blob: 76b1b08cbeea6c1c5672add9b15042bee2b698a4 [file] [log] [blame]
//! Data flow graph tracking Instructions, Values, and blocks.
use crate::entity::{self, PrimaryMap, SecondaryMap};
use crate::ir;
use crate::ir::builder::ReplaceBuilder;
use crate::ir::dynamic_type::{DynamicTypeData, DynamicTypes};
use crate::ir::instructions::{CallInfo, InstructionData};
use crate::ir::{
types, Block, BlockCall, ConstantData, ConstantPool, DynamicType, ExtFuncData, FuncRef,
Immediate, Inst, JumpTables, RelSourceLoc, SigRef, Signature, Type, Value,
ValueLabelAssignments, ValueList, ValueListPool,
};
use crate::packed_option::ReservedValue;
use crate::write::write_operands;
use core::fmt;
use core::iter;
use core::mem;
use core::ops::{Index, IndexMut};
use core::u16;
use alloc::collections::BTreeMap;
#[cfg(feature = "enable-serde")]
use serde_derive::{Deserialize, Serialize};
use smallvec::SmallVec;
/// Storage for instructions within the DFG.
#[derive(Clone, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Insts(PrimaryMap<Inst, InstructionData>);
/// Allow immutable access to instructions via indexing.
impl Index<Inst> for Insts {
type Output = InstructionData;
fn index(&self, inst: Inst) -> &InstructionData {
self.0.index(inst)
}
}
/// Allow mutable access to instructions via indexing.
impl IndexMut<Inst> for Insts {
fn index_mut(&mut self, inst: Inst) -> &mut InstructionData {
self.0.index_mut(inst)
}
}
/// Storage for basic blocks within the DFG.
#[derive(Clone, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Blocks(PrimaryMap<Block, BlockData>);
impl Blocks {
/// Create a new basic block.
pub fn add(&mut self) -> Block {
self.0.push(BlockData::new())
}
/// Get the total number of basic blocks created in this function, whether they are
/// currently inserted in the layout or not.
///
/// This is intended for use with `SecondaryMap::with_capacity`.
pub fn len(&self) -> usize {
self.0.len()
}
/// Returns `true` if the given block reference is valid.
pub fn is_valid(&self, block: Block) -> bool {
self.0.is_valid(block)
}
}
impl Index<Block> for Blocks {
type Output = BlockData;
fn index(&self, block: Block) -> &BlockData {
&self.0[block]
}
}
impl IndexMut<Block> for Blocks {
fn index_mut(&mut self, block: Block) -> &mut BlockData {
&mut self.0[block]
}
}
/// A data flow graph defines all instructions and basic blocks in a function as well as
/// the data flow dependencies between them. The DFG also tracks values which can be either
/// instruction results or block parameters.
///
/// The layout of blocks in the function and of instructions in each block is recorded by the
/// `Layout` data structure which forms the other half of the function representation.
///
#[derive(Clone, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct DataFlowGraph {
/// Data about all of the instructions in the function, including opcodes and operands.
/// The instructions in this map are not in program order. That is tracked by `Layout`, along
/// with the block containing each instruction.
pub insts: Insts,
/// List of result values for each instruction.
///
/// This map gets resized automatically by `make_inst()` so it is always in sync with the
/// primary `insts` map.
results: SecondaryMap<Inst, ValueList>,
/// basic blocks in the function and their parameters.
///
/// This map is not in program order. That is handled by `Layout`, and so is the sequence of
/// instructions contained in each block.
pub blocks: Blocks,
/// Dynamic types created.
pub dynamic_types: DynamicTypes,
/// Memory pool of value lists.
///
/// The `ValueList` references into this pool appear in many places:
///
/// - Instructions in `insts` that don't have room for their entire argument list inline.
/// - Instruction result values in `results`.
/// - block parameters in `blocks`.
pub value_lists: ValueListPool,
/// Primary value table with entries for all values.
values: PrimaryMap<Value, ValueDataPacked>,
/// Function signature table. These signatures are referenced by indirect call instructions as
/// well as the external function references.
pub signatures: PrimaryMap<SigRef, Signature>,
/// The pre-legalization signature for each entry in `signatures`, if any.
pub old_signatures: SecondaryMap<SigRef, Option<Signature>>,
/// External function references. These are functions that can be called directly.
pub ext_funcs: PrimaryMap<FuncRef, ExtFuncData>,
/// Saves Value labels.
pub values_labels: Option<BTreeMap<Value, ValueLabelAssignments>>,
/// Constants used within the function.
pub constants: ConstantPool,
/// Stores large immediates that otherwise will not fit on InstructionData.
pub immediates: PrimaryMap<Immediate, ConstantData>,
/// Jump tables used in this function.
pub jump_tables: JumpTables,
}
impl DataFlowGraph {
/// Create a new empty `DataFlowGraph`.
pub fn new() -> Self {
Self {
insts: Insts(PrimaryMap::new()),
results: SecondaryMap::new(),
blocks: Blocks(PrimaryMap::new()),
dynamic_types: DynamicTypes::new(),
value_lists: ValueListPool::new(),
values: PrimaryMap::new(),
signatures: PrimaryMap::new(),
old_signatures: SecondaryMap::new(),
ext_funcs: PrimaryMap::new(),
values_labels: None,
constants: ConstantPool::new(),
immediates: PrimaryMap::new(),
jump_tables: JumpTables::new(),
}
}
/// Clear everything.
pub fn clear(&mut self) {
self.insts.0.clear();
self.results.clear();
self.blocks.0.clear();
self.dynamic_types.clear();
self.value_lists.clear();
self.values.clear();
self.signatures.clear();
self.old_signatures.clear();
self.ext_funcs.clear();
self.values_labels = None;
self.constants.clear();
self.immediates.clear();
self.jump_tables.clear();
}
/// Get the total number of instructions created in this function, whether they are currently
/// inserted in the layout or not.
///
/// This is intended for use with `SecondaryMap::with_capacity`.
pub fn num_insts(&self) -> usize {
self.insts.0.len()
}
/// Returns `true` if the given instruction reference is valid.
pub fn inst_is_valid(&self, inst: Inst) -> bool {
self.insts.0.is_valid(inst)
}
/// Get the total number of basic blocks created in this function, whether they are
/// currently inserted in the layout or not.
///
/// This is intended for use with `SecondaryMap::with_capacity`.
pub fn num_blocks(&self) -> usize {
self.blocks.len()
}
/// Returns `true` if the given block reference is valid.
pub fn block_is_valid(&self, block: Block) -> bool {
self.blocks.is_valid(block)
}
/// Make a BlockCall, bundling together the block and its arguments.
pub fn block_call(&mut self, block: Block, args: &[Value]) -> BlockCall {
BlockCall::new(block, args, &mut self.value_lists)
}
/// Get the total number of values.
pub fn num_values(&self) -> usize {
self.values.len()
}
/// Get an iterator over all values and their definitions.
pub fn values_and_defs(&self) -> impl Iterator<Item = (Value, ValueDef)> + '_ {
self.values().map(|value| (value, self.value_def(value)))
}
/// Starts collection of debug information.
pub fn collect_debug_info(&mut self) {
if self.values_labels.is_none() {
self.values_labels = Some(Default::default());
}
}
/// Inserts a `ValueLabelAssignments::Alias` for `to_alias` if debug info
/// collection is enabled.
pub fn add_value_label_alias(&mut self, to_alias: Value, from: RelSourceLoc, value: Value) {
if let Some(values_labels) = self.values_labels.as_mut() {
values_labels.insert(to_alias, ir::ValueLabelAssignments::Alias { from, value });
}
}
}
/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases, or None if an
/// alias cycle is detected.
fn maybe_resolve_aliases(
values: &PrimaryMap<Value, ValueDataPacked>,
value: Value,
) -> Option<Value> {
let mut v = value;
// Note that values may be empty here.
for _ in 0..=values.len() {
if let ValueData::Alias { original, .. } = ValueData::from(values[v]) {
v = original;
} else {
return Some(v);
}
}
None
}
/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases.
fn resolve_aliases(values: &PrimaryMap<Value, ValueDataPacked>, value: Value) -> Value {
if let Some(v) = maybe_resolve_aliases(values, value) {
v
} else {
panic!("Value alias loop detected for {}", value);
}
}
/// Iterator over all Values in a DFG.
pub struct Values<'a> {
inner: entity::Iter<'a, Value, ValueDataPacked>,
}
/// Check for non-values.
fn valid_valuedata(data: ValueDataPacked) -> bool {
let data = ValueData::from(data);
if let ValueData::Alias {
ty: types::INVALID,
original,
} = ValueData::from(data)
{
if original == Value::reserved_value() {
return false;
}
}
true
}
impl<'a> Iterator for Values<'a> {
type Item = Value;
fn next(&mut self) -> Option<Self::Item> {
self.inner
.by_ref()
.find(|kv| valid_valuedata(*kv.1))
.map(|kv| kv.0)
}
}
/// Handling values.
///
/// Values are either block parameters or instruction results.
impl DataFlowGraph {
/// Allocate an extended value entry.
fn make_value(&mut self, data: ValueData) -> Value {
self.values.push(data.into())
}
/// Get an iterator over all values.
pub fn values<'a>(&'a self) -> Values {
Values {
inner: self.values.iter(),
}
}
/// Check if a value reference is valid.
pub fn value_is_valid(&self, v: Value) -> bool {
self.values.is_valid(v)
}
/// Get the type of a value.
pub fn value_type(&self, v: Value) -> Type {
self.values[v].ty()
}
/// Get the definition of a value.
///
/// This is either the instruction that defined it or the Block that has the value as an
/// parameter.
pub fn value_def(&self, v: Value) -> ValueDef {
match ValueData::from(self.values[v]) {
ValueData::Inst { inst, num, .. } => ValueDef::Result(inst, num as usize),
ValueData::Param { block, num, .. } => ValueDef::Param(block, num as usize),
ValueData::Alias { original, .. } => {
// Make sure we only recurse one level. `resolve_aliases` has safeguards to
// detect alias loops without overrunning the stack.
self.value_def(self.resolve_aliases(original))
}
ValueData::Union { x, y, .. } => ValueDef::Union(x, y),
}
}
/// Determine if `v` is an attached instruction result / block parameter.
///
/// An attached value can't be attached to something else without first being detached.
///
/// Value aliases are not considered to be attached to anything. Use `resolve_aliases()` to
/// determine if the original aliased value is attached.
pub fn value_is_attached(&self, v: Value) -> bool {
use self::ValueData::*;
match ValueData::from(self.values[v]) {
Inst { inst, num, .. } => Some(&v) == self.inst_results(inst).get(num as usize),
Param { block, num, .. } => Some(&v) == self.block_params(block).get(num as usize),
Alias { .. } => false,
Union { .. } => false,
}
}
/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases.
pub fn resolve_aliases(&self, value: Value) -> Value {
resolve_aliases(&self.values, value)
}
/// Resolve all aliases among inst's arguments.
///
/// For each argument of inst which is defined by an alias, replace the
/// alias with the aliased value.
pub fn resolve_aliases_in_arguments(&mut self, inst: Inst) {
self.map_inst_values(inst, |dfg, arg| resolve_aliases(&dfg.values, arg));
}
/// Turn a value into an alias of another.
///
/// Change the `dest` value to behave as an alias of `src`. This means that all uses of `dest`
/// will behave as if they used that value `src`.
///
/// The `dest` value can't be attached to an instruction or block.
pub fn change_to_alias(&mut self, dest: Value, src: Value) {
debug_assert!(!self.value_is_attached(dest));
// Try to create short alias chains by finding the original source value.
// This also avoids the creation of loops.
let original = self.resolve_aliases(src);
debug_assert_ne!(
dest, original,
"Aliasing {} to {} would create a loop",
dest, src
);
let ty = self.value_type(original);
debug_assert_eq!(
self.value_type(dest),
ty,
"Aliasing {} to {} would change its type {} to {}",
dest,
src,
self.value_type(dest),
ty
);
debug_assert_ne!(ty, types::INVALID);
self.values[dest] = ValueData::Alias { ty, original }.into();
}
/// Replace the results of one instruction with aliases to the results of another.
///
/// Change all the results of `dest_inst` to behave as aliases of
/// corresponding results of `src_inst`, as if calling change_to_alias for
/// each.
///
/// After calling this instruction, `dest_inst` will have had its results
/// cleared, so it likely needs to be removed from the graph.
///
pub fn replace_with_aliases(&mut self, dest_inst: Inst, src_inst: Inst) {
debug_assert_ne!(
dest_inst, src_inst,
"Replacing {} with itself would create a loop",
dest_inst
);
debug_assert_eq!(
self.results[dest_inst].len(&self.value_lists),
self.results[src_inst].len(&self.value_lists),
"Replacing {} with {} would produce a different number of results.",
dest_inst,
src_inst
);
for (&dest, &src) in self.results[dest_inst]
.as_slice(&self.value_lists)
.iter()
.zip(self.results[src_inst].as_slice(&self.value_lists))
{
let original = src;
let ty = self.value_type(original);
debug_assert_eq!(
self.value_type(dest),
ty,
"Aliasing {} to {} would change its type {} to {}",
dest,
src,
self.value_type(dest),
ty
);
debug_assert_ne!(ty, types::INVALID);
self.values[dest] = ValueData::Alias { ty, original }.into();
}
self.clear_results(dest_inst);
}
}
/// Where did a value come from?
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ValueDef {
/// Value is the n'th result of an instruction.
Result(Inst, usize),
/// Value is the n'th parameter to a block.
Param(Block, usize),
/// Value is a union of two other values.
Union(Value, Value),
}
impl ValueDef {
/// Unwrap the instruction where the value was defined, or panic.
pub fn unwrap_inst(&self) -> Inst {
self.inst().expect("Value is not an instruction result")
}
/// Get the instruction where the value was defined, if any.
pub fn inst(&self) -> Option<Inst> {
match *self {
Self::Result(inst, _) => Some(inst),
_ => None,
}
}
/// Unwrap the block there the parameter is defined, or panic.
pub fn unwrap_block(&self) -> Block {
match *self {
Self::Param(block, _) => block,
_ => panic!("Value is not a block parameter"),
}
}
/// Get the number component of this definition.
///
/// When multiple values are defined at the same program point, this indicates the index of
/// this value.
pub fn num(self) -> usize {
match self {
Self::Result(_, n) | Self::Param(_, n) => n,
Self::Union(_, _) => 0,
}
}
}
/// Internal table storage for extended values.
#[derive(Clone, Debug, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
enum ValueData {
/// Value is defined by an instruction.
Inst { ty: Type, num: u16, inst: Inst },
/// Value is a block parameter.
Param { ty: Type, num: u16, block: Block },
/// Value is an alias of another value.
/// An alias value can't be linked as an instruction result or block parameter. It is used as a
/// placeholder when the original instruction or block has been rewritten or modified.
Alias { ty: Type, original: Value },
/// Union is a "fork" in representation: the value can be
/// represented as either of the values named here. This is used
/// for aegraph (acyclic egraph) representation in the DFG.
Union { ty: Type, x: Value, y: Value },
}
/// Bit-packed version of ValueData, for efficiency.
///
/// Layout:
///
/// ```plain
/// | tag:2 | type:14 | x:24 | y:24 |
///
/// Inst 00 ty inst output inst index
/// Param 01 ty blockparam num block index
/// Alias 10 ty 0 value index
/// Union 11 ty first value second value
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
struct ValueDataPacked(u64);
/// Encodes a value in 0..2^32 into 0..2^n, where n is less than 32
/// (and is implied by `mask`), by translating 2^32-1 (0xffffffff)
/// into 2^n-1 and panic'ing on 2^n..2^32-1.
fn encode_narrow_field(x: u32, bits: u8) -> u32 {
if x == 0xffff_ffff {
(1 << bits) - 1
} else {
debug_assert!(x < (1 << bits));
x
}
}
/// The inverse of the above `encode_narrow_field`: unpacks 2^n-1 into
/// 2^32-1.
fn decode_narrow_field(x: u32, bits: u8) -> u32 {
if x == (1 << bits) - 1 {
0xffff_ffff
} else {
x
}
}
impl ValueDataPacked {
const Y_SHIFT: u8 = 0;
const Y_BITS: u8 = 24;
const X_SHIFT: u8 = Self::Y_SHIFT + Self::Y_BITS;
const X_BITS: u8 = 24;
const TYPE_SHIFT: u8 = Self::X_SHIFT + Self::X_BITS;
const TYPE_BITS: u8 = 14;
const TAG_SHIFT: u8 = Self::TYPE_SHIFT + Self::TYPE_BITS;
const TAG_BITS: u8 = 2;
const TAG_INST: u64 = 0;
const TAG_PARAM: u64 = 1;
const TAG_ALIAS: u64 = 2;
const TAG_UNION: u64 = 3;
fn make(tag: u64, ty: Type, x: u32, y: u32) -> ValueDataPacked {
debug_assert!(tag < (1 << Self::TAG_BITS));
debug_assert!(ty.repr() < (1 << Self::TYPE_BITS));
let x = encode_narrow_field(x, Self::X_BITS);
let y = encode_narrow_field(y, Self::Y_BITS);
ValueDataPacked(
(tag << Self::TAG_SHIFT)
| ((ty.repr() as u64) << Self::TYPE_SHIFT)
| ((x as u64) << Self::X_SHIFT)
| ((y as u64) << Self::Y_SHIFT),
)
}
#[inline(always)]
fn field(self, shift: u8, bits: u8) -> u64 {
(self.0 >> shift) & ((1 << bits) - 1)
}
#[inline(always)]
fn ty(self) -> Type {
let ty = self.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS) as u16;
Type::from_repr(ty)
}
#[inline(always)]
fn set_type(&mut self, ty: Type) {
self.0 &= !(((1 << Self::TYPE_BITS) - 1) << Self::TYPE_SHIFT);
self.0 |= (ty.repr() as u64) << Self::TYPE_SHIFT;
}
}
impl From<ValueData> for ValueDataPacked {
fn from(data: ValueData) -> Self {
match data {
ValueData::Inst { ty, num, inst } => {
Self::make(Self::TAG_INST, ty, num.into(), inst.as_bits())
}
ValueData::Param { ty, num, block } => {
Self::make(Self::TAG_PARAM, ty, num.into(), block.as_bits())
}
ValueData::Alias { ty, original } => {
Self::make(Self::TAG_ALIAS, ty, 0, original.as_bits())
}
ValueData::Union { ty, x, y } => {
Self::make(Self::TAG_ALIAS, ty, x.as_bits(), y.as_bits())
}
}
}
}
impl From<ValueDataPacked> for ValueData {
fn from(data: ValueDataPacked) -> Self {
let tag = data.field(ValueDataPacked::TAG_SHIFT, ValueDataPacked::TAG_BITS);
let ty = u16::try_from(data.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS))
.expect("Mask should ensure result fits in a u16");
let x = u32::try_from(data.field(ValueDataPacked::X_SHIFT, ValueDataPacked::X_BITS))
.expect("Mask should ensure result fits in a u32");
let y = u32::try_from(data.field(ValueDataPacked::Y_SHIFT, ValueDataPacked::Y_BITS))
.expect("Mask should ensure result fits in a u32");
let ty = Type::from_repr(ty);
match tag {
ValueDataPacked::TAG_INST => ValueData::Inst {
ty,
num: u16::try_from(x).expect("Inst result num should fit in u16"),
inst: Inst::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
},
ValueDataPacked::TAG_PARAM => ValueData::Param {
ty,
num: u16::try_from(x).expect("Blockparam index should fit in u16"),
block: Block::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
},
ValueDataPacked::TAG_ALIAS => ValueData::Alias {
ty,
original: Value::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
},
ValueDataPacked::TAG_UNION => ValueData::Union {
ty,
x: Value::from_bits(decode_narrow_field(x, ValueDataPacked::X_BITS)),
y: Value::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
},
_ => panic!("Invalid tag {} in ValueDataPacked 0x{:x}", tag, data.0),
}
}
}
/// Instructions.
///
impl DataFlowGraph {
/// Create a new instruction.
///
/// The type of the first result is indicated by `data.ty`. If the
/// instruction produces multiple results, also call
/// `make_inst_results` to allocate value table entries. (It is
/// always safe to call `make_inst_results`, regardless of how
/// many results the instruction has.)
pub fn make_inst(&mut self, data: InstructionData) -> Inst {
let n = self.num_insts() + 1;
self.results.resize(n);
self.insts.0.push(data)
}
/// Declares a dynamic vector type
pub fn make_dynamic_ty(&mut self, data: DynamicTypeData) -> DynamicType {
self.dynamic_types.push(data)
}
/// Returns an object that displays `inst`.
pub fn display_inst<'a>(&'a self, inst: Inst) -> DisplayInst<'a> {
DisplayInst(self, inst)
}
/// Returns an object that displays the given `value`'s defining instruction.
///
/// Panics if the value is not defined by an instruction (i.e. it is a basic
/// block argument).
pub fn display_value_inst(&self, value: Value) -> DisplayInst<'_> {
match self.value_def(value) {
ir::ValueDef::Result(inst, _) => self.display_inst(inst),
ir::ValueDef::Param(_, _) => panic!("value is not defined by an instruction"),
ir::ValueDef::Union(_, _) => panic!("value is a union of two other values"),
}
}
/// Construct a read-only visitor context for the values of this instruction.
pub fn inst_values<'dfg>(
&'dfg self,
inst: Inst,
) -> impl DoubleEndedIterator<Item = Value> + 'dfg {
self.inst_args(inst)
.iter()
.chain(
self.insts[inst]
.branch_destination(&self.jump_tables)
.into_iter()
.flat_map(|branch| branch.args_slice(&self.value_lists).iter()),
)
.copied()
}
/// Map a function over the values of the instruction.
pub fn map_inst_values<F>(&mut self, inst: Inst, mut body: F)
where
F: FnMut(&mut DataFlowGraph, Value) -> Value,
{
for i in 0..self.inst_args(inst).len() {
let arg = self.inst_args(inst)[i];
self.inst_args_mut(inst)[i] = body(self, arg);
}
for block_ix in 0..self.insts[inst].branch_destination(&self.jump_tables).len() {
// We aren't changing the size of the args list, so we won't need to write the branch
// back to the instruction.
let mut block = self.insts[inst].branch_destination(&self.jump_tables)[block_ix];
for i in 0..block.args_slice(&self.value_lists).len() {
let arg = block.args_slice(&self.value_lists)[i];
block.args_slice_mut(&mut self.value_lists)[i] = body(self, arg);
}
}
}
/// Overwrite the instruction's value references with values from the iterator.
/// NOTE: the iterator provided is expected to yield at least as many values as the instruction
/// currently has.
pub fn overwrite_inst_values<I>(&mut self, inst: Inst, mut values: I)
where
I: Iterator<Item = Value>,
{
for arg in self.inst_args_mut(inst) {
*arg = values.next().unwrap();
}
for block_ix in 0..self.insts[inst].branch_destination(&self.jump_tables).len() {
let mut block = self.insts[inst].branch_destination(&self.jump_tables)[block_ix];
for arg in block.args_slice_mut(&mut self.value_lists) {
*arg = values.next().unwrap();
}
}
}
/// Get all value arguments on `inst` as a slice.
pub fn inst_args(&self, inst: Inst) -> &[Value] {
self.insts[inst].arguments(&self.value_lists)
}
/// Get all value arguments on `inst` as a mutable slice.
pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] {
self.insts[inst].arguments_mut(&mut self.value_lists)
}
/// Get the fixed value arguments on `inst` as a slice.
pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] {
let num_fixed_args = self.insts[inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
&self.inst_args(inst)[..num_fixed_args]
}
/// Get the fixed value arguments on `inst` as a mutable slice.
pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] {
let num_fixed_args = self.insts[inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
&mut self.inst_args_mut(inst)[..num_fixed_args]
}
/// Get the variable value arguments on `inst` as a slice.
pub fn inst_variable_args(&self, inst: Inst) -> &[Value] {
let num_fixed_args = self.insts[inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
&self.inst_args(inst)[num_fixed_args..]
}
/// Get the variable value arguments on `inst` as a mutable slice.
pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] {
let num_fixed_args = self.insts[inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
&mut self.inst_args_mut(inst)[num_fixed_args..]
}
/// Create result values for an instruction that produces multiple results.
///
/// Instructions that produce no result values only need to be created with `make_inst`,
/// otherwise call `make_inst_results` to allocate value table entries for the results.
///
/// The result value types are determined from the instruction's value type constraints and the
/// provided `ctrl_typevar` type for polymorphic instructions. For non-polymorphic
/// instructions, `ctrl_typevar` is ignored, and `INVALID` can be used.
///
/// The type of the first result value is also set, even if it was already set in the
/// `InstructionData` passed to `make_inst`. If this function is called with a single-result
/// instruction, that is the only effect.
pub fn make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize {
self.make_inst_results_reusing(inst, ctrl_typevar, iter::empty())
}
/// Create result values for `inst`, reusing the provided detached values.
///
/// Create a new set of result values for `inst` using `ctrl_typevar` to determine the result
/// types. Any values provided by `reuse` will be reused. When `reuse` is exhausted or when it
/// produces `None`, a new value is created.
pub fn make_inst_results_reusing<I>(
&mut self,
inst: Inst,
ctrl_typevar: Type,
reuse: I,
) -> usize
where
I: Iterator<Item = Option<Value>>,
{
self.results[inst].clear(&mut self.value_lists);
let mut reuse = reuse.fuse();
let result_tys: SmallVec<[_; 16]> = self.inst_result_types(inst, ctrl_typevar).collect();
let num_results = result_tys.len();
for ty in result_tys {
if let Some(Some(v)) = reuse.next() {
debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
self.attach_result(inst, v);
} else {
self.append_result(inst, ty);
}
}
num_results
}
/// Create a `ReplaceBuilder` that will replace `inst` with a new instruction in place.
pub fn replace(&mut self, inst: Inst) -> ReplaceBuilder {
ReplaceBuilder::new(self, inst)
}
/// Detach the list of result values from `inst` and return it.
///
/// This leaves `inst` without any result values. New result values can be created by calling
/// `make_inst_results` or by using a `replace(inst)` builder.
pub fn detach_results(&mut self, inst: Inst) -> ValueList {
self.results[inst].take()
}
/// Clear the list of result values from `inst`.
///
/// This leaves `inst` without any result values. New result values can be created by calling
/// `make_inst_results` or by using a `replace(inst)` builder.
pub fn clear_results(&mut self, inst: Inst) {
self.results[inst].clear(&mut self.value_lists)
}
/// Attach an existing value to the result value list for `inst`.
///
/// The `res` value is appended to the end of the result list.
///
/// This is a very low-level operation. Usually, instruction results with the correct types are
/// created automatically. The `res` value must not be attached to anything else.
pub fn attach_result(&mut self, inst: Inst, res: Value) {
debug_assert!(!self.value_is_attached(res));
let num = self.results[inst].push(res, &mut self.value_lists);
debug_assert!(num <= u16::MAX as usize, "Too many result values");
let ty = self.value_type(res);
self.values[res] = ValueData::Inst {
ty,
num: num as u16,
inst,
}
.into();
}
/// Replace an instruction result with a new value of type `new_type`.
///
/// The `old_value` must be an attached instruction result.
///
/// The old value is left detached, so it should probably be changed into something else.
///
/// Returns the new value.
pub fn replace_result(&mut self, old_value: Value, new_type: Type) -> Value {
let (num, inst) = match ValueData::from(self.values[old_value]) {
ValueData::Inst { num, inst, .. } => (num, inst),
_ => panic!("{} is not an instruction result value", old_value),
};
let new_value = self.make_value(ValueData::Inst {
ty: new_type,
num,
inst,
});
let num = num as usize;
let attached = mem::replace(
self.results[inst]
.get_mut(num, &mut self.value_lists)
.expect("Replacing detached result"),
new_value,
);
debug_assert_eq!(
attached,
old_value,
"{} wasn't detached from {}",
old_value,
self.display_inst(inst)
);
new_value
}
/// Append a new instruction result value to `inst`.
pub fn append_result(&mut self, inst: Inst, ty: Type) -> Value {
let res = self.values.next_key();
let num = self.results[inst].push(res, &mut self.value_lists);
debug_assert!(num <= u16::MAX as usize, "Too many result values");
self.make_value(ValueData::Inst {
ty,
inst,
num: num as u16,
})
}
/// Clone an instruction, attaching new result `Value`s and
/// returning them.
pub fn clone_inst(&mut self, inst: Inst) -> Inst {
// First, add a clone of the InstructionData.
let inst_data = self.insts[inst].clone();
// If the `inst_data` has a reference to a ValueList, clone it
// as well, because we can't share these (otherwise mutating
// one would affect the other).
let inst_data = inst_data.deep_clone(&mut self.value_lists);
let new_inst = self.make_inst(inst_data);
// Get the controlling type variable.
let ctrl_typevar = self.ctrl_typevar(inst);
// Create new result values.
self.make_inst_results(new_inst, ctrl_typevar);
new_inst
}
/// Get the first result of an instruction.
///
/// This function panics if the instruction doesn't have any result.
pub fn first_result(&self, inst: Inst) -> Value {
self.results[inst]
.first(&self.value_lists)
.expect("Instruction has no results")
}
/// Test if `inst` has any result values currently.
pub fn has_results(&self, inst: Inst) -> bool {
!self.results[inst].is_empty()
}
/// Return all the results of an instruction.
pub fn inst_results(&self, inst: Inst) -> &[Value] {
self.results[inst].as_slice(&self.value_lists)
}
/// Return all the results of an instruction as ValueList.
pub fn inst_results_list(&self, inst: Inst) -> ValueList {
self.results[inst]
}
/// Create a union of two values.
pub fn union(&mut self, x: Value, y: Value) -> Value {
// Get the type.
let ty = self.value_type(x);
debug_assert_eq!(ty, self.value_type(y));
self.make_value(ValueData::Union { ty, x, y })
}
/// Get the call signature of a direct or indirect call instruction.
/// Returns `None` if `inst` is not a call instruction.
pub fn call_signature(&self, inst: Inst) -> Option<SigRef> {
match self.insts[inst].analyze_call(&self.value_lists) {
CallInfo::NotACall => None,
CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature),
CallInfo::Indirect(s, _) => Some(s),
}
}
/// Like `call_signature` but returns none for tail call instructions.
fn non_tail_call_signature(&self, inst: Inst) -> Option<SigRef> {
let sig = self.call_signature(inst)?;
match self.insts[inst].opcode() {
ir::Opcode::ReturnCall | ir::Opcode::ReturnCallIndirect => None,
_ => Some(sig),
}
}
// Only for use by the verifier. Everyone else should just use
// `dfg.inst_results(inst).len()`.
pub(crate) fn num_expected_results_for_verifier(&self, inst: Inst) -> usize {
match self.non_tail_call_signature(inst) {
Some(sig) => self.signatures[sig].returns.len(),
None => {
let constraints = self.insts[inst].opcode().constraints();
constraints.num_fixed_results()
}
}
}
/// Get the result types of the given instruction.
pub fn inst_result_types<'a>(
&'a self,
inst: Inst,
ctrl_typevar: Type,
) -> impl iter::ExactSizeIterator<Item = Type> + 'a {
return match self.non_tail_call_signature(inst) {
Some(sig) => InstResultTypes::Signature(self, sig, 0),
None => {
let constraints = self.insts[inst].opcode().constraints();
InstResultTypes::Constraints(constraints, ctrl_typevar, 0)
}
};
enum InstResultTypes<'a> {
Signature(&'a DataFlowGraph, SigRef, usize),
Constraints(ir::instructions::OpcodeConstraints, Type, usize),
}
impl Iterator for InstResultTypes<'_> {
type Item = Type;
fn next(&mut self) -> Option<Type> {
match self {
InstResultTypes::Signature(dfg, sig, i) => {
let param = dfg.signatures[*sig].returns.get(*i)?;
*i += 1;
Some(param.value_type)
}
InstResultTypes::Constraints(constraints, ctrl_ty, i) => {
if *i < constraints.num_fixed_results() {
let ty = constraints.result_type(*i, *ctrl_ty);
*i += 1;
Some(ty)
} else {
None
}
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = match self {
InstResultTypes::Signature(dfg, sig, i) => {
dfg.signatures[*sig].returns.len() - *i
}
InstResultTypes::Constraints(constraints, _, i) => {
constraints.num_fixed_results() - *i
}
};
(len, Some(len))
}
}
impl ExactSizeIterator for InstResultTypes<'_> {}
}
/// Compute the type of an instruction result from opcode constraints and call signatures.
///
/// This computes the same sequence of result types that `make_inst_results()` above would
/// assign to the created result values, but it does not depend on `make_inst_results()` being
/// called first.
///
/// Returns `None` if asked about a result index that is too large.
pub fn compute_result_type(
&self,
inst: Inst,
result_idx: usize,
ctrl_typevar: Type,
) -> Option<Type> {
self.inst_result_types(inst, ctrl_typevar).nth(result_idx)
}
/// Get the controlling type variable, or `INVALID` if `inst` isn't polymorphic.
pub fn ctrl_typevar(&self, inst: Inst) -> Type {
let constraints = self.insts[inst].opcode().constraints();
if !constraints.is_polymorphic() {
types::INVALID
} else if constraints.requires_typevar_operand() {
// Not all instruction formats have a designated operand, but in that case
// `requires_typevar_operand()` should never be true.
self.value_type(
self.insts[inst]
.typevar_operand(&self.value_lists)
.unwrap_or_else(|| {
panic!(
"Instruction format for {:?} doesn't have a designated operand",
self.insts[inst]
)
}),
)
} else {
self.value_type(self.first_result(inst))
}
}
}
/// basic blocks.
impl DataFlowGraph {
/// Create a new basic block.
pub fn make_block(&mut self) -> Block {
self.blocks.add()
}
/// Get the number of parameters on `block`.
pub fn num_block_params(&self, block: Block) -> usize {
self.blocks[block].params(&self.value_lists).len()
}
/// Get the parameters on `block`.
pub fn block_params(&self, block: Block) -> &[Value] {
self.blocks[block].params(&self.value_lists)
}
/// Get the types of the parameters on `block`.
pub fn block_param_types(&self, block: Block) -> impl Iterator<Item = Type> + '_ {
self.block_params(block).iter().map(|&v| self.value_type(v))
}
/// Append a parameter with type `ty` to `block`.
pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value {
let param = self.values.next_key();
let num = self.blocks[block].params.push(param, &mut self.value_lists);
debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
self.make_value(ValueData::Param {
ty,
num: num as u16,
block,
})
}
/// Removes `val` from `block`'s parameters by swapping it with the last parameter on `block`.
/// Returns the position of `val` before removal.
///
/// *Important*: to ensure O(1) deletion, this method swaps the removed parameter with the
/// last `block` parameter. This can disrupt all the branch instructions jumping to this
/// `block` for which you have to change the branch argument order if necessary.
///
/// Panics if `val` is not a block parameter.
pub fn swap_remove_block_param(&mut self, val: Value) -> usize {
let (block, num) =
if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) {
(block, num)
} else {
panic!("{} must be a block parameter", val);
};
self.blocks[block]
.params
.swap_remove(num as usize, &mut self.value_lists);
if let Some(last_arg_val) = self.blocks[block]
.params
.get(num as usize, &self.value_lists)
{
// We update the position of the old last arg.
let mut last_arg_data = ValueData::from(self.values[last_arg_val]);
if let ValueData::Param {
num: ref mut old_num,
..
} = &mut last_arg_data
{
*old_num = num;
self.values[last_arg_val] = last_arg_data.into();
} else {
panic!("{} should be a Block parameter", last_arg_val);
}
}
num as usize
}
/// Removes `val` from `block`'s parameters by a standard linear time list removal which
/// preserves ordering. Also updates the values' data.
pub fn remove_block_param(&mut self, val: Value) {
let (block, num) =
if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) {
(block, num)
} else {
panic!("{} must be a block parameter", val);
};
self.blocks[block]
.params
.remove(num as usize, &mut self.value_lists);
for index in num..(self.num_block_params(block) as u16) {
let packed = &mut self.values[self.blocks[block]
.params
.get(index as usize, &self.value_lists)
.unwrap()];
let mut data = ValueData::from(*packed);
match &mut data {
ValueData::Param { ref mut num, .. } => {
*num -= 1;
*packed = data.into();
}
_ => panic!(
"{} must be a block parameter",
self.blocks[block]
.params
.get(index as usize, &self.value_lists)
.unwrap()
),
}
}
}
/// Append an existing value to `block`'s parameters.
///
/// The appended value can't already be attached to something else.
///
/// In almost all cases, you should be using `append_block_param()` instead of this method.
pub fn attach_block_param(&mut self, block: Block, param: Value) {
debug_assert!(!self.value_is_attached(param));
let num = self.blocks[block].params.push(param, &mut self.value_lists);
debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
let ty = self.value_type(param);
self.values[param] = ValueData::Param {
ty,
num: num as u16,
block,
}
.into();
}
/// Replace a block parameter with a new value of type `ty`.
///
/// The `old_value` must be an attached block parameter. It is removed from its place in the list
/// of parameters and replaced by a new value of type `new_type`. The new value gets the same
/// position in the list, and other parameters are not disturbed.
///
/// The old value is left detached, so it should probably be changed into something else.
///
/// Returns the new value.
pub fn replace_block_param(&mut self, old_value: Value, new_type: Type) -> Value {
// Create new value identical to the old one except for the type.
let (block, num) =
if let ValueData::Param { num, block, .. } = ValueData::from(self.values[old_value]) {
(block, num)
} else {
panic!("{} must be a block parameter", old_value);
};
let new_arg = self.make_value(ValueData::Param {
ty: new_type,
num,
block,
});
self.blocks[block]
.params
.as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
new_arg
}
/// Detach all the parameters from `block` and return them as a `ValueList`.
///
/// This is a quite low-level operation. Sensible things to do with the detached block parameters
/// is to put them back on the same block with `attach_block_param()` or change them into aliases
/// with `change_to_alias()`.
pub fn detach_block_params(&mut self, block: Block) -> ValueList {
self.blocks[block].params.take()
}
}
/// Contents of a basic block.
///
/// Parameters on a basic block are values that dominate everything in the block. All
/// branches to this block must provide matching arguments, and the arguments to the entry block must
/// match the function arguments.
#[derive(Clone, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct BlockData {
/// List of parameters to this block.
params: ValueList,
}
impl BlockData {
fn new() -> Self {
Self {
params: ValueList::new(),
}
}
/// Get the parameters on `block`.
pub fn params<'a>(&self, pool: &'a ValueListPool) -> &'a [Value] {
self.params.as_slice(pool)
}
}
/// Object that can display an instruction.
pub struct DisplayInst<'a>(&'a DataFlowGraph, Inst);
impl<'a> fmt::Display for DisplayInst<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let dfg = self.0;
let inst = self.1;
if let Some((first, rest)) = dfg.inst_results(inst).split_first() {
write!(f, "{}", first)?;
for v in rest {
write!(f, ", {}", v)?;
}
write!(f, " = ")?;
}
let typevar = dfg.ctrl_typevar(inst);
if typevar.is_invalid() {
write!(f, "{}", dfg.insts[inst].opcode())?;
} else {
write!(f, "{}.{}", dfg.insts[inst].opcode(), typevar)?;
}
write_operands(f, dfg, inst)
}
}
/// Parser routines. These routines should not be used outside the parser.
impl DataFlowGraph {
/// Set the type of a value. This is only for use in the parser, which needs
/// to create invalid values for index padding which may be reassigned later.
#[cold]
fn set_value_type_for_parser(&mut self, v: Value, t: Type) {
assert_eq!(
self.value_type(v),
types::INVALID,
"this function is only for assigning types to previously invalid values"
);
self.values[v].set_type(t);
}
/// Check that the given concrete `Type` has been defined in the function.
pub fn check_dynamic_type(&mut self, ty: Type) -> Option<Type> {
debug_assert!(ty.is_dynamic_vector());
if self
.dynamic_types
.values()
.any(|dyn_ty_data| dyn_ty_data.concrete().unwrap() == ty)
{
Some(ty)
} else {
None
}
}
/// Create result values for `inst`, reusing the provided detached values.
/// This is similar to `make_inst_results_reusing` except it's only for use
/// in the parser, which needs to reuse previously invalid values.
#[cold]
pub fn make_inst_results_for_parser(
&mut self,
inst: Inst,
ctrl_typevar: Type,
reuse: &[Value],
) -> usize {
let mut reuse_iter = reuse.iter().copied();
let result_tys: SmallVec<[_; 16]> = self.inst_result_types(inst, ctrl_typevar).collect();
for ty in result_tys {
if ty.is_dynamic_vector() {
self.check_dynamic_type(ty)
.unwrap_or_else(|| panic!("Use of undeclared dynamic type: {}", ty));
}
if let Some(v) = reuse_iter.next() {
self.set_value_type_for_parser(v, ty);
}
}
self.make_inst_results_reusing(inst, ctrl_typevar, reuse.iter().map(|x| Some(*x)))
}
/// Similar to `append_block_param`, append a parameter with type `ty` to
/// `block`, but using value `val`. This is only for use by the parser to
/// create parameters with specific values.
#[cold]
pub fn append_block_param_for_parser(&mut self, block: Block, ty: Type, val: Value) {
let num = self.blocks[block].params.push(val, &mut self.value_lists);
assert!(num <= u16::MAX as usize, "Too many parameters on block");
self.values[val] = ValueData::Param {
ty,
num: num as u16,
block,
}
.into();
}
/// Create a new value alias. This is only for use by the parser to create
/// aliases with specific values, and the printer for testing.
#[cold]
pub fn make_value_alias_for_serialization(&mut self, src: Value, dest: Value) {
assert_ne!(src, Value::reserved_value());
assert_ne!(dest, Value::reserved_value());
let ty = if self.values.is_valid(src) {
self.value_type(src)
} else {
// As a special case, if we can't resolve the aliasee yet, use INVALID
// temporarily. It will be resolved later in parsing.
types::INVALID
};
let data = ValueData::Alias { ty, original: src };
self.values[dest] = data.into();
}
/// If `v` is already defined as an alias, return its destination value.
/// Otherwise return None. This allows the parser to coalesce identical
/// alias definitions, and the printer to identify an alias's immediate target.
#[cold]
pub fn value_alias_dest_for_serialization(&self, v: Value) -> Option<Value> {
if let ValueData::Alias { original, .. } = ValueData::from(self.values[v]) {
Some(original)
} else {
None
}
}
/// Compute the type of an alias. This is only for use in the parser.
/// Returns false if an alias cycle was encountered.
#[cold]
pub fn set_alias_type_for_parser(&mut self, v: Value) -> bool {
if let Some(resolved) = maybe_resolve_aliases(&self.values, v) {
let old_ty = self.value_type(v);
let new_ty = self.value_type(resolved);
if old_ty == types::INVALID {
self.set_value_type_for_parser(v, new_ty);
} else {
assert_eq!(old_ty, new_ty);
}
true
} else {
false
}
}
/// Create an invalid value, to pad the index space. This is only for use by
/// the parser to pad out the value index space.
#[cold]
pub fn make_invalid_value_for_parser(&mut self) {
let data = ValueData::Alias {
ty: types::INVALID,
original: Value::reserved_value(),
};
self.make_value(data);
}
/// Check if a value reference is valid, while being aware of aliases which
/// may be unresolved while parsing.
#[cold]
pub fn value_is_valid_for_parser(&self, v: Value) -> bool {
if !self.value_is_valid(v) {
return false;
}
if let ValueData::Alias { ty, .. } = ValueData::from(self.values[v]) {
ty != types::INVALID
} else {
true
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::cursor::{Cursor, FuncCursor};
use crate::ir::types;
use crate::ir::{Function, InstructionData, Opcode, TrapCode};
use alloc::string::ToString;
#[test]
fn make_inst() {
let mut dfg = DataFlowGraph::new();
let idata = InstructionData::UnaryImm {
opcode: Opcode::Iconst,
imm: 0.into(),
};
let inst = dfg.make_inst(idata);
dfg.make_inst_results(inst, types::I32);
assert_eq!(inst.to_string(), "inst0");
assert_eq!(dfg.display_inst(inst).to_string(), "v0 = iconst.i32 0");
// Immutable reference resolution.
{
let immdfg = &dfg;
let ins = &immdfg.insts[inst];
assert_eq!(ins.opcode(), Opcode::Iconst);
}
// Results.
let val = dfg.first_result(inst);
assert_eq!(dfg.inst_results(inst), &[val]);
assert_eq!(dfg.value_def(val), ValueDef::Result(inst, 0));
assert_eq!(dfg.value_type(val), types::I32);
// Replacing results.
assert!(dfg.value_is_attached(val));
let v2 = dfg.replace_result(val, types::F64);
assert!(!dfg.value_is_attached(val));
assert!(dfg.value_is_attached(v2));
assert_eq!(dfg.inst_results(inst), &[v2]);
assert_eq!(dfg.value_def(v2), ValueDef::Result(inst, 0));
assert_eq!(dfg.value_type(v2), types::F64);
}
#[test]
fn no_results() {
let mut dfg = DataFlowGraph::new();
let idata = InstructionData::Trap {
opcode: Opcode::Trap,
code: TrapCode::User(0),
};
let inst = dfg.make_inst(idata);
assert_eq!(dfg.display_inst(inst).to_string(), "trap user0");
// Result slice should be empty.
assert_eq!(dfg.inst_results(inst), &[]);
}
#[test]
fn block() {
let mut dfg = DataFlowGraph::new();
let block = dfg.make_block();
assert_eq!(block.to_string(), "block0");
assert_eq!(dfg.num_block_params(block), 0);
assert_eq!(dfg.block_params(block), &[]);
assert!(dfg.detach_block_params(block).is_empty());
assert_eq!(dfg.num_block_params(block), 0);
assert_eq!(dfg.block_params(block), &[]);
let arg1 = dfg.append_block_param(block, types::F32);
assert_eq!(arg1.to_string(), "v0");
assert_eq!(dfg.num_block_params(block), 1);
assert_eq!(dfg.block_params(block), &[arg1]);
let arg2 = dfg.append_block_param(block, types::I16);
assert_eq!(arg2.to_string(), "v1");
assert_eq!(dfg.num_block_params(block), 2);
assert_eq!(dfg.block_params(block), &[arg1, arg2]);
assert_eq!(dfg.value_def(arg1), ValueDef::Param(block, 0));
assert_eq!(dfg.value_def(arg2), ValueDef::Param(block, 1));
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(arg2), types::I16);
// Swap the two block parameters.
let vlist = dfg.detach_block_params(block);
assert_eq!(dfg.num_block_params(block), 0);
assert_eq!(dfg.block_params(block), &[]);
assert_eq!(vlist.as_slice(&dfg.value_lists), &[arg1, arg2]);
dfg.attach_block_param(block, arg2);
let arg3 = dfg.append_block_param(block, types::I32);
dfg.attach_block_param(block, arg1);
assert_eq!(dfg.block_params(block), &[arg2, arg3, arg1]);
}
#[test]
fn replace_block_params() {
let mut dfg = DataFlowGraph::new();
let block = dfg.make_block();
let arg1 = dfg.append_block_param(block, types::F32);
let new1 = dfg.replace_block_param(arg1, types::I64);
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(new1), types::I64);
assert_eq!(dfg.block_params(block), &[new1]);
dfg.attach_block_param(block, arg1);
assert_eq!(dfg.block_params(block), &[new1, arg1]);
let new2 = dfg.replace_block_param(arg1, types::I8);
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(new2), types::I8);
assert_eq!(dfg.block_params(block), &[new1, new2]);
dfg.attach_block_param(block, arg1);
assert_eq!(dfg.block_params(block), &[new1, new2, arg1]);
let new3 = dfg.replace_block_param(new2, types::I16);
assert_eq!(dfg.value_type(new1), types::I64);
assert_eq!(dfg.value_type(new2), types::I8);
assert_eq!(dfg.value_type(new3), types::I16);
assert_eq!(dfg.block_params(block), &[new1, new3, arg1]);
}
#[test]
fn swap_remove_block_params() {
let mut dfg = DataFlowGraph::new();
let block = dfg.make_block();
let arg1 = dfg.append_block_param(block, types::F32);
let arg2 = dfg.append_block_param(block, types::F32);
let arg3 = dfg.append_block_param(block, types::F32);
assert_eq!(dfg.block_params(block), &[arg1, arg2, arg3]);
dfg.swap_remove_block_param(arg1);
assert_eq!(dfg.value_is_attached(arg1), false);
assert_eq!(dfg.value_is_attached(arg2), true);
assert_eq!(dfg.value_is_attached(arg3), true);
assert_eq!(dfg.block_params(block), &[arg3, arg2]);
dfg.swap_remove_block_param(arg2);
assert_eq!(dfg.value_is_attached(arg2), false);
assert_eq!(dfg.value_is_attached(arg3), true);
assert_eq!(dfg.block_params(block), &[arg3]);
dfg.swap_remove_block_param(arg3);
assert_eq!(dfg.value_is_attached(arg3), false);
assert_eq!(dfg.block_params(block), &[]);
}
#[test]
fn aliases() {
use crate::ir::condcodes::IntCC;
use crate::ir::InstBuilder;
let mut func = Function::new();
let block0 = func.dfg.make_block();
let mut pos = FuncCursor::new(&mut func);
pos.insert_block(block0);
// Build a little test program.
let v1 = pos.ins().iconst(types::I32, 42);
// Make sure we can resolve value aliases even when values is empty.
assert_eq!(pos.func.dfg.resolve_aliases(v1), v1);
let arg0 = pos.func.dfg.append_block_param(block0, types::I32);
let (s, c) = pos.ins().uadd_overflow(v1, arg0);
let iadd = match pos.func.dfg.value_def(s) {
ValueDef::Result(i, 0) => i,
_ => panic!(),
};
// Remove `c` from the result list.
pos.func.dfg.clear_results(iadd);
pos.func.dfg.attach_result(iadd, s);
// Replace `uadd_overflow` with a normal `iadd` and an `icmp`.
pos.func.dfg.replace(iadd).iadd(v1, arg0);
let c2 = pos.ins().icmp(IntCC::Equal, s, v1);
pos.func.dfg.change_to_alias(c, c2);
assert_eq!(pos.func.dfg.resolve_aliases(c2), c2);
assert_eq!(pos.func.dfg.resolve_aliases(c), c2);
}
#[test]
fn cloning() {
use crate::ir::InstBuilder;
let mut func = Function::new();
let mut sig = Signature::new(crate::isa::CallConv::SystemV);
sig.params.push(ir::AbiParam::new(types::I32));
let sig = func.import_signature(sig);
let block0 = func.dfg.make_block();
let mut pos = FuncCursor::new(&mut func);
pos.insert_block(block0);
let v1 = pos.ins().iconst(types::I32, 0);
let v2 = pos.ins().iconst(types::I32, 1);
let call_inst = pos.ins().call_indirect(sig, v1, &[v1]);
let func = pos.func;
let call_inst_dup = func.dfg.clone_inst(call_inst);
func.dfg.inst_args_mut(call_inst)[0] = v2;
assert_eq!(v1, func.dfg.inst_args(call_inst_dup)[0]);
}
}