blob: 1df43ea69ff59fe0adfbe6baa609ba34fb8e5195 [file] [log] [blame]
//! Pure Rust implementation of the [Advanced Encryption Standard][AES]
//! (AES, a.k.a. Rijndael).
//!
//! # ⚠️ Security Warning: Hazmat!
//!
//! This crate implements only the low-level block cipher function, and is intended
//! for use for implementing higher-level constructions *only*. It is NOT
//! intended for direct use in applications.
//!
//! USE AT YOUR OWN RISK!
//!
//! # Supported backends
//! This crate provides multiple backends including a portable pure Rust
//! backend as well as ones based on CPU intrinsics.
//!
//! By default, it performs runtime detection of CPU intrinsics and uses them
//! if they are available.
//!
//! ## "soft" portable backend
//! As a baseline implementation, this crate provides a constant-time pure Rust
//! implementation based on [fixslicing], a more advanced form of bitslicing
//! implemented entirely in terms of bitwise arithmetic with no use of any
//! lookup tables or data-dependent branches.
//!
//! Enabling the `aes_compact` configuration flag will reduce the code size of this
//! backend at the cost of decreased performance (using a modified form of
//! the fixslicing technique called "semi-fixslicing").
//!
//! ## ARMv8 intrinsics (Rust 1.61+)
//! On `aarch64` targets including `aarch64-apple-darwin` (Apple M1) and Linux
//! targets such as `aarch64-unknown-linux-gnu` and `aarch64-unknown-linux-musl`,
//! support for using AES intrinsics provided by the ARMv8 Cryptography Extensions
//! is available when using Rust 1.61 or above, and can be enabled using the
//! `aes_armv8` configuration flag.
//!
//! On Linux and macOS, when the `aes_armv8` flag is enabled support for AES
//! intrinsics is autodetected at runtime. On other platforms the `aes`
//! target feature must be enabled via RUSTFLAGS.
//!
//! ## `x86`/`x86_64` intrinsics (AES-NI)
//! By default this crate uses runtime detection on `i686`/`x86_64` targets
//! in order to determine if AES-NI is available, and if it is not, it will
//! fallback to using a constant-time software implementation.
//!
//! Passing `RUSTFLAGS=-C target-feature=+aes,+ssse3` explicitly at compile-time
//! will override runtime detection and ensure that AES-NI is always used.
//! Programs built in this manner will crash with an illegal instruction on
//! CPUs which do not have AES-NI enabled.
//!
//! Note: runtime detection is not possible on SGX targets. Please use the
//! afforementioned `RUSTFLAGS` to leverage AES-NI on these targets.
//!
//! # Examples
//! ```
//! use aes::Aes128;
//! use aes::cipher::{
//! BlockCipher, BlockEncrypt, BlockDecrypt, KeyInit,
//! generic_array::GenericArray,
//! };
//!
//! let key = GenericArray::from([0u8; 16]);
//! let mut block = GenericArray::from([42u8; 16]);
//!
//! // Initialize cipher
//! let cipher = Aes128::new(&key);
//!
//! let block_copy = block.clone();
//!
//! // Encrypt block in-place
//! cipher.encrypt_block(&mut block);
//!
//! // And decrypt it back
//! cipher.decrypt_block(&mut block);
//! assert_eq!(block, block_copy);
//!
//! // Implementation supports parallel block processing. Number of blocks
//! // processed in parallel depends in general on hardware capabilities.
//! // This is achieved by instruction-level parallelism (ILP) on a single
//! // CPU core, which is differen from multi-threaded parallelism.
//! let mut blocks = [block; 100];
//! cipher.encrypt_blocks(&mut blocks);
//!
//! for block in blocks.iter_mut() {
//! cipher.decrypt_block(block);
//! assert_eq!(block, &block_copy);
//! }
//!
//! // `decrypt_blocks` also supports parallel block processing.
//! cipher.decrypt_blocks(&mut blocks);
//!
//! for block in blocks.iter_mut() {
//! cipher.encrypt_block(block);
//! assert_eq!(block, &block_copy);
//! }
//! ```
//!
//! For implementation of block cipher modes of operation see
//! [`block-modes`] repository.
//!
//! # Configuration Flags
//!
//! You can modify crate using the following configuration flags:
//!
//! - `aes_armv8`: enable ARMv8 AES intrinsics (Rust 1.61+).
//! - `aes_force_soft`: force software implementation.
//! - `aes_compact`: reduce code size at the cost of slower performance
//! (affects only software backend).
//!
//! It can be enabled using `RUSTFLAGS` environmental variable
//! (e.g. `RUSTFLAGS="--cfg aes_compact"`) or by modifying `.cargo/config`.
//!
//! [AES]: https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
//! [fixslicing]: https://eprint.iacr.org/2020/1123.pdf
//! [AES-NI]: https://en.wikipedia.org/wiki/AES_instruction_set
//! [`block-modes`]: https://github.com/RustCrypto/block-modes/
#![no_std]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/26acc39f/logo.svg",
html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/26acc39f/logo.svg"
)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![warn(missing_docs, rust_2018_idioms)]
#[cfg(feature = "hazmat")]
#[cfg_attr(docsrs, doc(cfg(feature = "hazmat")))]
pub mod hazmat;
mod soft;
use cfg_if::cfg_if;
cfg_if! {
if #[cfg(all(target_arch = "aarch64", aes_armv8, not(aes_force_soft)))] {
mod armv8;
mod autodetect;
pub use autodetect::*;
} else if #[cfg(all(
any(target_arch = "x86", target_arch = "x86_64"),
not(aes_force_soft)
))] {
mod autodetect;
mod ni;
pub use autodetect::*;
} else {
pub use soft::*;
}
}
pub use cipher;
use cipher::{
consts::{U16, U8},
generic_array::GenericArray,
};
/// 128-bit AES block
pub type Block = GenericArray<u8, U16>;
/// Eight 128-bit AES blocks
pub type Block8 = GenericArray<Block, U8>;
#[cfg(test)]
mod tests {
#[cfg(feature = "zeroize")]
#[test]
fn zeroize_works() {
use super::soft;
fn test_for<T: zeroize::ZeroizeOnDrop>(val: T) {
use core::mem::{size_of, ManuallyDrop};
let mut val = ManuallyDrop::new(val);
let ptr = &val as *const _ as *const u8;
let len = size_of::<ManuallyDrop<T>>();
unsafe { ManuallyDrop::drop(&mut val) };
let slice = unsafe { core::slice::from_raw_parts(ptr, len) };
assert!(slice.iter().all(|&byte| byte == 0));
}
let key_128 = [42; 16].into();
let key_192 = [42; 24].into();
let key_256 = [42; 32].into();
use cipher::KeyInit as _;
test_for(soft::Aes128::new(&key_128));
test_for(soft::Aes128Enc::new(&key_128));
test_for(soft::Aes128Dec::new(&key_128));
test_for(soft::Aes192::new(&key_192));
test_for(soft::Aes192Enc::new(&key_192));
test_for(soft::Aes192Dec::new(&key_192));
test_for(soft::Aes256::new(&key_256));
test_for(soft::Aes256Enc::new(&key_256));
test_for(soft::Aes256Dec::new(&key_256));
#[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), not(aes_force_soft)))]
{
use super::ni;
cpufeatures::new!(aes_intrinsics, "aes");
if aes_intrinsics::get() {
test_for(ni::Aes128::new(&key_128));
test_for(ni::Aes128Enc::new(&key_128));
test_for(ni::Aes128Dec::new(&key_128));
test_for(ni::Aes192::new(&key_192));
test_for(ni::Aes192Enc::new(&key_192));
test_for(ni::Aes192Dec::new(&key_192));
test_for(ni::Aes256::new(&key_256));
test_for(ni::Aes256Enc::new(&key_256));
test_for(ni::Aes256Dec::new(&key_256));
}
}
#[cfg(all(target_arch = "aarch64", aes_armv8, not(aes_force_soft)))]
{
use super::armv8;
cpufeatures::new!(aes_intrinsics, "aes");
if aes_intrinsics::get() {
test_for(armv8::Aes128::new(&key_128));
test_for(armv8::Aes128Enc::new(&key_128));
test_for(armv8::Aes128Dec::new(&key_128));
test_for(armv8::Aes192::new(&key_192));
test_for(armv8::Aes192Enc::new(&key_192));
test_for(armv8::Aes192Dec::new(&key_192));
test_for(armv8::Aes256::new(&key_256));
test_for(armv8::Aes256Enc::new(&key_256));
test_for(armv8::Aes256Dec::new(&key_256));
}
}
}
}