blob: f8e7fa628906d290674c7698972e0ab575d4589b [file] [log] [blame]
use std::borrow::Cow;
use std::cmp::Ordering;
use std::fmt;
use core::hash::{Hash, Hasher};
use itertools::Itertools;
use rustc_ast::ast::{self, UseTreeKind};
use rustc_span::{
symbol::{self, sym},
BytePos, Span, DUMMY_SP,
};
use crate::comment::combine_strs_with_missing_comments;
use crate::config::lists::*;
use crate::config::ImportGranularity;
use crate::config::{Edition, IndentStyle, Version};
use crate::lists::{
definitive_tactic, itemize_list, write_list, ListFormatting, ListItem, Separator,
};
use crate::rewrite::{Rewrite, RewriteContext};
use crate::shape::Shape;
use crate::source_map::SpanUtils;
use crate::spanned::Spanned;
use crate::utils::{is_same_visibility, mk_sp, rewrite_ident};
use crate::visitor::FmtVisitor;
/// Returns a name imported by a `use` declaration.
/// E.g., returns `Ordering` for `std::cmp::Ordering` and `self` for `std::cmp::self`.
pub(crate) fn path_to_imported_ident(path: &ast::Path) -> symbol::Ident {
path.segments.last().unwrap().ident
}
impl<'a> FmtVisitor<'a> {
pub(crate) fn format_import(&mut self, item: &ast::Item, tree: &ast::UseTree) {
let span = item.span();
let shape = self.shape();
let rw = UseTree::from_ast(
&self.get_context(),
tree,
None,
Some(item.vis.clone()),
Some(item.span.lo()),
Some(item.attrs.clone()),
)
.rewrite_top_level(&self.get_context(), shape);
match rw {
Some(ref s) if s.is_empty() => {
// Format up to last newline
let prev_span = mk_sp(self.last_pos, source!(self, span).lo());
let trimmed_snippet = self.snippet(prev_span).trim_end();
let span_end = self.last_pos + BytePos(trimmed_snippet.len() as u32);
self.format_missing(span_end);
// We have an excessive newline from the removed import.
if self.buffer.ends_with('\n') {
self.buffer.pop();
self.line_number -= 1;
}
self.last_pos = source!(self, span).hi();
}
Some(ref s) => {
self.format_missing_with_indent(source!(self, span).lo());
self.push_str(s);
self.last_pos = source!(self, span).hi();
}
None => {
self.format_missing_with_indent(source!(self, span).lo());
self.format_missing(source!(self, span).hi());
}
}
}
}
// Ordering of imports
// We order imports by translating to our own representation and then sorting.
// The Rust AST data structures are really bad for this. Rustfmt applies a bunch
// of normalisations to imports and since we want to sort based on the result
// of these (and to maintain idempotence) we must apply the same normalisations
// to the data structures for sorting.
//
// We sort `self` and `super` before other imports, then identifier imports,
// then glob imports, then lists of imports. We do not take aliases into account
// when ordering unless the imports are identical except for the alias (rare in
// practice).
// FIXME(#2531): we should unify the comparison code here with the formatting
// code elsewhere since we are essentially string-ifying twice. Furthermore, by
// parsing to our own format on comparison, we repeat a lot of work when
// sorting.
// FIXME we do a lot of allocation to make our own representation.
#[derive(Clone, Eq, Hash, PartialEq)]
pub(crate) enum UseSegmentKind {
Ident(String, Option<String>),
Slf(Option<String>),
Super(Option<String>),
Crate(Option<String>),
Glob,
List(Vec<UseTree>),
}
#[derive(Clone, Eq, PartialEq)]
pub(crate) struct UseSegment {
pub(crate) kind: UseSegmentKind,
pub(crate) version: Version,
}
#[derive(Clone)]
pub(crate) struct UseTree {
pub(crate) path: Vec<UseSegment>,
pub(crate) span: Span,
// Comment information within nested use tree.
pub(crate) list_item: Option<ListItem>,
// Additional fields for top level use items.
// Should we have another struct for top-level use items rather than reusing this?
visibility: Option<ast::Visibility>,
attrs: Option<ast::AttrVec>,
}
impl PartialEq for UseTree {
fn eq(&self, other: &UseTree) -> bool {
self.path == other.path
}
}
impl Eq for UseTree {}
impl Spanned for UseTree {
fn span(&self) -> Span {
let lo = if let Some(ref attrs) = self.attrs {
attrs.iter().next().map_or(self.span.lo(), |a| a.span.lo())
} else {
self.span.lo()
};
mk_sp(lo, self.span.hi())
}
}
impl UseSegment {
// Clone a version of self with any top-level alias removed.
fn remove_alias(&self) -> UseSegment {
let kind = match self.kind {
UseSegmentKind::Ident(ref s, _) => UseSegmentKind::Ident(s.clone(), None),
UseSegmentKind::Slf(_) => UseSegmentKind::Slf(None),
UseSegmentKind::Super(_) => UseSegmentKind::Super(None),
UseSegmentKind::Crate(_) => UseSegmentKind::Crate(None),
_ => return self.clone(),
};
UseSegment {
kind,
version: self.version,
}
}
// Check if self == other with their aliases removed.
fn equal_except_alias(&self, other: &Self) -> bool {
match (&self.kind, &other.kind) {
(UseSegmentKind::Ident(ref s1, _), UseSegmentKind::Ident(ref s2, _)) => s1 == s2,
(UseSegmentKind::Slf(_), UseSegmentKind::Slf(_))
| (UseSegmentKind::Super(_), UseSegmentKind::Super(_))
| (UseSegmentKind::Crate(_), UseSegmentKind::Crate(_))
| (UseSegmentKind::Glob, UseSegmentKind::Glob) => true,
(UseSegmentKind::List(ref list1), UseSegmentKind::List(ref list2)) => list1 == list2,
_ => false,
}
}
fn get_alias(&self) -> Option<&str> {
match &self.kind {
UseSegmentKind::Ident(_, a)
| UseSegmentKind::Slf(a)
| UseSegmentKind::Super(a)
| UseSegmentKind::Crate(a) => a.as_deref(),
_ => None,
}
}
fn from_path_segment(
context: &RewriteContext<'_>,
path_seg: &ast::PathSegment,
modsep: bool,
) -> Option<UseSegment> {
let name = rewrite_ident(context, path_seg.ident);
if name.is_empty() || name == "{{root}}" {
return None;
}
let kind = match name {
"self" => UseSegmentKind::Slf(None),
"super" => UseSegmentKind::Super(None),
"crate" => UseSegmentKind::Crate(None),
_ => {
let mod_sep = if modsep { "::" } else { "" };
UseSegmentKind::Ident(format!("{mod_sep}{name}"), None)
}
};
Some(UseSegment {
kind,
version: context.config.version(),
})
}
fn contains_comment(&self) -> bool {
if let UseSegmentKind::List(list) = &self.kind {
list.iter().any(|subtree| subtree.contains_comment())
} else {
false
}
}
}
pub(crate) fn normalize_use_trees_with_granularity(
use_trees: Vec<UseTree>,
import_granularity: ImportGranularity,
) -> Vec<UseTree> {
let merge_by = match import_granularity {
ImportGranularity::Item => return flatten_use_trees(use_trees, ImportGranularity::Item),
ImportGranularity::Preserve => return use_trees,
ImportGranularity::Crate => SharedPrefix::Crate,
ImportGranularity::Module => SharedPrefix::Module,
ImportGranularity::One => SharedPrefix::One,
};
let mut result = Vec::with_capacity(use_trees.len());
for use_tree in use_trees {
if use_tree.contains_comment() || use_tree.attrs.is_some() {
result.push(use_tree);
continue;
}
for mut flattened in use_tree.flatten(import_granularity) {
if let Some(tree) = result
.iter_mut()
.find(|tree| tree.share_prefix(&flattened, merge_by))
{
tree.merge(&flattened, merge_by);
} else {
// If this is the first tree with this prefix, handle potential trailing ::self
if merge_by == SharedPrefix::Module {
flattened = flattened.nest_trailing_self();
}
result.push(flattened);
}
}
}
result
}
fn flatten_use_trees(
use_trees: Vec<UseTree>,
import_granularity: ImportGranularity,
) -> Vec<UseTree> {
// Return non-sorted single occurrence of the use-trees text string;
// order is by first occurrence of the use-tree.
use_trees
.into_iter()
.flat_map(|tree| tree.flatten(import_granularity))
.map(UseTree::nest_trailing_self)
.unique()
.collect()
}
impl fmt::Debug for UseTree {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl fmt::Debug for UseSegment {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&self.kind, f)
}
}
impl fmt::Display for UseSegment {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&self.kind, f)
}
}
impl Hash for UseSegment {
fn hash<H: Hasher>(&self, state: &mut H) {
self.kind.hash(state);
}
}
impl fmt::Debug for UseSegmentKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl fmt::Display for UseSegmentKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
UseSegmentKind::Glob => write!(f, "*"),
UseSegmentKind::Ident(ref s, Some(ref alias)) => write!(f, "{s} as {alias}"),
UseSegmentKind::Ident(ref s, None) => write!(f, "{s}"),
UseSegmentKind::Slf(..) => write!(f, "self"),
UseSegmentKind::Super(..) => write!(f, "super"),
UseSegmentKind::Crate(..) => write!(f, "crate"),
UseSegmentKind::List(ref list) => {
write!(f, "{{")?;
for (i, item) in list.iter().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
write!(f, "{item}")?;
}
write!(f, "}}")
}
}
}
}
impl fmt::Display for UseTree {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for (i, segment) in self.path.iter().enumerate() {
if i != 0 {
write!(f, "::")?;
}
write!(f, "{segment}")?;
}
Ok(())
}
}
impl UseTree {
// Rewrite use tree with `use ` and a trailing `;`.
pub(crate) fn rewrite_top_level(
&self,
context: &RewriteContext<'_>,
shape: Shape,
) -> Option<String> {
let vis = self.visibility.as_ref().map_or(Cow::from(""), |vis| {
crate::utils::format_visibility(context, vis)
});
let use_str = self
.rewrite(context, shape.offset_left(vis.len())?)
.map(|s| {
if s.is_empty() {
s
} else {
format!("{}use {};", vis, s)
}
})?;
match self.attrs {
Some(ref attrs) if !attrs.is_empty() => {
let attr_str = attrs.rewrite(context, shape)?;
let lo = attrs.last().as_ref()?.span.hi();
let hi = self.span.lo();
let span = mk_sp(lo, hi);
let allow_extend = if attrs.len() == 1 {
let line_len = attr_str.len() + 1 + use_str.len();
!attrs.first().unwrap().is_doc_comment()
&& context.config.inline_attribute_width() >= line_len
} else {
false
};
combine_strs_with_missing_comments(
context,
&attr_str,
&use_str,
span,
shape,
allow_extend,
)
}
_ => Some(use_str),
}
}
// FIXME: Use correct span?
// The given span is essentially incorrect, since we are reconstructing
// use-statements. This should not be a problem, though, since we have
// already tried to extract comment and observed that there are no comment
// around the given use item, and the span will not be used afterward.
fn from_path(path: Vec<UseSegment>, span: Span) -> UseTree {
UseTree {
path,
span,
list_item: None,
visibility: None,
attrs: None,
}
}
pub(crate) fn from_ast_with_normalization(
context: &RewriteContext<'_>,
item: &ast::Item,
) -> Option<UseTree> {
match item.kind {
ast::ItemKind::Use(ref use_tree) => Some(
UseTree::from_ast(
context,
use_tree,
None,
Some(item.vis.clone()),
Some(item.span.lo()),
if item.attrs.is_empty() {
None
} else {
Some(item.attrs.clone())
},
)
.normalize(),
),
_ => None,
}
}
fn from_ast(
context: &RewriteContext<'_>,
a: &ast::UseTree,
list_item: Option<ListItem>,
visibility: Option<ast::Visibility>,
opt_lo: Option<BytePos>,
attrs: Option<ast::AttrVec>,
) -> UseTree {
let span = if let Some(lo) = opt_lo {
mk_sp(lo, a.span.hi())
} else {
a.span
};
let mut result = UseTree {
path: vec![],
span,
list_item,
visibility,
attrs,
};
let leading_modsep =
context.config.edition() >= Edition::Edition2018 && a.prefix.is_global();
let mut modsep = leading_modsep;
for p in &a.prefix.segments {
if let Some(use_segment) = UseSegment::from_path_segment(context, p, modsep) {
result.path.push(use_segment);
modsep = false;
}
}
let version = context.config.version();
match a.kind {
UseTreeKind::Glob => {
// in case of a global path and the glob starts at the root, e.g., "::*"
if a.prefix.segments.len() == 1 && leading_modsep {
let kind = UseSegmentKind::Ident("".to_owned(), None);
result.path.push(UseSegment { kind, version });
}
result.path.push(UseSegment {
kind: UseSegmentKind::Glob,
version,
});
}
UseTreeKind::Nested(ref list) => {
// Extract comments between nested use items.
// This needs to be done before sorting use items.
let items = itemize_list(
context.snippet_provider,
list.iter().map(|(tree, _)| tree),
"}",
",",
|tree| tree.span.lo(),
|tree| tree.span.hi(),
|_| Some("".to_owned()), // We only need comments for now.
context.snippet_provider.span_after(a.span, "{"),
a.span.hi(),
false,
);
// in case of a global path and the nested list starts at the root,
// e.g., "::{foo, bar}"
if a.prefix.segments.len() == 1 && leading_modsep {
let kind = UseSegmentKind::Ident("".to_owned(), None);
result.path.push(UseSegment { kind, version });
}
let kind = UseSegmentKind::List(
list.iter()
.zip(items)
.map(|(t, list_item)| {
Self::from_ast(context, &t.0, Some(list_item), None, None, None)
})
.collect(),
);
result.path.push(UseSegment { kind, version });
}
UseTreeKind::Simple(ref rename) => {
// If the path has leading double colons and is composed of only 2 segments, then we
// bypass the call to path_to_imported_ident which would get only the ident and
// lose the path root, e.g., `that` in `::that`.
// The span of `a.prefix` contains the leading colons.
let name = if a.prefix.segments.len() == 2 && leading_modsep {
context.snippet(a.prefix.span).to_owned()
} else {
rewrite_ident(context, path_to_imported_ident(&a.prefix)).to_owned()
};
let alias = rename.and_then(|ident| {
if ident.name == sym::underscore_imports {
// for impl-only-use
Some("_".to_owned())
} else if ident == path_to_imported_ident(&a.prefix) {
None
} else {
Some(rewrite_ident(context, ident).to_owned())
}
});
let kind = match name.as_ref() {
"self" => UseSegmentKind::Slf(alias),
"super" => UseSegmentKind::Super(alias),
"crate" => UseSegmentKind::Crate(alias),
_ => UseSegmentKind::Ident(name, alias),
};
let segment = UseSegment { kind, version };
// `name` is already in result.
result.path.pop();
result.path.push(segment);
}
}
result
}
// Do the adjustments that rustfmt does elsewhere to use paths.
pub(crate) fn normalize(mut self) -> UseTree {
let mut last = self.path.pop().expect("Empty use tree?");
// Hack around borrow checker.
let mut normalize_sole_list = false;
let mut aliased_self = false;
// Remove foo::{} or self without attributes.
match last.kind {
_ if self.attrs.is_some() => (),
UseSegmentKind::List(ref list) if list.is_empty() => {
self.path = vec![];
return self;
}
UseSegmentKind::Slf(None) if self.path.is_empty() && self.visibility.is_some() => {
self.path = vec![];
return self;
}
_ => (),
}
// Normalise foo::self -> foo.
if let UseSegmentKind::Slf(None) = last.kind {
if !self.path.is_empty() {
return self;
}
}
// Normalise foo::self as bar -> foo as bar.
if let UseSegmentKind::Slf(_) = last.kind {
if let Some(UseSegment {
kind: UseSegmentKind::Ident(_, None),
..
}) = self.path.last()
{
aliased_self = true;
}
}
let mut done = false;
if aliased_self {
match self.path.last_mut() {
Some(UseSegment {
kind: UseSegmentKind::Ident(_, ref mut old_rename),
..
}) => {
assert!(old_rename.is_none());
if let UseSegmentKind::Slf(Some(rename)) = last.clone().kind {
*old_rename = Some(rename);
done = true;
}
}
_ => unreachable!(),
}
}
if done {
return self;
}
// Normalise foo::{bar} -> foo::bar
if let UseSegmentKind::List(ref list) = last.kind {
if list.len() == 1 && list[0].to_string() != "self" && !list[0].has_comment() {
normalize_sole_list = true;
}
}
if normalize_sole_list {
match last.kind {
UseSegmentKind::List(list) => {
for seg in &list[0].path {
self.path.push(seg.clone());
}
return self.normalize();
}
_ => unreachable!(),
}
}
// Recursively normalize elements of a list use (including sorting the list).
if let UseSegmentKind::List(list) = last.kind {
let mut list = list.into_iter().map(UseTree::normalize).collect::<Vec<_>>();
list.sort();
last = UseSegment {
kind: UseSegmentKind::List(list),
version: last.version,
};
}
self.path.push(last);
self
}
fn has_comment(&self) -> bool {
self.list_item.as_ref().map_or(false, ListItem::has_comment)
}
fn contains_comment(&self) -> bool {
self.has_comment() || self.path.iter().any(|path| path.contains_comment())
}
fn same_visibility(&self, other: &UseTree) -> bool {
match (&self.visibility, &other.visibility) {
(
Some(ast::Visibility {
kind: ast::VisibilityKind::Inherited,
..
}),
None,
)
| (
None,
Some(ast::Visibility {
kind: ast::VisibilityKind::Inherited,
..
}),
)
| (None, None) => true,
(Some(ref a), Some(ref b)) => is_same_visibility(a, b),
_ => false,
}
}
fn share_prefix(&self, other: &UseTree, shared_prefix: SharedPrefix) -> bool {
if self.path.is_empty()
|| other.path.is_empty()
|| self.attrs.is_some()
|| self.contains_comment()
|| !self.same_visibility(other)
{
false
} else {
match shared_prefix {
SharedPrefix::Crate => self.path[0] == other.path[0],
SharedPrefix::Module => {
self.path[..self.path.len() - 1] == other.path[..other.path.len() - 1]
}
SharedPrefix::One => true,
}
}
}
fn flatten(self, import_granularity: ImportGranularity) -> Vec<UseTree> {
if self.path.is_empty() || self.contains_comment() {
return vec![self];
}
match &self.path.clone().last().unwrap().kind {
UseSegmentKind::List(list) => {
if list.len() == 1 && list[0].path.len() == 1 {
if let UseSegmentKind::Slf(..) = list[0].path[0].kind {
return vec![self];
};
}
let prefix = &self.path[..self.path.len() - 1];
let mut result = vec![];
for nested_use_tree in list {
for flattend in &mut nested_use_tree.clone().flatten(import_granularity) {
let mut new_path = prefix.to_vec();
new_path.append(&mut flattend.path);
result.push(UseTree {
path: new_path,
span: self.span,
list_item: None,
visibility: self.visibility.clone(),
// only retain attributes for `ImportGranularity::Item`
attrs: match import_granularity {
ImportGranularity::Item => self.attrs.clone(),
_ => None,
},
});
}
}
result
}
_ => vec![self],
}
}
fn merge(&mut self, other: &UseTree, merge_by: SharedPrefix) {
let mut prefix = 0;
for (a, b) in self.path.iter().zip(other.path.iter()) {
// only discard the alias at the root of the tree
if (prefix == 0 && a.equal_except_alias(b)) || a == b {
prefix += 1;
} else {
break;
}
}
if let Some(new_path) = merge_rest(&self.path, &other.path, prefix, merge_by) {
self.path = new_path;
self.span = self.span.to(other.span);
}
}
/// If this tree ends in `::self`, rewrite it to `::{self}`.
fn nest_trailing_self(mut self) -> UseTree {
if let Some(UseSegment {
kind: UseSegmentKind::Slf(..),
..
}) = self.path.last()
{
let self_segment = self.path.pop().unwrap();
let version = self_segment.version;
let kind = UseSegmentKind::List(vec![UseTree::from_path(vec![self_segment], DUMMY_SP)]);
self.path.push(UseSegment { kind, version });
}
self
}
}
fn merge_rest(
a: &[UseSegment],
b: &[UseSegment],
mut len: usize,
merge_by: SharedPrefix,
) -> Option<Vec<UseSegment>> {
if a.len() == len && b.len() == len {
return None;
}
if a.len() != len && b.len() != len {
let version = a[len].version;
if let UseSegmentKind::List(ref list) = a[len].kind {
let mut list = list.clone();
merge_use_trees_inner(
&mut list,
UseTree::from_path(b[len..].to_vec(), DUMMY_SP),
merge_by,
);
let mut new_path = b[..len].to_vec();
let kind = UseSegmentKind::List(list);
new_path.push(UseSegment { kind, version });
return Some(new_path);
}
} else if len == 1 {
let (common, rest) = if a.len() == len {
(&a[0], &b[1..])
} else {
(&b[0], &a[1..])
};
let kind = UseSegmentKind::Slf(common.get_alias().map(ToString::to_string));
let version = a[0].version;
let mut list = vec![UseTree::from_path(
vec![UseSegment { kind, version }],
DUMMY_SP,
)];
match rest {
[
UseSegment {
kind: UseSegmentKind::List(rest_list),
..
},
] => list.extend(rest_list.clone()),
_ => list.push(UseTree::from_path(rest.to_vec(), DUMMY_SP)),
}
return Some(vec![
b[0].clone(),
UseSegment {
kind: UseSegmentKind::List(list),
version,
},
]);
} else {
len -= 1;
}
let mut list = vec![
UseTree::from_path(a[len..].to_vec(), DUMMY_SP),
UseTree::from_path(b[len..].to_vec(), DUMMY_SP),
];
list.sort();
let mut new_path = b[..len].to_vec();
let kind = UseSegmentKind::List(list);
let version = a[0].version;
new_path.push(UseSegment { kind, version });
Some(new_path)
}
fn merge_use_trees_inner(trees: &mut Vec<UseTree>, use_tree: UseTree, merge_by: SharedPrefix) {
struct SimilarTree<'a> {
similarity: usize,
path_len: usize,
tree: &'a mut UseTree,
}
let similar_trees = trees.iter_mut().filter_map(|tree| {
if tree.share_prefix(&use_tree, merge_by) {
// In the case of `SharedPrefix::One`, `similarity` is used for deciding with which
// tree `use_tree` should be merge.
// In other cases `similarity` won't be used, so set it to `0` as a dummy value.
let similarity = if merge_by == SharedPrefix::One {
tree.path
.iter()
.zip(&use_tree.path)
.take_while(|(a, b)| a.equal_except_alias(b))
.count()
} else {
0
};
let path_len = tree.path.len();
Some(SimilarTree {
similarity,
tree,
path_len,
})
} else {
None
}
});
if use_tree.path.len() == 1 && merge_by == SharedPrefix::Crate {
if let Some(tree) = similar_trees.min_by_key(|tree| tree.path_len) {
if tree.path_len == 1 {
return;
}
}
} else if merge_by == SharedPrefix::One {
if let Some(sim_tree) = similar_trees.max_by_key(|tree| tree.similarity) {
if sim_tree.similarity > 0 {
sim_tree.tree.merge(&use_tree, merge_by);
return;
}
}
} else if let Some(sim_tree) = similar_trees.max_by_key(|tree| tree.path_len) {
if sim_tree.path_len > 1 {
sim_tree.tree.merge(&use_tree, merge_by);
return;
}
}
trees.push(use_tree);
trees.sort();
}
impl Hash for UseTree {
fn hash<H: Hasher>(&self, state: &mut H) {
self.path.hash(state);
}
}
impl PartialOrd for UseSegment {
fn partial_cmp(&self, other: &UseSegment) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialOrd for UseTree {
fn partial_cmp(&self, other: &UseTree) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for UseSegment {
fn cmp(&self, other: &UseSegment) -> Ordering {
use self::UseSegmentKind::*;
fn is_upper_snake_case(s: &str) -> bool {
s.chars()
.all(|c| c.is_uppercase() || c == '_' || c.is_numeric())
}
match (&self.kind, &other.kind) {
(Slf(ref a), Slf(ref b))
| (Super(ref a), Super(ref b))
| (Crate(ref a), Crate(ref b)) => match (a, b) {
(Some(sa), Some(sb)) => {
if self.version == Version::Two {
sa.trim_start_matches("r#").cmp(sb.trim_start_matches("r#"))
} else {
a.cmp(b)
}
}
(_, _) => a.cmp(b),
},
(Glob, Glob) => Ordering::Equal,
(Ident(ref pia, ref aa), Ident(ref pib, ref ab)) => {
let (ia, ib) = if self.version == Version::Two {
(pia.trim_start_matches("r#"), pib.trim_start_matches("r#"))
} else {
(pia.as_str(), pib.as_str())
};
// snake_case < CamelCase < UPPER_SNAKE_CASE
if ia.starts_with(char::is_uppercase) && ib.starts_with(char::is_lowercase) {
return Ordering::Greater;
}
if ia.starts_with(char::is_lowercase) && ib.starts_with(char::is_uppercase) {
return Ordering::Less;
}
if is_upper_snake_case(ia) && !is_upper_snake_case(ib) {
return Ordering::Greater;
}
if !is_upper_snake_case(ia) && is_upper_snake_case(ib) {
return Ordering::Less;
}
let ident_ord = ia.cmp(ib);
if ident_ord != Ordering::Equal {
return ident_ord;
}
match (aa, ab) {
(None, Some(_)) => Ordering::Less,
(Some(_), None) => Ordering::Greater,
(Some(aas), Some(abs)) => {
if self.version == Version::Two {
aas.trim_start_matches("r#")
.cmp(abs.trim_start_matches("r#"))
} else {
aas.cmp(abs)
}
}
(None, None) => Ordering::Equal,
}
}
(List(ref a), List(ref b)) => {
for (a, b) in a.iter().zip(b.iter()) {
let ord = a.cmp(b);
if ord != Ordering::Equal {
return ord;
}
}
a.len().cmp(&b.len())
}
(Slf(_), _) => Ordering::Less,
(_, Slf(_)) => Ordering::Greater,
(Super(_), _) => Ordering::Less,
(_, Super(_)) => Ordering::Greater,
(Crate(_), _) => Ordering::Less,
(_, Crate(_)) => Ordering::Greater,
(Ident(..), _) => Ordering::Less,
(_, Ident(..)) => Ordering::Greater,
(Glob, _) => Ordering::Less,
(_, Glob) => Ordering::Greater,
}
}
}
impl Ord for UseTree {
fn cmp(&self, other: &UseTree) -> Ordering {
for (a, b) in self.path.iter().zip(other.path.iter()) {
let ord = a.cmp(b);
// The comparison without aliases is a hack to avoid situations like
// comparing `a::b` to `a as c` - where the latter should be ordered
// first since it is shorter.
if ord != Ordering::Equal && a.remove_alias().cmp(&b.remove_alias()) != Ordering::Equal
{
return ord;
}
}
self.path.len().cmp(&other.path.len())
}
}
fn rewrite_nested_use_tree(
context: &RewriteContext<'_>,
use_tree_list: &[UseTree],
shape: Shape,
) -> Option<String> {
let mut list_items = Vec::with_capacity(use_tree_list.len());
let nested_shape = match context.config.imports_indent() {
IndentStyle::Block => shape
.block_indent(context.config.tab_spaces())
.with_max_width(context.config)
.sub_width(1)?,
IndentStyle::Visual => shape.visual_indent(0),
};
for use_tree in use_tree_list {
if let Some(mut list_item) = use_tree.list_item.clone() {
list_item.item = use_tree.rewrite(context, nested_shape);
list_items.push(list_item);
} else {
list_items.push(ListItem::from_str(use_tree.rewrite(context, nested_shape)?));
}
}
let has_nested_list = use_tree_list.iter().any(|use_segment| {
use_segment.path.last().map_or(false, |last_segment| {
matches!(last_segment.kind, UseSegmentKind::List(..))
})
});
let remaining_width = if has_nested_list {
0
} else {
shape.width.saturating_sub(2)
};
let tactic = definitive_tactic(
&list_items,
context.config.imports_layout(),
Separator::Comma,
remaining_width,
);
let ends_with_newline = context.config.imports_indent() == IndentStyle::Block
&& tactic != DefinitiveListTactic::Horizontal;
let trailing_separator = if ends_with_newline {
context.config.trailing_comma()
} else {
SeparatorTactic::Never
};
let fmt = ListFormatting::new(nested_shape, context.config)
.tactic(tactic)
.trailing_separator(trailing_separator)
.ends_with_newline(ends_with_newline)
.preserve_newline(true)
.nested(has_nested_list);
let list_str = write_list(&list_items, &fmt)?;
let result = if (list_str.contains('\n')
|| list_str.len() > remaining_width
|| tactic == DefinitiveListTactic::Vertical)
&& context.config.imports_indent() == IndentStyle::Block
{
format!(
"{{\n{}{}\n{}}}",
nested_shape.indent.to_string(context.config),
list_str,
shape.indent.to_string(context.config)
)
} else {
format!("{{{list_str}}}")
};
Some(result)
}
impl Rewrite for UseSegment {
fn rewrite(&self, context: &RewriteContext<'_>, shape: Shape) -> Option<String> {
Some(match self.kind {
UseSegmentKind::Ident(ref ident, Some(ref rename)) => {
format!("{ident} as {rename}")
}
UseSegmentKind::Ident(ref ident, None) => ident.clone(),
UseSegmentKind::Slf(Some(ref rename)) => format!("self as {rename}"),
UseSegmentKind::Slf(None) => "self".to_owned(),
UseSegmentKind::Super(Some(ref rename)) => format!("super as {rename}"),
UseSegmentKind::Super(None) => "super".to_owned(),
UseSegmentKind::Crate(Some(ref rename)) => format!("crate as {rename}"),
UseSegmentKind::Crate(None) => "crate".to_owned(),
UseSegmentKind::Glob => "*".to_owned(),
UseSegmentKind::List(ref use_tree_list) => rewrite_nested_use_tree(
context,
use_tree_list,
// 1 = "{" and "}"
shape.offset_left(1)?.sub_width(1)?,
)?,
})
}
}
impl Rewrite for UseTree {
// This does NOT format attributes and visibility or add a trailing `;`.
fn rewrite(&self, context: &RewriteContext<'_>, mut shape: Shape) -> Option<String> {
let mut result = String::with_capacity(256);
let mut iter = self.path.iter().peekable();
while let Some(segment) = iter.next() {
let segment_str = segment.rewrite(context, shape)?;
result.push_str(&segment_str);
if iter.peek().is_some() {
result.push_str("::");
// 2 = "::"
shape = shape.offset_left(2 + segment_str.len())?;
}
}
Some(result)
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum SharedPrefix {
Crate,
Module,
One,
}
#[cfg(test)]
mod test {
use super::*;
use rustc_span::DUMMY_SP;
// Parse the path part of an import. This parser is not robust and is only
// suitable for use in a test harness.
fn parse_use_tree(s: &str) -> UseTree {
use std::iter::Peekable;
use std::mem::swap;
use std::str::Chars;
struct Parser<'a> {
input: Peekable<Chars<'a>>,
version: Version,
}
impl<'a> Parser<'a> {
fn bump(&mut self) {
self.input.next().unwrap();
}
fn eat(&mut self, c: char) {
assert_eq!(self.input.next().unwrap(), c);
}
fn push_segment(
&self,
result: &mut Vec<UseSegment>,
buf: &mut String,
alias_buf: &mut Option<String>,
) {
let version = self.version;
if !buf.is_empty() {
let mut alias = None;
swap(alias_buf, &mut alias);
match buf.as_ref() {
"self" => {
let kind = UseSegmentKind::Slf(alias);
result.push(UseSegment { kind, version });
*buf = String::new();
*alias_buf = None;
}
"super" => {
let kind = UseSegmentKind::Super(alias);
result.push(UseSegment { kind, version });
*buf = String::new();
*alias_buf = None;
}
"crate" => {
let kind = UseSegmentKind::Crate(alias);
result.push(UseSegment { kind, version });
*buf = String::new();
*alias_buf = None;
}
_ => {
let mut name = String::new();
swap(buf, &mut name);
let kind = UseSegmentKind::Ident(name, alias);
result.push(UseSegment { kind, version });
}
}
}
}
fn parse_in_list(&mut self) -> UseTree {
let mut result = vec![];
let mut buf = String::new();
let mut alias_buf = None;
while let Some(&c) = self.input.peek() {
match c {
'{' => {
assert!(buf.is_empty());
self.bump();
let kind = UseSegmentKind::List(self.parse_list());
result.push(UseSegment {
kind,
version: self.version,
});
self.eat('}');
}
'*' => {
assert!(buf.is_empty());
self.bump();
let kind = UseSegmentKind::Glob;
result.push(UseSegment {
kind,
version: self.version,
});
}
':' => {
self.bump();
self.eat(':');
self.push_segment(&mut result, &mut buf, &mut alias_buf);
}
'}' | ',' => {
self.push_segment(&mut result, &mut buf, &mut alias_buf);
return UseTree {
path: result,
span: DUMMY_SP,
list_item: None,
visibility: None,
attrs: None,
};
}
' ' => {
self.bump();
self.eat('a');
self.eat('s');
self.eat(' ');
alias_buf = Some(String::new());
}
c => {
self.bump();
if let Some(ref mut buf) = alias_buf {
buf.push(c);
} else {
buf.push(c);
}
}
}
}
self.push_segment(&mut result, &mut buf, &mut alias_buf);
UseTree {
path: result,
span: DUMMY_SP,
list_item: None,
visibility: None,
attrs: None,
}
}
fn parse_list(&mut self) -> Vec<UseTree> {
let mut result = vec![];
loop {
match self.input.peek().unwrap() {
',' | ' ' => self.bump(),
'}' => {
return result;
}
_ => result.push(self.parse_in_list()),
}
}
}
}
let mut parser = Parser {
input: s.chars().peekable(),
version: Version::One,
};
parser.parse_in_list()
}
macro_rules! parse_use_trees {
($($s:expr),* $(,)*) => {
vec![
$(parse_use_tree($s),)*
]
}
}
macro_rules! test_merge {
($by:ident, [$($input:expr),* $(,)*], [$($output:expr),* $(,)*]) => {
assert_eq!(
normalize_use_trees_with_granularity(
parse_use_trees!($($input,)*),
ImportGranularity::$by,
),
parse_use_trees!($($output,)*),
);
}
}
#[test]
fn test_use_tree_merge_crate() {
test_merge!(
Crate,
["a::b::{c, d}", "a::b::{e, f}"],
["a::b::{c, d, e, f}"]
);
test_merge!(Crate, ["a::b::c", "a::b"], ["a::{b, b::c}"]);
test_merge!(Crate, ["a::b", "a::b"], ["a::b"]);
test_merge!(Crate, ["a", "a::b", "a::b::c"], ["a::{self, b, b::c}"]);
test_merge!(
Crate,
["a", "a::b", "a::b::c", "a::b::c::d"],
["a::{self, b, b::{c, c::d}}"]
);
test_merge!(
Crate,
["a", "a::b", "a::b::c", "a::b"],
["a::{self, b, b::c}"]
);
test_merge!(
Crate,
["a::{b::{self, c}, d::e}", "a::d::f"],
["a::{b::{self, c}, d::{e, f}}"]
);
test_merge!(
Crate,
["a::d::f", "a::{b::{self, c}, d::e}"],
["a::{b::{self, c}, d::{e, f}}"]
);
test_merge!(
Crate,
["a::{c, d, b}", "a::{d, e, b, a, f}", "a::{f, g, c}"],
["a::{a, b, c, d, e, f, g}"]
);
test_merge!(
Crate,
["a::{self}", "b::{self as foo}"],
["a::{self}", "b::{self as foo}"]
);
}
#[test]
fn test_use_tree_merge_module() {
test_merge!(
Module,
["foo::b", "foo::{a, c, d::e}"],
["foo::{a, b, c}", "foo::d::e"]
);
test_merge!(
Module,
["foo::{a::b, a::c, d::e, d::f}"],
["foo::a::{b, c}", "foo::d::{e, f}"]
);
}
#[test]
fn test_use_tree_merge_one() {
test_merge!(One, ["a", "b"], ["{a, b}"]);
test_merge!(One, ["a::{aa, ab}", "b", "a"], ["{a::{self, aa, ab}, b}"]);
test_merge!(One, ["a as x", "b as y"], ["{a as x, b as y}"]);
test_merge!(
One,
["a::{aa as xa, ab}", "b", "a"],
["{a::{self, aa as xa, ab}, b}"]
);
test_merge!(
One,
["a", "a::{aa, ab::{aba, abb}}"],
["a::{self, aa, ab::{aba, abb}}"]
);
test_merge!(One, ["a", "b::{ba, *}"], ["{a, b::{ba, *}}"]);
test_merge!(One, ["a", "b", "a::aa"], ["{a::{self, aa}, b}"]);
test_merge!(
One,
["a::aa::aaa", "a::ac::aca", "a::aa::*"],
["a::{aa::{aaa, *}, ac::aca}"]
);
test_merge!(
One,
["a", "b::{ba, bb}", "a::{aa::*, ab::aba}"],
["{a::{self, aa::*, ab::aba}, b::{ba, bb}}"]
);
test_merge!(
One,
["b", "a::ac::{aca, acb}", "a::{aa::*, ab}"],
["{a::{aa::*, ab, ac::{aca, acb}}, b}"]
);
}
#[test]
fn test_flatten_use_trees() {
assert_eq!(
flatten_use_trees(
parse_use_trees!["foo::{a::{b, c}, d::e}"],
ImportGranularity::Item
),
parse_use_trees!["foo::a::b", "foo::a::c", "foo::d::e"]
);
assert_eq!(
flatten_use_trees(
parse_use_trees!["foo::{self, a, b::{c, d}, e::*}"],
ImportGranularity::Item
),
parse_use_trees![
"foo::{self}",
"foo::a",
"foo::b::c",
"foo::b::d",
"foo::e::*"
]
);
}
#[test]
fn test_use_tree_flatten() {
assert_eq!(
parse_use_tree("a::b::{c, d, e, f}").flatten(ImportGranularity::Item),
parse_use_trees!("a::b::c", "a::b::d", "a::b::e", "a::b::f",)
);
assert_eq!(
parse_use_tree("a::b::{c::{d, e, f}, g, h::{i, j, k}}")
.flatten(ImportGranularity::Item),
parse_use_trees![
"a::b::c::d",
"a::b::c::e",
"a::b::c::f",
"a::b::g",
"a::b::h::i",
"a::b::h::j",
"a::b::h::k",
]
);
}
#[test]
fn test_use_tree_normalize() {
assert_eq!(parse_use_tree("a::self").normalize(), parse_use_tree("a"));
assert_eq!(
parse_use_tree("a::self as foo").normalize(),
parse_use_tree("a as foo")
);
assert_eq!(
parse_use_tree("a::{self}").normalize(),
parse_use_tree("a::{self}")
);
assert_eq!(parse_use_tree("a::{b}").normalize(), parse_use_tree("a::b"));
assert_eq!(
parse_use_tree("a::{b, c::self}").normalize(),
parse_use_tree("a::{b, c}")
);
assert_eq!(
parse_use_tree("a::{b as bar, c::self}").normalize(),
parse_use_tree("a::{b as bar, c}")
);
}
#[test]
fn test_use_tree_ord() {
assert!(parse_use_tree("a").normalize() < parse_use_tree("aa").normalize());
assert!(parse_use_tree("a").normalize() < parse_use_tree("a::a").normalize());
assert!(parse_use_tree("a").normalize() < parse_use_tree("*").normalize());
assert!(parse_use_tree("a").normalize() < parse_use_tree("{a, b}").normalize());
assert!(parse_use_tree("*").normalize() < parse_use_tree("{a, b}").normalize());
assert!(
parse_use_tree("aaaaaaaaaaaaaaa::{bb, cc, dddddddd}").normalize()
< parse_use_tree("aaaaaaaaaaaaaaa::{bb, cc, ddddddddd}").normalize()
);
assert!(
parse_use_tree("serde::de::{Deserialize}").normalize()
< parse_use_tree("serde_json").normalize()
);
assert!(parse_use_tree("a::b::c").normalize() < parse_use_tree("a::b::*").normalize());
assert!(
parse_use_tree("foo::{Bar, Baz}").normalize()
< parse_use_tree("{Bar, Baz}").normalize()
);
assert!(
parse_use_tree("foo::{qux as bar}").normalize()
< parse_use_tree("foo::{self as bar}").normalize()
);
assert!(
parse_use_tree("foo::{qux as bar}").normalize()
< parse_use_tree("foo::{baz, qux as bar}").normalize()
);
assert!(
parse_use_tree("foo::{self as bar, baz}").normalize()
< parse_use_tree("foo::{baz, qux as bar}").normalize()
);
assert!(parse_use_tree("foo").normalize() < parse_use_tree("Foo").normalize());
assert!(parse_use_tree("foo").normalize() < parse_use_tree("foo::Bar").normalize());
assert!(
parse_use_tree("std::cmp::{d, c, b, a}").normalize()
< parse_use_tree("std::cmp::{b, e, g, f}").normalize()
);
}
#[test]
fn test_use_tree_nest_trailing_self() {
assert_eq!(
parse_use_tree("a::b::self").nest_trailing_self(),
parse_use_tree("a::b::{self}")
);
assert_eq!(
parse_use_tree("a::b::c").nest_trailing_self(),
parse_use_tree("a::b::c")
);
assert_eq!(
parse_use_tree("a::b::{c, d}").nest_trailing_self(),
parse_use_tree("a::b::{c, d}")
);
assert_eq!(
parse_use_tree("a::b::{self, c}").nest_trailing_self(),
parse_use_tree("a::b::{self, c}")
);
}
}