blob: 09dbcbe97b76c6732d445ff324cbe31bab68a23e [file] [log] [blame]
//! Fixsliced implementations of AES-128, AES-192 and AES-256 (64-bit)
//! adapted from the C implementation.
//!
//! All implementations are fully bitsliced and do not rely on any
//! Look-Up Table (LUT).
//!
//! See the paper at <https://eprint.iacr.org/2020/1123.pdf> for more details.
//!
//! # Author (original C code)
//!
//! Alexandre Adomnicai, Nanyang Technological University, Singapore
//! <alexandre.adomnicai@ntu.edu.sg>
//!
//! Originally licensed MIT. Relicensed as Apache 2.0+MIT with permission.
#![allow(clippy::unreadable_literal)]
use crate::Block;
use cipher::{consts::U4, generic_array::GenericArray};
/// AES block batch size for this implementation
pub(crate) type FixsliceBlocks = U4;
pub(crate) type BatchBlocks = GenericArray<Block, FixsliceBlocks>;
/// AES-128 round keys
pub(crate) type FixsliceKeys128 = [u64; 88];
/// AES-192 round keys
pub(crate) type FixsliceKeys192 = [u64; 104];
/// AES-256 round keys
pub(crate) type FixsliceKeys256 = [u64; 120];
/// 512-bit internal state
pub(crate) type State = [u64; 8];
/// Fully bitsliced AES-128 key schedule to match the fully-fixsliced representation.
pub(crate) fn aes128_key_schedule(key: &[u8; 16]) -> FixsliceKeys128 {
let mut rkeys = [0u64; 88];
bitslice(&mut rkeys[..8], key, key, key, key);
let mut rk_off = 0;
for rcon in 0..10 {
memshift32(&mut rkeys, rk_off);
rk_off += 8;
sub_bytes(&mut rkeys[rk_off..(rk_off + 8)]);
sub_bytes_nots(&mut rkeys[rk_off..(rk_off + 8)]);
if rcon < 8 {
add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon);
} else {
add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon - 8);
add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon - 7);
add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon - 5);
add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon - 4);
}
xor_columns(&mut rkeys, rk_off, 8, ror_distance(1, 3));
}
// Adjust to match fixslicing format
#[cfg(aes_compact)]
{
for i in (8..88).step_by(16) {
inv_shift_rows_1(&mut rkeys[i..(i + 8)]);
}
}
#[cfg(not(aes_compact))]
{
for i in (8..72).step_by(32) {
inv_shift_rows_1(&mut rkeys[i..(i + 8)]);
inv_shift_rows_2(&mut rkeys[(i + 8)..(i + 16)]);
inv_shift_rows_3(&mut rkeys[(i + 16)..(i + 24)]);
}
inv_shift_rows_1(&mut rkeys[72..80]);
}
// Account for NOTs removed from sub_bytes
for i in 1..11 {
sub_bytes_nots(&mut rkeys[(i * 8)..(i * 8 + 8)]);
}
rkeys
}
/// Fully bitsliced AES-192 key schedule to match the fully-fixsliced representation.
pub(crate) fn aes192_key_schedule(key: &[u8; 24]) -> FixsliceKeys192 {
let mut rkeys = [0u64; 104];
let mut tmp = [0u64; 8];
bitslice(
&mut rkeys[..8],
&key[..16],
&key[..16],
&key[..16],
&key[..16],
);
bitslice(&mut tmp, &key[8..], &key[8..], &key[8..], &key[8..]);
let mut rcon = 0;
let mut rk_off = 8;
loop {
for i in 0..8 {
rkeys[rk_off + i] = (0x00ff00ff00ff00ff & (tmp[i] >> 8))
| (0xff00ff00ff00ff00 & (rkeys[(rk_off - 8) + i] << 8));
}
sub_bytes(&mut tmp);
sub_bytes_nots(&mut tmp);
add_round_constant_bit(&mut tmp, rcon);
rcon += 1;
for i in 0..8 {
let mut ti = rkeys[rk_off + i];
ti ^= 0x0f000f000f000f00 & ror(tmp[i], ror_distance(1, 1));
ti ^= 0xf000f000f000f000 & (ti << 4);
tmp[i] = ti;
}
rkeys[rk_off..(rk_off + 8)].copy_from_slice(&tmp);
rk_off += 8;
for i in 0..8 {
let ui = tmp[i];
let mut ti = (0x00ff00ff00ff00ff & (rkeys[(rk_off - 16) + i] >> 8))
| (0xff00ff00ff00ff00 & (ui << 8));
ti ^= 0x000f000f000f000f & (ui >> 12);
tmp[i] = ti
^ (0xfff0fff0fff0fff0 & (ti << 4))
^ (0xff00ff00ff00ff00 & (ti << 8))
^ (0xf000f000f000f000 & (ti << 12));
}
rkeys[rk_off..(rk_off + 8)].copy_from_slice(&tmp);
rk_off += 8;
sub_bytes(&mut tmp);
sub_bytes_nots(&mut tmp);
add_round_constant_bit(&mut tmp, rcon);
rcon += 1;
for i in 0..8 {
let mut ti = (0x00ff00ff00ff00ff & (rkeys[(rk_off - 16) + i] >> 8))
| (0xff00ff00ff00ff00 & (rkeys[(rk_off - 8) + i] << 8));
ti ^= 0x000f000f000f000f & ror(tmp[i], ror_distance(1, 3));
rkeys[rk_off + i] = ti
^ (0xfff0fff0fff0fff0 & (ti << 4))
^ (0xff00ff00ff00ff00 & (ti << 8))
^ (0xf000f000f000f000 & (ti << 12));
}
rk_off += 8;
if rcon >= 8 {
break;
}
for i in 0..8 {
let ui = rkeys[(rk_off - 8) + i];
let mut ti = rkeys[(rk_off - 16) + i];
ti ^= 0x0f000f000f000f00 & (ui >> 4);
ti ^= 0xf000f000f000f000 & (ti << 4);
tmp[i] = ti;
}
}
// Adjust to match fixslicing format
#[cfg(aes_compact)]
{
for i in (8..104).step_by(16) {
inv_shift_rows_1(&mut rkeys[i..(i + 8)]);
}
}
#[cfg(not(aes_compact))]
{
for i in (0..96).step_by(32) {
inv_shift_rows_1(&mut rkeys[(i + 8)..(i + 16)]);
inv_shift_rows_2(&mut rkeys[(i + 16)..(i + 24)]);
inv_shift_rows_3(&mut rkeys[(i + 24)..(i + 32)]);
}
}
// Account for NOTs removed from sub_bytes
for i in 1..13 {
sub_bytes_nots(&mut rkeys[(i * 8)..(i * 8 + 8)]);
}
rkeys
}
/// Fully bitsliced AES-256 key schedule to match the fully-fixsliced representation.
pub(crate) fn aes256_key_schedule(key: &[u8; 32]) -> FixsliceKeys256 {
let mut rkeys = [0u64; 120];
bitslice(
&mut rkeys[..8],
&key[..16],
&key[..16],
&key[..16],
&key[..16],
);
bitslice(
&mut rkeys[8..16],
&key[16..],
&key[16..],
&key[16..],
&key[16..],
);
let mut rk_off = 8;
let mut rcon = 0;
loop {
memshift32(&mut rkeys, rk_off);
rk_off += 8;
sub_bytes(&mut rkeys[rk_off..(rk_off + 8)]);
sub_bytes_nots(&mut rkeys[rk_off..(rk_off + 8)]);
add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon);
xor_columns(&mut rkeys, rk_off, 16, ror_distance(1, 3));
rcon += 1;
if rcon == 7 {
break;
}
memshift32(&mut rkeys, rk_off);
rk_off += 8;
sub_bytes(&mut rkeys[rk_off..(rk_off + 8)]);
sub_bytes_nots(&mut rkeys[rk_off..(rk_off + 8)]);
xor_columns(&mut rkeys, rk_off, 16, ror_distance(0, 3));
}
// Adjust to match fixslicing format
#[cfg(aes_compact)]
{
for i in (8..120).step_by(16) {
inv_shift_rows_1(&mut rkeys[i..(i + 8)]);
}
}
#[cfg(not(aes_compact))]
{
for i in (8..104).step_by(32) {
inv_shift_rows_1(&mut rkeys[i..(i + 8)]);
inv_shift_rows_2(&mut rkeys[(i + 8)..(i + 16)]);
inv_shift_rows_3(&mut rkeys[(i + 16)..(i + 24)]);
}
inv_shift_rows_1(&mut rkeys[104..112]);
}
// Account for NOTs removed from sub_bytes
for i in 1..15 {
sub_bytes_nots(&mut rkeys[(i * 8)..(i * 8 + 8)]);
}
rkeys
}
/// Fully-fixsliced AES-128 decryption (the InvShiftRows is completely omitted).
///
/// Decrypts four blocks in-place and in parallel.
pub(crate) fn aes128_decrypt(rkeys: &FixsliceKeys128, blocks: &BatchBlocks) -> BatchBlocks {
let mut state = State::default();
bitslice(&mut state, &blocks[0], &blocks[1], &blocks[2], &blocks[3]);
add_round_key(&mut state, &rkeys[80..]);
inv_sub_bytes(&mut state);
#[cfg(not(aes_compact))]
{
inv_shift_rows_2(&mut state);
}
let mut rk_off = 72;
loop {
#[cfg(aes_compact)]
{
inv_shift_rows_2(&mut state);
}
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
inv_mix_columns_1(&mut state);
inv_sub_bytes(&mut state);
rk_off -= 8;
if rk_off == 0 {
break;
}
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
inv_mix_columns_0(&mut state);
inv_sub_bytes(&mut state);
rk_off -= 8;
#[cfg(not(aes_compact))]
{
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
inv_mix_columns_3(&mut state);
inv_sub_bytes(&mut state);
rk_off -= 8;
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
inv_mix_columns_2(&mut state);
inv_sub_bytes(&mut state);
rk_off -= 8;
}
}
add_round_key(&mut state, &rkeys[..8]);
inv_bitslice(&state)
}
/// Fully-fixsliced AES-128 encryption (the ShiftRows is completely omitted).
///
/// Encrypts four blocks in-place and in parallel.
pub(crate) fn aes128_encrypt(rkeys: &FixsliceKeys128, blocks: &BatchBlocks) -> BatchBlocks {
let mut state = State::default();
bitslice(&mut state, &blocks[0], &blocks[1], &blocks[2], &blocks[3]);
add_round_key(&mut state, &rkeys[..8]);
let mut rk_off = 8;
loop {
sub_bytes(&mut state);
mix_columns_1(&mut state);
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
rk_off += 8;
#[cfg(aes_compact)]
{
shift_rows_2(&mut state);
}
if rk_off == 80 {
break;
}
#[cfg(not(aes_compact))]
{
sub_bytes(&mut state);
mix_columns_2(&mut state);
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
rk_off += 8;
sub_bytes(&mut state);
mix_columns_3(&mut state);
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
rk_off += 8;
}
sub_bytes(&mut state);
mix_columns_0(&mut state);
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
rk_off += 8;
}
#[cfg(not(aes_compact))]
{
shift_rows_2(&mut state);
}
sub_bytes(&mut state);
add_round_key(&mut state, &rkeys[80..]);
inv_bitslice(&state)
}
/// Fully-fixsliced AES-192 decryption (the InvShiftRows is completely omitted).
///
/// Decrypts four blocks in-place and in parallel.
pub(crate) fn aes192_decrypt(rkeys: &FixsliceKeys192, blocks: &BatchBlocks) -> BatchBlocks {
let mut state = State::default();
bitslice(&mut state, &blocks[0], &blocks[1], &blocks[2], &blocks[3]);
add_round_key(&mut state, &rkeys[96..]);
inv_sub_bytes(&mut state);
let mut rk_off = 88;
loop {
#[cfg(aes_compact)]
{
inv_shift_rows_2(&mut state);
}
#[cfg(not(aes_compact))]
{
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
inv_mix_columns_3(&mut state);
inv_sub_bytes(&mut state);
rk_off -= 8;
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
inv_mix_columns_2(&mut state);
inv_sub_bytes(&mut state);
rk_off -= 8;
}
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
inv_mix_columns_1(&mut state);
inv_sub_bytes(&mut state);
rk_off -= 8;
if rk_off == 0 {
break;
}
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
inv_mix_columns_0(&mut state);
inv_sub_bytes(&mut state);
rk_off -= 8;
}
add_round_key(&mut state, &rkeys[..8]);
inv_bitslice(&state)
}
/// Fully-fixsliced AES-192 encryption (the ShiftRows is completely omitted).
///
/// Encrypts four blocks in-place and in parallel.
pub(crate) fn aes192_encrypt(rkeys: &FixsliceKeys192, blocks: &BatchBlocks) -> BatchBlocks {
let mut state = State::default();
bitslice(&mut state, &blocks[0], &blocks[1], &blocks[2], &blocks[3]);
add_round_key(&mut state, &rkeys[..8]);
let mut rk_off = 8;
loop {
sub_bytes(&mut state);
mix_columns_1(&mut state);
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
rk_off += 8;
#[cfg(aes_compact)]
{
shift_rows_2(&mut state);
}
#[cfg(not(aes_compact))]
{
sub_bytes(&mut state);
mix_columns_2(&mut state);
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
rk_off += 8;
sub_bytes(&mut state);
mix_columns_3(&mut state);
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
rk_off += 8;
}
if rk_off == 96 {
break;
}
sub_bytes(&mut state);
mix_columns_0(&mut state);
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
rk_off += 8;
}
sub_bytes(&mut state);
add_round_key(&mut state, &rkeys[96..]);
inv_bitslice(&state)
}
/// Fully-fixsliced AES-256 decryption (the InvShiftRows is completely omitted).
///
/// Decrypts four blocks in-place and in parallel.
pub(crate) fn aes256_decrypt(rkeys: &FixsliceKeys256, blocks: &BatchBlocks) -> BatchBlocks {
let mut state = State::default();
bitslice(&mut state, &blocks[0], &blocks[1], &blocks[2], &blocks[3]);
add_round_key(&mut state, &rkeys[112..]);
inv_sub_bytes(&mut state);
#[cfg(not(aes_compact))]
{
inv_shift_rows_2(&mut state);
}
let mut rk_off = 104;
loop {
#[cfg(aes_compact)]
{
inv_shift_rows_2(&mut state);
}
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
inv_mix_columns_1(&mut state);
inv_sub_bytes(&mut state);
rk_off -= 8;
if rk_off == 0 {
break;
}
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
inv_mix_columns_0(&mut state);
inv_sub_bytes(&mut state);
rk_off -= 8;
#[cfg(not(aes_compact))]
{
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
inv_mix_columns_3(&mut state);
inv_sub_bytes(&mut state);
rk_off -= 8;
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
inv_mix_columns_2(&mut state);
inv_sub_bytes(&mut state);
rk_off -= 8;
}
}
add_round_key(&mut state, &rkeys[..8]);
inv_bitslice(&state)
}
/// Fully-fixsliced AES-256 encryption (the ShiftRows is completely omitted).
///
/// Encrypts four blocks in-place and in parallel.
pub(crate) fn aes256_encrypt(rkeys: &FixsliceKeys256, blocks: &BatchBlocks) -> BatchBlocks {
let mut state = State::default();
bitslice(&mut state, &blocks[0], &blocks[1], &blocks[2], &blocks[3]);
add_round_key(&mut state, &rkeys[..8]);
let mut rk_off = 8;
loop {
sub_bytes(&mut state);
mix_columns_1(&mut state);
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
rk_off += 8;
#[cfg(aes_compact)]
{
shift_rows_2(&mut state);
}
if rk_off == 112 {
break;
}
#[cfg(not(aes_compact))]
{
sub_bytes(&mut state);
mix_columns_2(&mut state);
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
rk_off += 8;
sub_bytes(&mut state);
mix_columns_3(&mut state);
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
rk_off += 8;
}
sub_bytes(&mut state);
mix_columns_0(&mut state);
add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
rk_off += 8;
}
#[cfg(not(aes_compact))]
{
shift_rows_2(&mut state);
}
sub_bytes(&mut state);
add_round_key(&mut state, &rkeys[112..]);
inv_bitslice(&state)
}
/// Note that the 4 bitwise NOT (^= 0xffffffffffffffff) are accounted for here so that it is a true
/// inverse of 'sub_bytes'.
fn inv_sub_bytes(state: &mut [u64]) {
debug_assert_eq!(state.len(), 8);
// Scheduled using https://github.com/Ko-/aes-armcortexm/tree/public/scheduler
// Inline "stack" comments reflect suggested stores and loads (ARM Cortex-M3 and M4)
let u7 = state[0];
let u6 = state[1];
let u5 = state[2];
let u4 = state[3];
let u3 = state[4];
let u2 = state[5];
let u1 = state[6];
let u0 = state[7];
let t23 = u0 ^ u3;
let t8 = u1 ^ t23;
let m2 = t23 & t8;
let t4 = u4 ^ t8;
let t22 = u1 ^ u3;
let t2 = u0 ^ u1;
let t1 = u3 ^ u4;
// t23 -> stack
let t9 = u7 ^ t1;
// t8 -> stack
let m7 = t22 & t9;
// t9 -> stack
let t24 = u4 ^ u7;
// m7 -> stack
let t10 = t2 ^ t24;
// u4 -> stack
let m14 = t2 & t10;
let r5 = u6 ^ u7;
// m2 -> stack
let t3 = t1 ^ r5;
// t2 -> stack
let t13 = t2 ^ r5;
let t19 = t22 ^ r5;
// t3 -> stack
let t17 = u2 ^ t19;
// t4 -> stack
let t25 = u2 ^ t1;
let r13 = u1 ^ u6;
// t25 -> stack
let t20 = t24 ^ r13;
// t17 -> stack
let m9 = t20 & t17;
// t20 -> stack
let r17 = u2 ^ u5;
// t22 -> stack
let t6 = t22 ^ r17;
// t13 -> stack
let m1 = t13 & t6;
let y5 = u0 ^ r17;
let m4 = t19 & y5;
let m5 = m4 ^ m1;
let m17 = m5 ^ t24;
let r18 = u5 ^ u6;
let t27 = t1 ^ r18;
let t15 = t10 ^ t27;
// t6 -> stack
let m11 = t1 & t15;
let m15 = m14 ^ m11;
let m21 = m17 ^ m15;
// t1 -> stack
// t4 <- stack
let m12 = t4 & t27;
let m13 = m12 ^ m11;
let t14 = t10 ^ r18;
let m3 = t14 ^ m1;
// m2 <- stack
let m16 = m3 ^ m2;
let m20 = m16 ^ m13;
// u4 <- stack
let r19 = u2 ^ u4;
let t16 = r13 ^ r19;
// t3 <- stack
let t26 = t3 ^ t16;
let m6 = t3 & t16;
let m8 = t26 ^ m6;
// t10 -> stack
// m7 <- stack
let m18 = m8 ^ m7;
let m22 = m18 ^ m13;
let m25 = m22 & m20;
let m26 = m21 ^ m25;
let m10 = m9 ^ m6;
let m19 = m10 ^ m15;
// t25 <- stack
let m23 = m19 ^ t25;
let m28 = m23 ^ m25;
let m24 = m22 ^ m23;
let m30 = m26 & m24;
let m39 = m23 ^ m30;
let m48 = m39 & y5;
let m57 = m39 & t19;
// m48 -> stack
let m36 = m24 ^ m25;
let m31 = m20 & m23;
let m27 = m20 ^ m21;
let m32 = m27 & m31;
let m29 = m28 & m27;
let m37 = m21 ^ m29;
// m39 -> stack
let m42 = m37 ^ m39;
let m52 = m42 & t15;
// t27 -> stack
// t1 <- stack
let m61 = m42 & t1;
let p0 = m52 ^ m61;
let p16 = m57 ^ m61;
// m57 -> stack
// t20 <- stack
let m60 = m37 & t20;
// p16 -> stack
// t17 <- stack
let m51 = m37 & t17;
let m33 = m27 ^ m25;
let m38 = m32 ^ m33;
let m43 = m37 ^ m38;
let m49 = m43 & t16;
let p6 = m49 ^ m60;
let p13 = m49 ^ m51;
let m58 = m43 & t3;
// t9 <- stack
let m50 = m38 & t9;
// t22 <- stack
let m59 = m38 & t22;
// p6 -> stack
let p1 = m58 ^ m59;
let p7 = p0 ^ p1;
let m34 = m21 & m22;
let m35 = m24 & m34;
let m40 = m35 ^ m36;
let m41 = m38 ^ m40;
let m45 = m42 ^ m41;
// t27 <- stack
let m53 = m45 & t27;
let p8 = m50 ^ m53;
let p23 = p7 ^ p8;
// t4 <- stack
let m62 = m45 & t4;
let p14 = m49 ^ m62;
let s6 = p14 ^ p23;
// t10 <- stack
let m54 = m41 & t10;
let p2 = m54 ^ m62;
let p22 = p2 ^ p7;
let s0 = p13 ^ p22;
let p17 = m58 ^ p2;
let p15 = m54 ^ m59;
// t2 <- stack
let m63 = m41 & t2;
// m39 <- stack
let m44 = m39 ^ m40;
// p17 -> stack
// t6 <- stack
let m46 = m44 & t6;
let p5 = m46 ^ m51;
// p23 -> stack
let p18 = m63 ^ p5;
let p24 = p5 ^ p7;
// m48 <- stack
let p12 = m46 ^ m48;
let s3 = p12 ^ p22;
// t13 <- stack
let m55 = m44 & t13;
let p9 = m55 ^ m63;
// p16 <- stack
let s7 = p9 ^ p16;
// t8 <- stack
let m47 = m40 & t8;
let p3 = m47 ^ m50;
let p19 = p2 ^ p3;
let s5 = p19 ^ p24;
let p11 = p0 ^ p3;
let p26 = p9 ^ p11;
// t23 <- stack
let m56 = m40 & t23;
let p4 = m48 ^ m56;
// p6 <- stack
let p20 = p4 ^ p6;
let p29 = p15 ^ p20;
let s1 = p26 ^ p29;
// m57 <- stack
let p10 = m57 ^ p4;
let p27 = p10 ^ p18;
// p23 <- stack
let s4 = p23 ^ p27;
let p25 = p6 ^ p10;
let p28 = p11 ^ p25;
// p17 <- stack
let s2 = p17 ^ p28;
state[0] = s7;
state[1] = s6;
state[2] = s5;
state[3] = s4;
state[4] = s3;
state[5] = s2;
state[6] = s1;
state[7] = s0;
}
/// Bitsliced implementation of the AES Sbox based on Boyar, Peralta and Calik.
///
/// See: <http://www.cs.yale.edu/homes/peralta/CircuitStuff/SLP_AES_113.txt>
///
/// Note that the 4 bitwise NOT (^= 0xffffffffffffffff) are moved to the key schedule.
fn sub_bytes(state: &mut [u64]) {
debug_assert_eq!(state.len(), 8);
// Scheduled using https://github.com/Ko-/aes-armcortexm/tree/public/scheduler
// Inline "stack" comments reflect suggested stores and loads (ARM Cortex-M3 and M4)
let u7 = state[0];
let u6 = state[1];
let u5 = state[2];
let u4 = state[3];
let u3 = state[4];
let u2 = state[5];
let u1 = state[6];
let u0 = state[7];
let y14 = u3 ^ u5;
let y13 = u0 ^ u6;
let y12 = y13 ^ y14;
let t1 = u4 ^ y12;
let y15 = t1 ^ u5;
let t2 = y12 & y15;
let y6 = y15 ^ u7;
let y20 = t1 ^ u1;
// y12 -> stack
let y9 = u0 ^ u3;
// y20 -> stack
let y11 = y20 ^ y9;
// y9 -> stack
let t12 = y9 & y11;
// y6 -> stack
let y7 = u7 ^ y11;
let y8 = u0 ^ u5;
let t0 = u1 ^ u2;
let y10 = y15 ^ t0;
// y15 -> stack
let y17 = y10 ^ y11;
// y14 -> stack
let t13 = y14 & y17;
let t14 = t13 ^ t12;
// y17 -> stack
let y19 = y10 ^ y8;
// y10 -> stack
let t15 = y8 & y10;
let t16 = t15 ^ t12;
let y16 = t0 ^ y11;
// y11 -> stack
let y21 = y13 ^ y16;
// y13 -> stack
let t7 = y13 & y16;
// y16 -> stack
let y18 = u0 ^ y16;
let y1 = t0 ^ u7;
let y4 = y1 ^ u3;
// u7 -> stack
let t5 = y4 & u7;
let t6 = t5 ^ t2;
let t18 = t6 ^ t16;
let t22 = t18 ^ y19;
let y2 = y1 ^ u0;
let t10 = y2 & y7;
let t11 = t10 ^ t7;
let t20 = t11 ^ t16;
let t24 = t20 ^ y18;
let y5 = y1 ^ u6;
let t8 = y5 & y1;
let t9 = t8 ^ t7;
let t19 = t9 ^ t14;
let t23 = t19 ^ y21;
let y3 = y5 ^ y8;
// y6 <- stack
let t3 = y3 & y6;
let t4 = t3 ^ t2;
// y20 <- stack
let t17 = t4 ^ y20;
let t21 = t17 ^ t14;
let t26 = t21 & t23;
let t27 = t24 ^ t26;
let t31 = t22 ^ t26;
let t25 = t21 ^ t22;
// y4 -> stack
let t28 = t25 & t27;
let t29 = t28 ^ t22;
let z14 = t29 & y2;
let z5 = t29 & y7;
let t30 = t23 ^ t24;
let t32 = t31 & t30;
let t33 = t32 ^ t24;
let t35 = t27 ^ t33;
let t36 = t24 & t35;
let t38 = t27 ^ t36;
let t39 = t29 & t38;
let t40 = t25 ^ t39;
let t43 = t29 ^ t40;
// y16 <- stack
let z3 = t43 & y16;
let tc12 = z3 ^ z5;
// tc12 -> stack
// y13 <- stack
let z12 = t43 & y13;
let z13 = t40 & y5;
let z4 = t40 & y1;
let tc6 = z3 ^ z4;
let t34 = t23 ^ t33;
let t37 = t36 ^ t34;
let t41 = t40 ^ t37;
// y10 <- stack
let z8 = t41 & y10;
let z17 = t41 & y8;
let t44 = t33 ^ t37;
// y15 <- stack
let z0 = t44 & y15;
// z17 -> stack
// y12 <- stack
let z9 = t44 & y12;
let z10 = t37 & y3;
let z1 = t37 & y6;
let tc5 = z1 ^ z0;
let tc11 = tc6 ^ tc5;
// y4 <- stack
let z11 = t33 & y4;
let t42 = t29 ^ t33;
let t45 = t42 ^ t41;
// y17 <- stack
let z7 = t45 & y17;
let tc8 = z7 ^ tc6;
// y14 <- stack
let z16 = t45 & y14;
// y11 <- stack
let z6 = t42 & y11;
let tc16 = z6 ^ tc8;
// z14 -> stack
// y9 <- stack
let z15 = t42 & y9;
let tc20 = z15 ^ tc16;
let tc1 = z15 ^ z16;
let tc2 = z10 ^ tc1;
let tc21 = tc2 ^ z11;
let tc3 = z9 ^ tc2;
let s0 = tc3 ^ tc16;
let s3 = tc3 ^ tc11;
let s1 = s3 ^ tc16;
let tc13 = z13 ^ tc1;
// u7 <- stack
let z2 = t33 & u7;
let tc4 = z0 ^ z2;
let tc7 = z12 ^ tc4;
let tc9 = z8 ^ tc7;
let tc10 = tc8 ^ tc9;
// z14 <- stack
let tc17 = z14 ^ tc10;
let s5 = tc21 ^ tc17;
let tc26 = tc17 ^ tc20;
// z17 <- stack
let s2 = tc26 ^ z17;
// tc12 <- stack
let tc14 = tc4 ^ tc12;
let tc18 = tc13 ^ tc14;
let s6 = tc10 ^ tc18;
let s7 = z12 ^ tc18;
let s4 = tc14 ^ s3;
state[0] = s7;
state[1] = s6;
state[2] = s5;
state[3] = s4;
state[4] = s3;
state[5] = s2;
state[6] = s1;
state[7] = s0;
}
/// NOT operations that are omitted in S-box
#[inline]
fn sub_bytes_nots(state: &mut [u64]) {
debug_assert_eq!(state.len(), 8);
state[0] ^= 0xffffffffffffffff;
state[1] ^= 0xffffffffffffffff;
state[5] ^= 0xffffffffffffffff;
state[6] ^= 0xffffffffffffffff;
}
/// Computation of the MixColumns transformation in the fixsliced representation, with different
/// rotations used according to the round number mod 4.
///
/// Based on Käsper-Schwabe, similar to https://github.com/Ko-/aes-armcortexm.
macro_rules! define_mix_columns {
(
$name:ident,
$name_inv:ident,
$first_rotate:path,
$second_rotate:path
) => {
#[rustfmt::skip]
fn $name(state: &mut State) {
let (a0, a1, a2, a3, a4, a5, a6, a7) = (
state[0], state[1], state[2], state[3], state[4], state[5], state[6], state[7]
);
let (b0, b1, b2, b3, b4, b5, b6, b7) = (
$first_rotate(a0),
$first_rotate(a1),
$first_rotate(a2),
$first_rotate(a3),
$first_rotate(a4),
$first_rotate(a5),
$first_rotate(a6),
$first_rotate(a7),
);
let (c0, c1, c2, c3, c4, c5, c6, c7) = (
a0 ^ b0,
a1 ^ b1,
a2 ^ b2,
a3 ^ b3,
a4 ^ b4,
a5 ^ b5,
a6 ^ b6,
a7 ^ b7,
);
state[0] = b0 ^ c7 ^ $second_rotate(c0);
state[1] = b1 ^ c0 ^ c7 ^ $second_rotate(c1);
state[2] = b2 ^ c1 ^ $second_rotate(c2);
state[3] = b3 ^ c2 ^ c7 ^ $second_rotate(c3);
state[4] = b4 ^ c3 ^ c7 ^ $second_rotate(c4);
state[5] = b5 ^ c4 ^ $second_rotate(c5);
state[6] = b6 ^ c5 ^ $second_rotate(c6);
state[7] = b7 ^ c6 ^ $second_rotate(c7);
}
#[rustfmt::skip]
fn $name_inv(state: &mut State) {
let (a0, a1, a2, a3, a4, a5, a6, a7) = (
state[0], state[1], state[2], state[3], state[4], state[5], state[6], state[7]
);
let (b0, b1, b2, b3, b4, b5, b6, b7) = (
$first_rotate(a0),
$first_rotate(a1),
$first_rotate(a2),
$first_rotate(a3),
$first_rotate(a4),
$first_rotate(a5),
$first_rotate(a6),
$first_rotate(a7),
);
let (c0, c1, c2, c3, c4, c5, c6, c7) = (
a0 ^ b0,
a1 ^ b1,
a2 ^ b2,
a3 ^ b3,
a4 ^ b4,
a5 ^ b5,
a6 ^ b6,
a7 ^ b7,
);
let (d0, d1, d2, d3, d4, d5, d6, d7) = (
a0 ^ c7,
a1 ^ c0 ^ c7,
a2 ^ c1,
a3 ^ c2 ^ c7,
a4 ^ c3 ^ c7,
a5 ^ c4,
a6 ^ c5,
a7 ^ c6,
);
let (e0, e1, e2, e3, e4, e5, e6, e7) = (
c0 ^ d6,
c1 ^ d6 ^ d7,
c2 ^ d0 ^ d7,
c3 ^ d1 ^ d6,
c4 ^ d2 ^ d6 ^ d7,
c5 ^ d3 ^ d7,
c6 ^ d4,
c7 ^ d5,
);
state[0] = d0 ^ e0 ^ $second_rotate(e0);
state[1] = d1 ^ e1 ^ $second_rotate(e1);
state[2] = d2 ^ e2 ^ $second_rotate(e2);
state[3] = d3 ^ e3 ^ $second_rotate(e3);
state[4] = d4 ^ e4 ^ $second_rotate(e4);
state[5] = d5 ^ e5 ^ $second_rotate(e5);
state[6] = d6 ^ e6 ^ $second_rotate(e6);
state[7] = d7 ^ e7 ^ $second_rotate(e7);
}
}
}
define_mix_columns!(
mix_columns_0,
inv_mix_columns_0,
rotate_rows_1,
rotate_rows_2
);
define_mix_columns!(
mix_columns_1,
inv_mix_columns_1,
rotate_rows_and_columns_1_1,
rotate_rows_and_columns_2_2
);
#[cfg(not(aes_compact))]
define_mix_columns!(
mix_columns_2,
inv_mix_columns_2,
rotate_rows_and_columns_1_2,
rotate_rows_2
);
#[cfg(not(aes_compact))]
define_mix_columns!(
mix_columns_3,
inv_mix_columns_3,
rotate_rows_and_columns_1_3,
rotate_rows_and_columns_2_2
);
#[inline]
fn delta_swap_1(a: &mut u64, shift: u32, mask: u64) {
let t = (*a ^ ((*a) >> shift)) & mask;
*a ^= t ^ (t << shift);
}
#[inline]
fn delta_swap_2(a: &mut u64, b: &mut u64, shift: u32, mask: u64) {
let t = (*a ^ ((*b) >> shift)) & mask;
*a ^= t;
*b ^= t << shift;
}
/// Applies ShiftRows once on an AES state (or key).
#[cfg(any(not(aes_compact), feature = "hazmat"))]
#[inline]
fn shift_rows_1(state: &mut [u64]) {
debug_assert_eq!(state.len(), 8);
for x in state.iter_mut() {
delta_swap_1(x, 8, 0x00f000ff000f0000);
delta_swap_1(x, 4, 0x0f0f00000f0f0000);
}
}
/// Applies ShiftRows twice on an AES state (or key).
#[inline]
fn shift_rows_2(state: &mut [u64]) {
debug_assert_eq!(state.len(), 8);
for x in state.iter_mut() {
delta_swap_1(x, 8, 0x00ff000000ff0000);
}
}
/// Applies ShiftRows three times on an AES state (or key).
#[inline]
fn shift_rows_3(state: &mut [u64]) {
debug_assert_eq!(state.len(), 8);
for x in state.iter_mut() {
delta_swap_1(x, 8, 0x000f00ff00f00000);
delta_swap_1(x, 4, 0x0f0f00000f0f0000);
}
}
#[inline(always)]
fn inv_shift_rows_1(state: &mut [u64]) {
shift_rows_3(state);
}
#[inline(always)]
fn inv_shift_rows_2(state: &mut [u64]) {
shift_rows_2(state);
}
#[cfg(not(aes_compact))]
#[inline(always)]
fn inv_shift_rows_3(state: &mut [u64]) {
shift_rows_1(state);
}
/// XOR the columns after the S-box during the key schedule round function.
///
/// The `idx_xor` parameter refers to the index of the previous round key that is
/// involved in the XOR computation (should be 8 and 16 for AES-128 and AES-256,
/// respectively).
///
/// The `idx_ror` parameter refers to the rotation value, which varies between the
/// different key schedules.
fn xor_columns(rkeys: &mut [u64], offset: usize, idx_xor: usize, idx_ror: u32) {
for i in 0..8 {
let off_i = offset + i;
let rk = rkeys[off_i - idx_xor] ^ (0x000f000f000f000f & ror(rkeys[off_i], idx_ror));
rkeys[off_i] = rk
^ (0xfff0fff0fff0fff0 & (rk << 4))
^ (0xff00ff00ff00ff00 & (rk << 8))
^ (0xf000f000f000f000 & (rk << 12));
}
}
/// Bitslice four 128-bit input blocks input0, input1, input2, input3 into a 512-bit internal state.
fn bitslice(output: &mut [u64], input0: &[u8], input1: &[u8], input2: &[u8], input3: &[u8]) {
debug_assert_eq!(output.len(), 8);
debug_assert_eq!(input0.len(), 16);
debug_assert_eq!(input1.len(), 16);
debug_assert_eq!(input2.len(), 16);
debug_assert_eq!(input3.len(), 16);
// Bitslicing is a bit index manipulation. 512 bits of data means each bit is positioned at a
// 9-bit index. AES data is 4 blocks, each one a 4x4 column-major matrix of bytes, so the
// index is initially ([b]lock, [c]olumn, [r]ow, [p]osition):
// b1 b0 c1 c0 r1 r0 p2 p1 p0
//
// The desired bitsliced data groups first by bit position, then row, column, block:
// p2 p1 p0 r1 r0 c1 c0 b1 b0
#[rustfmt::skip]
fn read_reordered(input: &[u8]) -> u64 {
(u64::from(input[0x0]) ) |
(u64::from(input[0x1]) << 0x10) |
(u64::from(input[0x2]) << 0x20) |
(u64::from(input[0x3]) << 0x30) |
(u64::from(input[0x8]) << 0x08) |
(u64::from(input[0x9]) << 0x18) |
(u64::from(input[0xa]) << 0x28) |
(u64::from(input[0xb]) << 0x38)
}
// Reorder each block's bytes on input
// __ __ c1 c0 r1 r0 __ __ __ => __ __ c0 r1 r0 c1 __ __ __
// Reorder by relabeling (note the order of input)
// b1 b0 c0 __ __ __ __ __ __ => c0 b1 b0 __ __ __ __ __ __
let mut t0 = read_reordered(&input0[0x00..0x0c]);
let mut t4 = read_reordered(&input0[0x04..0x10]);
let mut t1 = read_reordered(&input1[0x00..0x0c]);
let mut t5 = read_reordered(&input1[0x04..0x10]);
let mut t2 = read_reordered(&input2[0x00..0x0c]);
let mut t6 = read_reordered(&input2[0x04..0x10]);
let mut t3 = read_reordered(&input3[0x00..0x0c]);
let mut t7 = read_reordered(&input3[0x04..0x10]);
// Bit Index Swap 6 <-> 0:
// __ __ b0 __ __ __ __ __ p0 => __ __ p0 __ __ __ __ __ b0
let m0 = 0x5555555555555555;
delta_swap_2(&mut t1, &mut t0, 1, m0);
delta_swap_2(&mut t3, &mut t2, 1, m0);
delta_swap_2(&mut t5, &mut t4, 1, m0);
delta_swap_2(&mut t7, &mut t6, 1, m0);
// Bit Index Swap 7 <-> 1:
// __ b1 __ __ __ __ __ p1 __ => __ p1 __ __ __ __ __ b1 __
let m1 = 0x3333333333333333;
delta_swap_2(&mut t2, &mut t0, 2, m1);
delta_swap_2(&mut t3, &mut t1, 2, m1);
delta_swap_2(&mut t6, &mut t4, 2, m1);
delta_swap_2(&mut t7, &mut t5, 2, m1);
// Bit Index Swap 8 <-> 2:
// c0 __ __ __ __ __ p2 __ __ => p2 __ __ __ __ __ c0 __ __
let m2 = 0x0f0f0f0f0f0f0f0f;
delta_swap_2(&mut t4, &mut t0, 4, m2);
delta_swap_2(&mut t5, &mut t1, 4, m2);
delta_swap_2(&mut t6, &mut t2, 4, m2);
delta_swap_2(&mut t7, &mut t3, 4, m2);
// Final bitsliced bit index, as desired:
// p2 p1 p0 r1 r0 c1 c0 b1 b0
output[0] = t0;
output[1] = t1;
output[2] = t2;
output[3] = t3;
output[4] = t4;
output[5] = t5;
output[6] = t6;
output[7] = t7;
}
/// Un-bitslice a 512-bit internal state into four 128-bit blocks of output.
fn inv_bitslice(input: &[u64]) -> BatchBlocks {
debug_assert_eq!(input.len(), 8);
// Unbitslicing is a bit index manipulation. 512 bits of data means each bit is positioned at
// a 9-bit index. AES data is 4 blocks, each one a 4x4 column-major matrix of bytes, so the
// desired index for the output is ([b]lock, [c]olumn, [r]ow, [p]osition):
// b1 b0 c1 c0 r1 r0 p2 p1 p0
//
// The initially bitsliced data groups first by bit position, then row, column, block:
// p2 p1 p0 r1 r0 c1 c0 b1 b0
let mut t0 = input[0];
let mut t1 = input[1];
let mut t2 = input[2];
let mut t3 = input[3];
let mut t4 = input[4];
let mut t5 = input[5];
let mut t6 = input[6];
let mut t7 = input[7];
// TODO: these bit index swaps are identical to those in 'packing'
// Bit Index Swap 6 <-> 0:
// __ __ p0 __ __ __ __ __ b0 => __ __ b0 __ __ __ __ __ p0
let m0 = 0x5555555555555555;
delta_swap_2(&mut t1, &mut t0, 1, m0);
delta_swap_2(&mut t3, &mut t2, 1, m0);
delta_swap_2(&mut t5, &mut t4, 1, m0);
delta_swap_2(&mut t7, &mut t6, 1, m0);
// Bit Index Swap 7 <-> 1:
// __ p1 __ __ __ __ __ b1 __ => __ b1 __ __ __ __ __ p1 __
let m1 = 0x3333333333333333;
delta_swap_2(&mut t2, &mut t0, 2, m1);
delta_swap_2(&mut t3, &mut t1, 2, m1);
delta_swap_2(&mut t6, &mut t4, 2, m1);
delta_swap_2(&mut t7, &mut t5, 2, m1);
// Bit Index Swap 8 <-> 2:
// p2 __ __ __ __ __ c0 __ __ => c0 __ __ __ __ __ p2 __ __
let m2 = 0x0f0f0f0f0f0f0f0f;
delta_swap_2(&mut t4, &mut t0, 4, m2);
delta_swap_2(&mut t5, &mut t1, 4, m2);
delta_swap_2(&mut t6, &mut t2, 4, m2);
delta_swap_2(&mut t7, &mut t3, 4, m2);
#[rustfmt::skip]
fn write_reordered(columns: u64, output: &mut [u8]) {
output[0x0] = (columns ) as u8;
output[0x1] = (columns >> 0x10) as u8;
output[0x2] = (columns >> 0x20) as u8;
output[0x3] = (columns >> 0x30) as u8;
output[0x8] = (columns >> 0x08) as u8;
output[0x9] = (columns >> 0x18) as u8;
output[0xa] = (columns >> 0x28) as u8;
output[0xb] = (columns >> 0x38) as u8;
}
let mut output = BatchBlocks::default();
// Reorder by relabeling (note the order of output)
// c0 b1 b0 __ __ __ __ __ __ => b1 b0 c0 __ __ __ __ __ __
// Reorder each block's bytes on output
// __ __ c0 r1 r0 c1 __ __ __ => __ __ c1 c0 r1 r0 __ __ __
write_reordered(t0, &mut output[0][0x00..0x0c]);
write_reordered(t4, &mut output[0][0x04..0x10]);
write_reordered(t1, &mut output[1][0x00..0x0c]);
write_reordered(t5, &mut output[1][0x04..0x10]);
write_reordered(t2, &mut output[2][0x00..0x0c]);
write_reordered(t6, &mut output[2][0x04..0x10]);
write_reordered(t3, &mut output[3][0x00..0x0c]);
write_reordered(t7, &mut output[3][0x04..0x10]);
// Final AES bit index, as desired:
// b1 b0 c1 c0 r1 r0 p2 p1 p0
output
}
/// Copy 32-bytes within the provided slice to an 8-byte offset
fn memshift32(buffer: &mut [u64], src_offset: usize) {
debug_assert_eq!(src_offset % 8, 0);
let dst_offset = src_offset + 8;
debug_assert!(dst_offset + 8 <= buffer.len());
for i in (0..8).rev() {
buffer[dst_offset + i] = buffer[src_offset + i];
}
}
/// XOR the round key to the internal state. The round keys are expected to be
/// pre-computed and to be packed in the fixsliced representation.
#[inline]
fn add_round_key(state: &mut State, rkey: &[u64]) {
debug_assert_eq!(rkey.len(), 8);
for (a, b) in state.iter_mut().zip(rkey) {
*a ^= b;
}
}
#[inline(always)]
fn add_round_constant_bit(state: &mut [u64], bit: usize) {
state[bit] ^= 0x00000000f0000000;
}
#[inline(always)]
fn ror(x: u64, y: u32) -> u64 {
x.rotate_right(y)
}
#[inline(always)]
fn ror_distance(rows: u32, cols: u32) -> u32 {
(rows << 4) + (cols << 2)
}
#[inline(always)]
fn rotate_rows_1(x: u64) -> u64 {
ror(x, ror_distance(1, 0))
}
#[inline(always)]
fn rotate_rows_2(x: u64) -> u64 {
ror(x, ror_distance(2, 0))
}
#[inline(always)]
#[rustfmt::skip]
fn rotate_rows_and_columns_1_1(x: u64) -> u64 {
(ror(x, ror_distance(1, 1)) & 0x0fff0fff0fff0fff) |
(ror(x, ror_distance(0, 1)) & 0xf000f000f000f000)
}
#[cfg(not(aes_compact))]
#[inline(always)]
#[rustfmt::skip]
fn rotate_rows_and_columns_1_2(x: u64) -> u64 {
(ror(x, ror_distance(1, 2)) & 0x00ff00ff00ff00ff) |
(ror(x, ror_distance(0, 2)) & 0xff00ff00ff00ff00)
}
#[cfg(not(aes_compact))]
#[inline(always)]
#[rustfmt::skip]
fn rotate_rows_and_columns_1_3(x: u64) -> u64 {
(ror(x, ror_distance(1, 3)) & 0x000f000f000f000f) |
(ror(x, ror_distance(0, 3)) & 0xfff0fff0fff0fff0)
}
#[inline(always)]
#[rustfmt::skip]
fn rotate_rows_and_columns_2_2(x: u64) -> u64 {
(ror(x, ror_distance(2, 2)) & 0x00ff00ff00ff00ff) |
(ror(x, ror_distance(1, 2)) & 0xff00ff00ff00ff00)
}
/// Low-level "hazmat" AES functions.
///
/// Note: this isn't actually used in the `Aes128`/`Aes192`/`Aes256`
/// implementations in this crate, but instead provides raw access to
/// the AES round function gated under the `hazmat` crate feature.
#[cfg(feature = "hazmat")]
pub(crate) mod hazmat {
use super::{
bitslice, inv_bitslice, inv_mix_columns_0, inv_shift_rows_1, inv_sub_bytes, mix_columns_0,
shift_rows_1, sub_bytes, sub_bytes_nots, State,
};
use crate::{Block, Block8};
/// XOR the `src` block into the `dst` block in-place.
fn xor_in_place(dst: &mut Block, src: &Block) {
for (a, b) in dst.iter_mut().zip(src.as_slice()) {
*a ^= *b;
}
}
/// Perform a bitslice operation, loading a single block.
fn bitslice_block(block: &Block) -> State {
let mut state = State::default();
bitslice(&mut state, block, block, block, block);
state
}
/// Perform an inverse bitslice operation, extracting a single block.
fn inv_bitslice_block(block: &mut Block, state: &State) {
block.copy_from_slice(&inv_bitslice(state)[0]);
}
/// AES cipher (encrypt) round function.
#[inline]
pub(crate) fn cipher_round(block: &mut Block, round_key: &Block) {
let mut state = bitslice_block(block);
sub_bytes(&mut state);
sub_bytes_nots(&mut state);
shift_rows_1(&mut state);
mix_columns_0(&mut state);
inv_bitslice_block(block, &state);
xor_in_place(block, round_key);
}
/// AES cipher (encrypt) round function: parallel version.
#[inline]
pub(crate) fn cipher_round_par(blocks: &mut Block8, round_keys: &Block8) {
for (chunk, keys) in blocks.chunks_exact_mut(4).zip(round_keys.chunks_exact(4)) {
let mut state = State::default();
bitslice(&mut state, &chunk[0], &chunk[1], &chunk[2], &chunk[3]);
sub_bytes(&mut state);
sub_bytes_nots(&mut state);
shift_rows_1(&mut state);
mix_columns_0(&mut state);
let res = inv_bitslice(&state);
for i in 0..4 {
chunk[i] = res[i];
xor_in_place(&mut chunk[i], &keys[i]);
}
}
}
/// AES cipher (encrypt) round function.
#[inline]
pub(crate) fn equiv_inv_cipher_round(block: &mut Block, round_key: &Block) {
let mut state = State::default();
bitslice(&mut state, block, block, block, block);
sub_bytes_nots(&mut state);
inv_sub_bytes(&mut state);
inv_shift_rows_1(&mut state);
inv_mix_columns_0(&mut state);
inv_bitslice_block(block, &state);
xor_in_place(block, round_key);
}
/// AES cipher (encrypt) round function: parallel version.
#[inline]
pub(crate) fn equiv_inv_cipher_round_par(blocks: &mut Block8, round_keys: &Block8) {
for (chunk, keys) in blocks.chunks_exact_mut(4).zip(round_keys.chunks_exact(4)) {
let mut state = State::default();
bitslice(&mut state, &chunk[0], &chunk[1], &chunk[2], &chunk[3]);
sub_bytes_nots(&mut state);
inv_sub_bytes(&mut state);
inv_shift_rows_1(&mut state);
inv_mix_columns_0(&mut state);
let res = inv_bitslice(&state);
for i in 0..4 {
chunk[i] = res[i];
xor_in_place(&mut chunk[i], &keys[i]);
}
}
}
/// AES mix columns function.
#[inline]
pub(crate) fn mix_columns(block: &mut Block) {
let mut state = bitslice_block(block);
mix_columns_0(&mut state);
inv_bitslice_block(block, &state);
}
/// AES inverse mix columns function.
#[inline]
pub(crate) fn inv_mix_columns(block: &mut Block) {
let mut state = bitslice_block(block);
inv_mix_columns_0(&mut state);
inv_bitslice_block(block, &state);
}
}