtzs", size, ""),
VecMisc2::Fcvtzu => ("fcvtzu", size, ""),
VecMisc2::Scvtf => ("scvtf", size, ""),
VecMisc2::Ucvtf => ("ucvtf", size, ""),
VecMisc2::Frintn => ("frintn", size, ""),
VecMisc2::Frintz => ("frintz", size, ""),
VecMisc2::Frintm => ("frintm", size, ""),
VecMisc2::Frintp => ("frintp", size, ""),
VecMisc2::Cnt => ("cnt", size, ""),
VecMisc2::Cmeq0 => ("cmeq", size, ", #0"),
VecMisc2::Cmge0 => ("cmge", size, ", #0"),
VecMisc2::Cmgt0 => ("cmgt", size, ", #0"),
VecMisc2::Cmle0 => ("cmle", size, ", #0"),
VecMisc2::Cmlt0 => ("cmlt", size, ", #0"),
VecMisc2::Fcmeq0 => ("fcmeq", size, ", #0.0"),
VecMisc2::Fcmge0 => ("fcmge", size, ", #0.0"),
VecMisc2::Fcmgt0 => ("fcmgt", size, ", #0.0"),
VecMisc2::Fcmle0 => ("fcmle", size, ", #0.0"),
VecMisc2::Fcmlt0 => ("fcmlt", size, ", #0.0"),
};
let rd = pretty_print_vreg_vector(rd.to_reg(), size, allocs);
let rn = pretty_print_vreg_vector(rn, size, allocs);
format!("{} {}, {}{}", op, rd, rn, suffix)
}
&Inst::VecLanes { op, rd, rn, size } => {
let op = match op {
VecLanesOp::Uminv => "uminv",
VecLanesOp::Addv => "addv",
};
let rd = pretty_print_vreg_scalar(rd.to_reg(), size.lane_size(), allocs);
let rn = pretty_print_vreg_vector(rn, size, allocs);
format!("{} {}, {}", op, rd, rn)
}
&Inst::VecShiftImm {
op,
rd,
rn,
size,
imm,
} => {
let op = match op {
VecShiftImmOp::Shl => "shl",
VecShiftImmOp::Ushr => "ushr",
VecShiftImmOp::Sshr => "sshr",
};
let rd = pretty_print_vreg_vector(rd.to_reg(), size, allocs);
let rn = pretty_print_vreg_vector(rn, size, allocs);
format!("{} {}, {}, #{}", op, rd, rn, imm)
}
&Inst::VecShiftImmMod {
op,
rd,
ri,
rn,
size,
imm,
} => {
let op = match op {
VecShiftImmModOp::Sli => "sli",
};
let rd = pretty_print_vreg_vector(rd.to_reg(), size, allocs);
let ri = pretty_print_vreg_vector(ri, size, allocs);
let rn = pretty_print_vreg_vector(rn, size, allocs);
format!("{} {}, {}, {}, #{}", op, rd, ri, rn, imm)
}
&Inst::VecExtract { rd, rn, rm, imm4 } => {
let rd = pretty_print_vreg_vector(rd.to_reg(), VectorSize::Size8x16, allocs);
let rn = pretty_print_vreg_vector(rn, VectorSize::Size8x16, allocs);
let rm = pretty_print_vreg_vector(rm, VectorSize::Size8x16, allocs);
format!("ext {}, {}, {}, #{}", rd, rn, rm, imm4)
}
&Inst::VecTbl { rd, rn, rm } => {
let rn = pretty_print_vreg_vector(rn, VectorSize::Size8x16, allocs);
let rm = pretty_print_vreg_vector(rm, VectorSize::Size8x16, allocs);
let rd = pretty_print_vreg_vector(rd.to_reg(), VectorSize::Size8x16, allocs);
format!("tbl {}, {{ {} }}, {}", rd, rn, rm)
}
&Inst::VecTblExt { rd, ri, rn, rm } => {
let rn = pretty_print_vreg_vector(rn, VectorSize::Size8x16, allocs);
let rm = pretty_print_vreg_vector(rm, VectorSize::Size8x16, allocs);
let rd = pretty_print_vreg_vector(rd.to_reg(), VectorSize::Size8x16, allocs);
let ri = pretty_print_vreg_vector(ri, VectorSize::Size8x16, allocs);
format!("tbx {}, {}, {{ {} }}, {}", rd, ri, rn, rm)
}
&Inst::VecTbl2 { rd, rn, rn2, rm } => {
let rn = pretty_print_vreg_vector(rn, VectorSize::Size8x16, allocs);
let rn2 = pretty_print_vreg_vector(rn2, VectorSize::Size8x16, allocs);
let rm = pretty_print_vreg_vector(rm, VectorSize::Size8x16, allocs);
let rd = pretty_print_vreg_vector(rd.to_reg(), VectorSize::Size8x16, allocs);
format!("tbl {}, {{ {}, {} }}, {}", rd, rn, rn2, rm)
}
&Inst::VecTbl2Ext {
rd,
ri,
rn,
rn2,
rm,
} => {
let rn = pretty_print_vreg_vector(rn, VectorSize::Size8x16, allocs);
let rn2 = pretty_print_vreg_vector(rn2, VectorSize::Size8x16, allocs);
let rm = pretty_print_vreg_vector(rm, VectorSize::Size8x16, allocs);
let rd = pretty_print_vreg_vector(rd.to_reg(), VectorSize::Size8x16, allocs);
let ri = pretty_print_vreg_vector(ri, VectorSize::Size8x16, allocs);
format!("tbx {}, {}, {{ {}, {} }}, {}", rd, ri, rn, rn2, rm)
}
&Inst::VecLoadReplicate { rd, rn, size, .. } => {
let rd = pretty_print_vreg_vector(rd.to_reg(), size, allocs);
let rn = pretty_print_reg(rn, allocs);
format!("ld1r {{ {} }}, [{}]", rd, rn)
}
&Inst::VecCSel { rd, rn, rm, cond } => {
let rd = pretty_print_vreg_vector(rd.to_reg(), VectorSize::Size8x16, allocs);
let rn = pretty_print_vreg_vector(rn, VectorSize::Size8x16, allocs);
let rm = pretty_print_vreg_vector(rm, VectorSize::Size8x16, allocs);
let cond = cond.pretty_print(0, allocs);
format!(
"vcsel {}, {}, {}, {} (if-then-else diamond)",
rd, rn, rm, cond
)
}
&Inst::MovToNZCV { rn } => {
let rn = pretty_print_reg(rn, allocs);
format!("msr nzcv, {}", rn)
}
&Inst::MovFromNZCV { rd } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
format!("mrs {}, nzcv", rd)
}
&Inst::Extend {
rd,
rn,
signed: false,
from_bits: 1,
..
} => {
let rd = pretty_print_ireg(rd.to_reg(), OperandSize::Size32, allocs);
let rn = pretty_print_ireg(rn, OperandSize::Size32, allocs);
format!("and {}, {}, #1", rd, rn)
}
&Inst::Extend {
rd,
rn,
signed: false,
from_bits: 32,
to_bits: 64,
} => {
// The case of a zero extension from 32 to 64 bits, is implemented
// with a "mov" to a 32-bit (W-reg) dest, because this zeroes
// the top 32 bits.
let rd = pretty_print_ireg(rd.to_reg(), OperandSize::Size32, allocs);
let rn = pretty_print_ireg(rn, OperandSize::Size32, allocs);
format!("mov {}, {}", rd, rn)
}
&Inst::Extend {
rd,
rn,
signed,
from_bits,
to_bits,
} => {
assert!(from_bits <= to_bits);
let op = match (signed, from_bits) {
(false, 8) => "uxtb",
(true, 8) => "sxtb",
(false, 16) => "uxth",
(true, 16) => "sxth",
(true, 32) => "sxtw",
(true, _) => "sbfx",
(false, _) => "ubfx",
};
if op == "sbfx" || op == "ubfx" {
let dest_size = OperandSize::from_bits(to_bits);
let rd = pretty_print_ireg(rd.to_reg(), dest_size, allocs);
let rn = pretty_print_ireg(rn, dest_size, allocs);
format!("{} {}, {}, #0, #{}", op, rd, rn, from_bits)
} else {
let dest_size = if signed {
OperandSize::from_bits(to_bits)
} else {
OperandSize::Size32
};
let rd = pretty_print_ireg(rd.to_reg(), dest_size, allocs);
let rn = pretty_print_ireg(rn, OperandSize::from_bits(from_bits), allocs);
format!("{} {}, {}", op, rd, rn)
}
}
&Inst::Call { .. } => format!("bl 0"),
&Inst::CallInd { ref info, .. } => {
let rn = pretty_print_reg(info.rn, allocs);
format!("blr {}", rn)
}
&Inst::ReturnCall {
ref callee,
ref info,
} => {
let mut s = format!(
"return_call {callee:?} old_stack_arg_size:{} new_stack_arg_size:{}",
info.old_stack_arg_size, info.new_stack_arg_size
);
for ret in &info.uses {
let preg = pretty_print_reg(ret.preg, &mut empty_allocs);
let vreg = pretty_print_reg(ret.vreg, allocs);
write!(&mut s, " {vreg}={preg}").unwrap();
}
s
}
&Inst::ReturnCallInd { callee, ref info } => {
let callee = pretty_print_reg(callee, allocs);
let mut s = format!(
"return_call_ind {callee} old_stack_arg_size:{} new_stack_arg_size:{}",
info.old_stack_arg_size, info.new_stack_arg_size
);
for ret in &info.uses {
let preg = pretty_print_reg(ret.preg, &mut empty_allocs);
let vreg = pretty_print_reg(ret.vreg, allocs);
write!(&mut s, " {vreg}={preg}").unwrap();
}
s
}
&Inst::Args { ref args } => {
let mut s = "args".to_string();
for arg in args {
let preg = pretty_print_reg(arg.preg, &mut empty_allocs);
let def = pretty_print_reg(arg.vreg.to_reg(), allocs);
write!(&mut s, " {}={}", def, preg).unwrap();
}
s
}
&Inst::Rets { ref rets } => {
let mut s = "rets".to_string();
for ret in rets {
let preg = pretty_print_reg(ret.preg, &mut empty_allocs);
let vreg = pretty_print_reg(ret.vreg, allocs);
write!(&mut s, " {vreg}={preg}").unwrap();
}
s
}
&Inst::Ret {} => "ret".to_string(),
&Inst::AuthenticatedRet { key, is_hint } => {
let key = match key {
APIKey::AZ => "az",
APIKey::BZ => "bz",
APIKey::ASP => "asp",
APIKey::BSP => "bsp",
};
match is_hint {
false => format!("reta{key}"),
true => format!("auti{key} ; ret"),
}
}
&Inst::Jump { ref dest } => {
let dest = dest.pretty_print(0, allocs);
format!("b {}", dest)
}
&Inst::CondBr {
ref taken,
ref not_taken,
ref kind,
} => {
let taken = taken.pretty_print(0, allocs);
let not_taken = not_taken.pretty_print(0, allocs);
match kind {
&CondBrKind::Zero(reg) => {
let reg = pretty_print_reg(reg, allocs);
format!("cbz {}, {} ; b {}", reg, taken, not_taken)
}
&CondBrKind::NotZero(reg) => {
let reg = pretty_print_reg(reg, allocs);
format!("cbnz {}, {} ; b {}", reg, taken, not_taken)
}
&CondBrKind::Cond(c) => {
let c = c.pretty_print(0, allocs);
format!("b.{} {} ; b {}", c, taken, not_taken)
}
}
}
&Inst::IndirectBr { rn, .. } => {
let rn = pretty_print_reg(rn, allocs);
format!("br {}", rn)
}
&Inst::Brk => "brk #0".to_string(),
&Inst::Udf { .. } => "udf #0xc11f".to_string(),
&Inst::TrapIf {
ref kind,
trap_code,
} => match kind {
&CondBrKind::Zero(reg) => {
let reg = pretty_print_reg(reg, allocs);
format!("cbz {reg}, #trap={trap_code}")
}
&CondBrKind::NotZero(reg) => {
let reg = pretty_print_reg(reg, allocs);
format!("cbnz {reg}, #trap={trap_code}")
}
&CondBrKind::Cond(c) => {
let c = c.pretty_print(0, allocs);
format!("b.{c} #trap={trap_code}")
}
},
&Inst::Adr { rd, off } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
format!("adr {}, pc+{}", rd, off)
}
&Inst::Adrp { rd, off } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
// This instruction addresses 4KiB pages, so multiply it by the page size.
let byte_offset = off * 4096;
format!("adrp {}, pc+{}", rd, byte_offset)
}
&Inst::Word4 { data } => format!("data.i32 {}", data),
&Inst::Word8 { data } => format!("data.i64 {}", data),
&Inst::JTSequence {
default,
ref targets,
ridx,
rtmp1,
rtmp2,
..
} => {
let ridx = pretty_print_reg(ridx, allocs);
let rtmp1 = pretty_print_reg(rtmp1.to_reg(), allocs);
let rtmp2 = pretty_print_reg(rtmp2.to_reg(), allocs);
let default_target = BranchTarget::Label(default).pretty_print(0, allocs);
format!(
concat!(
"b.hs {} ; ",
"csel {}, xzr, {}, hs ; ",
"csdb ; ",
"adr {}, pc+16 ; ",
"ldrsw {}, [{}, {}, uxtw #2] ; ",
"add {}, {}, {} ; ",
"br {} ; ",
"jt_entries {:?}"
),
default_target,
rtmp2,
ridx,
rtmp1,
rtmp2,
rtmp1,
rtmp2,
rtmp1,
rtmp1,
rtmp2,
rtmp1,
targets
)
}
&Inst::LoadExtName {
rd,
ref name,
offset,
} => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
format!("load_ext_name {rd}, {name:?}+{offset}")
}
&Inst::LoadAddr { rd, ref mem } => {
// TODO: we really should find a better way to avoid duplication of
// this logic between `emit()` and `show_rru()` -- a separate 1-to-N
// expansion stage (i.e., legalization, but without the slow edit-in-place
// of the existing legalization framework).
let rd = allocs.next_writable(rd);
let mem = mem.with_allocs(allocs);
let (mem_insts, mem) = mem_finalize(None, &mem, state);
let mut ret = String::new();
for inst in mem_insts.into_iter() {
ret.push_str(
&inst.print_with_state(&mut EmitState::default(), &mut empty_allocs),
);
}
let (reg, index_reg, offset) = match mem {
AMode::RegExtended { rn, rm, extendop } => (rn, Some((rm, extendop)), 0),
AMode::Unscaled { rn, simm9 } => (rn, None, simm9.value()),
AMode::UnsignedOffset { rn, uimm12 } => (rn, None, uimm12.value() as i32),
_ => panic!("Unsupported case for LoadAddr: {:?}", mem),
};
let abs_offset = if offset < 0 {
-offset as u64
} else {
offset as u64
};
let alu_op = if offset < 0 { ALUOp::Sub } else { ALUOp::Add };
if let Some((idx, extendop)) = index_reg {
let add = Inst::AluRRRExtend {
alu_op: ALUOp::Add,
size: OperandSize::Size64,
rd,
rn: reg,
rm: idx,
extendop,
};
ret.push_str(
&add.print_with_state(&mut EmitState::default(), &mut empty_allocs),
);
} else if offset == 0 {
let mov = Inst::gen_move(rd, reg, I64);
ret.push_str(
&mov.print_with_state(&mut EmitState::default(), &mut empty_allocs),
);
} else if let Some(imm12) = Imm12::maybe_from_u64(abs_offset) {
let add = Inst::AluRRImm12 {
alu_op,
size: OperandSize::Size64,
rd,
rn: reg,
imm12,
};
ret.push_str(
&add.print_with_state(&mut EmitState::default(), &mut empty_allocs),
);
} else {
let tmp = writable_spilltmp_reg();
for inst in Inst::load_constant(tmp, abs_offset, &mut |_| tmp).into_iter() {
ret.push_str(
&inst.print_with_state(&mut EmitState::default(), &mut empty_allocs),
);
}
let add = Inst::AluRRR {
alu_op,
size: OperandSize::Size64,
rd,
rn: reg,
rm: tmp.to_reg(),
};
ret.push_str(
&add.print_with_state(&mut EmitState::default(), &mut empty_allocs),
);
}
ret
}
&Inst::Paci { key } => {
let key = match key {
APIKey::AZ => "az",
APIKey::BZ => "bz",
APIKey::ASP => "asp",
APIKey::BSP => "bsp",
};
"paci".to_string() + key
}
&Inst::Xpaclri => "xpaclri".to_string(),
&Inst::Bti { targets } => {
let targets = match targets {
BranchTargetType::None => "",
BranchTargetType::C => " c",
BranchTargetType::J => " j",
BranchTargetType::JC => " jc",
};
"bti".to_string() + targets
}
&Inst::VirtualSPOffsetAdj { offset } => {
state.virtual_sp_offset += offset;
format!("virtual_sp_offset_adjust {}", offset)
}
&Inst::EmitIsland { needed_space } => format!("emit_island {}", needed_space),
&Inst::ElfTlsGetAddr { ref symbol, rd } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
format!("elf_tls_get_addr {}, {}", rd, symbol.display(None))
}
&Inst::MachOTlsGetAddr { ref symbol, rd } => {
let rd = pretty_print_reg(rd.to_reg(), allocs);
format!("macho_tls_get_addr {}, {}", rd, symbol.display(None))
}
&Inst::Unwind { ref inst } => {
format!("unwind {:?}", inst)
}
&Inst::DummyUse { reg } => {
let reg = pretty_print_reg(reg, allocs);
format!("dummy_use {}", reg)
}
&Inst::StackProbeLoop { start, end, step } => {
let start = pretty_print_reg(start.to_reg(), allocs);
let end = pretty_print_reg(end, allocs);
let step = step.pretty_print(0, allocs);
format!("stack_probe_loop {start}, {end}, {step}")
}
}
}
}
//=============================================================================
// Label fixups and jump veneers.
/// Different forms of label references for different instruction formats.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum LabelUse {
/// 19-bit branch offset (conditional branches). PC-rel, offset is imm << 2. Immediate is 19
/// signed bits, in bits 23:5. Used by cbz, cbnz, b.cond.
Branch19,
/// 26-bit branch offset (unconditional branches). PC-rel, offset is imm << 2. Immediate is 26
/// signed bits, in bits 25:0. Used by b, bl.
Branch26,
#[allow(dead_code)]
/// 19-bit offset for LDR (load literal). PC-rel, offset is imm << 2. Immediate is 19 signed bits,
/// in bits 23:5.
Ldr19,
#[allow(dead_code)]
/// 21-bit offset for ADR (get address of label). PC-rel, offset is not shifted. Immediate is
/// 21 signed bits, with high 19 bits in bits 23:5 and low 2 bits in bits 30:29.
Adr21,
/// 32-bit PC relative constant offset (from address of constant itself),
/// signed. Used in jump tables.
PCRel32,
}
impl MachInstLabelUse for LabelUse {
/// Alignment for veneer code. Every AArch64 instruction must be 4-byte-aligned.
const ALIGN: CodeOffset = 4;
/// Maximum PC-relative range (positive), inclusive.
fn max_pos_range(self) -> CodeOffset {
match self {
// 19-bit immediate, left-shifted by 2, for 21 bits of total range. Signed, so +2^20
// from zero. Likewise for two other shifted cases below.
LabelUse::Branch19 => (1 << 20) - 1,
LabelUse::Branch26 => (1 << 27) - 1,
LabelUse::Ldr19 => (1 << 20) - 1,
// Adr does not shift its immediate, so the 21-bit immediate gives 21 bits of total
// range.
LabelUse::Adr21 => (1 << 20) - 1,
LabelUse::PCRel32 => 0x7fffffff,
}
}
/// Maximum PC-relative range (negative).
fn max_neg_range(self) -> CodeOffset {
// All forms are twos-complement signed offsets, so negative limit is one more than
// positive limit.
self.max_pos_range() + 1
}
/// Size of window into code needed to do the patch.
fn patch_size(self) -> CodeOffset {
// Patch is on one instruction only for all of these label reference types.
4
}
/// Perform the patch.
fn patch(self, buffer: &mut [u8], use_offset: CodeOffset, label_offset: CodeOffset) {
let pc_rel = (label_offset as i64) - (use_offset as i64);
debug_assert!(pc_rel <= self.max_pos_range() as i64);
debug_assert!(pc_rel >= -(self.max_neg_range() as i64));
let pc_rel = pc_rel as u32;
let insn_word = u32::from_le_bytes([buffer[0], buffer[1], buffer[2], buffer[3]]);
let mask = match self {
LabelUse::Branch19 => 0x00ffffe0, // bits 23..5 inclusive
LabelUse::Branch26 => 0x03ffffff, // bits 25..0 inclusive
LabelUse::Ldr19 => 0x00ffffe0, // bits 23..5 inclusive
LabelUse::Adr21 => 0x60ffffe0, // bits 30..29, 25..5 inclusive
LabelUse::PCRel32 => 0xffffffff,
};
let pc_rel_shifted = match self {
LabelUse::Adr21 | LabelUse::PCRel32 => pc_rel,
_ => {
debug_assert!(pc_rel & 3 == 0);
pc_rel >> 2
}
};
let pc_rel_inserted = match self {
LabelUse::Branch19 | LabelUse::Ldr19 => (pc_rel_shifted & 0x7ffff) << 5,
LabelUse::Branch26 => pc_rel_shifted & 0x3ffffff,
LabelUse::Adr21 => (pc_rel_shifted & 0x7ffff) << 5 | (pc_rel_shifted & 0x180000) << 10,
LabelUse::PCRel32 => pc_rel_shifted,
};
let is_add = match self {
LabelUse::PCRel32 => true,
_ => false,
};
let insn_word = if is_add {
insn_word.wrapping_add(pc_rel_inserted)
} else {
(insn_word & !mask) | pc_rel_inserted
};
buffer[0..4].clone_from_slice(&u32::to_le_bytes(insn_word));
}
/// Is a veneer supported for this label reference type?
fn supports_veneer(self) -> bool {
match self {
LabelUse::Branch19 => true, // veneer is a Branch26
LabelUse::Branch26 => true, // veneer is a PCRel32
_ => false,
}
}
/// How large is the veneer, if supported?
fn veneer_size(self) -> CodeOffset {
match self {
LabelUse::Branch19 => 4,
LabelUse::Branch26 => 20,
_ => unreachable!(),
}
}
fn worst_case_veneer_size() -> CodeOffset {
20
}
/// Generate a veneer into the buffer, given that this veneer is at `veneer_offset`, and return
/// an offset and label-use for the veneer's use of the original label.
fn generate_veneer(
self,
buffer: &mut [u8],
veneer_offset: CodeOffset,
) -> (CodeOffset, LabelUse) {
match self {
LabelUse::Branch19 => {
// veneer is a Branch26 (unconditional branch). Just encode directly here -- don't
// bother with constructing an Inst.
let insn_word = 0b000101 << 26;
buffer[0..4].clone_from_slice(&u32::to_le_bytes(insn_word));
(veneer_offset, LabelUse::Branch26)
}
// This is promoting a 26-bit call/jump to a 32-bit call/jump to
// get a further range. This jump translates to a jump to a
// relative location based on the address of the constant loaded
// from here.
//
// If this path is taken from a call instruction then caller-saved
// registers are available (minus arguments), so x16/x17 are
// available. Otherwise for intra-function jumps we also reserve
// x16/x17 as spill-style registers. In both cases these are
// available for us to use.
LabelUse::Branch26 => {
let tmp1 = regs::spilltmp_reg();
let tmp1_w = regs::writable_spilltmp_reg();
let tmp2 = regs::tmp2_reg();
let tmp2_w = regs::writable_tmp2_reg();
// ldrsw x16, 16
let ldr = emit::enc_ldst_imm19(0b1001_1000, 16 / 4, tmp1);
// adr x17, 12
let adr = emit::enc_adr(12, tmp2_w);
// add x16, x16, x17
let add = emit::enc_arith_rrr(0b10001011_000, 0, tmp1_w, tmp1, tmp2);
// br x16
let br = emit::enc_br(tmp1);
buffer[0..4].clone_from_slice(&u32::to_le_bytes(ldr));
buffer[4..8].clone_from_slice(&u32::to_le_bytes(adr));
buffer[8..12].clone_from_slice(&u32::to_le_bytes(add));
buffer[12..16].clone_from_slice(&u32::to_le_bytes(br));
// the 4-byte signed immediate we'll load is after these
// instructions, 16-bytes in.
(veneer_offset + 16, LabelUse::PCRel32)
}
_ => panic!("Unsupported label-reference type for veneer generation!"),
}
}
fn from_reloc(reloc: Reloc, addend: Addend) -> Option<LabelUse> {
match (reloc, addend) {
(Reloc::Arm64Call, 0) => Some(LabelUse::Branch26),
_ => None,
}
}
}