blob: 61622034d1aad3691ca3c732f428f68cdb7c3a74 [file] [log] [blame]
use clippy_utils::diagnostics::{span_lint, span_lint_and_then};
use rustc_ast::ast::{
self, Arm, AssocItem, AssocItemKind, Attribute, Block, FnDecl, Item, ItemKind, Local, Pat, PatKind,
};
use rustc_ast::visit::{walk_block, walk_expr, walk_pat, Visitor};
use rustc_lint::{EarlyContext, EarlyLintPass, LintContext};
use rustc_middle::lint::in_external_macro;
use rustc_session::{declare_tool_lint, impl_lint_pass};
use rustc_span::{sym, Span};
use rustc_span::symbol::{Ident, Symbol};
use std::cmp::Ordering;
declare_clippy_lint! {
/// ### What it does
/// Checks for names that are very similar and thus confusing.
///
/// Note: this lint looks for similar names throughout each
/// scope. To allow it, you need to allow it on the scope
/// level, not on the name that is reported.
///
/// ### Why is this bad?
/// It's hard to distinguish between names that differ only
/// by a single character.
///
/// ### Example
/// ```ignore
/// let checked_exp = something;
/// let checked_expr = something_else;
/// ```
#[clippy::version = "pre 1.29.0"]
pub SIMILAR_NAMES,
pedantic,
"similarly named items and bindings"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for too many variables whose name consists of a
/// single character.
///
/// ### Why is this bad?
/// It's hard to memorize what a variable means without a
/// descriptive name.
///
/// ### Example
/// ```ignore
/// let (a, b, c, d, e, f, g) = (...);
/// ```
#[clippy::version = "pre 1.29.0"]
pub MANY_SINGLE_CHAR_NAMES,
pedantic,
"too many single character bindings"
}
declare_clippy_lint! {
/// ### What it does
/// Checks if you have variables whose name consists of just
/// underscores and digits.
///
/// ### Why is this bad?
/// It's hard to memorize what a variable means without a
/// descriptive name.
///
/// ### Example
/// ```no_run
/// let _1 = 1;
/// let ___1 = 1;
/// let __1___2 = 11;
/// ```
#[clippy::version = "pre 1.29.0"]
pub JUST_UNDERSCORES_AND_DIGITS,
style,
"unclear name"
}
#[derive(Copy, Clone)]
pub struct NonExpressiveNames {
pub single_char_binding_names_threshold: u64,
}
impl_lint_pass!(NonExpressiveNames => [SIMILAR_NAMES, MANY_SINGLE_CHAR_NAMES, JUST_UNDERSCORES_AND_DIGITS]);
struct ExistingName {
interned: Symbol,
span: Span,
len: usize,
exemptions: &'static [&'static str],
}
struct SimilarNamesLocalVisitor<'a, 'tcx> {
names: Vec<ExistingName>,
cx: &'a EarlyContext<'tcx>,
lint: NonExpressiveNames,
/// A stack of scopes containing the single-character bindings in each scope.
single_char_names: Vec<Vec<Ident>>,
}
impl<'a, 'tcx> SimilarNamesLocalVisitor<'a, 'tcx> {
fn check_single_char_names(&self) {
let num_single_char_names = self.single_char_names.iter().flatten().count();
let threshold = self.lint.single_char_binding_names_threshold;
if num_single_char_names as u64 > threshold {
let span = self
.single_char_names
.iter()
.flatten()
.map(|ident| ident.span)
.collect::<Vec<_>>();
span_lint(
self.cx,
MANY_SINGLE_CHAR_NAMES,
span,
&format!("{num_single_char_names} bindings with single-character names in scope"),
);
}
}
}
// this list contains lists of names that are allowed to be similar
// the assumption is that no name is ever contained in multiple lists.
#[rustfmt::skip]
const ALLOWED_TO_BE_SIMILAR: &[&[&str]] = &[
&["parsed", "parser"],
&["lhs", "rhs"],
&["tx", "rx"],
&["set", "get"],
&["args", "arms"],
&["qpath", "path"],
&["lit", "lint"],
&["wparam", "lparam"],
&["iter", "item"],
];
struct SimilarNamesNameVisitor<'a, 'tcx, 'b>(&'b mut SimilarNamesLocalVisitor<'a, 'tcx>);
impl<'a, 'tcx, 'b> Visitor<'tcx> for SimilarNamesNameVisitor<'a, 'tcx, 'b> {
fn visit_pat(&mut self, pat: &'tcx Pat) {
match pat.kind {
PatKind::Ident(_, ident, _) => {
if !pat.span.from_expansion() {
self.check_ident(ident);
}
},
PatKind::Struct(_, _, ref fields, _) => {
for field in fields {
if !field.is_shorthand {
self.visit_pat(&field.pat);
}
}
},
// just go through the first pattern, as either all patterns
// bind the same bindings or rustc would have errored much earlier
PatKind::Or(ref pats) => self.visit_pat(&pats[0]),
_ => walk_pat(self, pat),
}
}
}
#[must_use]
fn get_exemptions(interned_name: &str) -> Option<&'static [&'static str]> {
ALLOWED_TO_BE_SIMILAR
.iter()
.find(|&&list| allowed_to_be_similar(interned_name, list))
.copied()
}
#[must_use]
fn allowed_to_be_similar(interned_name: &str, list: &[&str]) -> bool {
list.iter()
.any(|&name| interned_name.starts_with(name) || interned_name.ends_with(name))
}
impl<'a, 'tcx, 'b> SimilarNamesNameVisitor<'a, 'tcx, 'b> {
fn check_short_ident(&mut self, ident: Ident) {
// Ignore shadowing
if self
.0
.single_char_names
.iter()
.flatten()
.any(|id| id.name == ident.name)
{
return;
}
if let Some(scope) = &mut self.0.single_char_names.last_mut() {
scope.push(ident);
}
}
#[expect(clippy::too_many_lines)]
fn check_ident(&mut self, ident: Ident) {
let interned_name = ident.name.as_str();
if interned_name.chars().any(char::is_uppercase) {
return;
}
if interned_name.chars().all(|c| c.is_ascii_digit() || c == '_') {
span_lint(
self.0.cx,
JUST_UNDERSCORES_AND_DIGITS,
ident.span,
"consider choosing a more descriptive name",
);
return;
}
if interned_name.starts_with('_') {
// these bindings are typically unused or represent an ignored portion of a destructuring pattern
return;
}
let count = interned_name.chars().count();
if count < 3 {
if count == 1 {
self.check_short_ident(ident);
}
return;
}
for existing_name in &self.0.names {
if allowed_to_be_similar(interned_name, existing_name.exemptions) {
continue;
}
match existing_name.len.cmp(&count) {
Ordering::Greater => {
if existing_name.len - count != 1
|| levenstein_not_1(interned_name, existing_name.interned.as_str())
{
continue;
}
},
Ordering::Less => {
if count - existing_name.len != 1
|| levenstein_not_1(existing_name.interned.as_str(), interned_name)
{
continue;
}
},
Ordering::Equal => {
let mut interned_chars = interned_name.chars();
let interned_str = existing_name.interned.as_str();
let mut existing_chars = interned_str.chars();
let first_i = interned_chars.next().expect("we know we have at least one char");
let first_e = existing_chars.next().expect("we know we have at least one char");
let eq_or_numeric = |(a, b): (char, char)| a == b || a.is_numeric() && b.is_numeric();
if eq_or_numeric((first_i, first_e)) {
let last_i = interned_chars.next_back().expect("we know we have at least two chars");
let last_e = existing_chars.next_back().expect("we know we have at least two chars");
if eq_or_numeric((last_i, last_e)) {
if interned_chars
.zip(existing_chars)
.filter(|&ie| !eq_or_numeric(ie))
.count()
!= 1
{
continue;
}
} else {
let second_last_i = interned_chars
.next_back()
.expect("we know we have at least three chars");
let second_last_e = existing_chars
.next_back()
.expect("we know we have at least three chars");
if !eq_or_numeric((second_last_i, second_last_e))
|| second_last_i == '_'
|| !interned_chars.zip(existing_chars).all(eq_or_numeric)
{
// allowed similarity foo_x, foo_y
// or too many chars differ (foo_x, boo_y) or (foox, booy)
continue;
}
}
} else {
let second_i = interned_chars.next().expect("we know we have at least two chars");
let second_e = existing_chars.next().expect("we know we have at least two chars");
if !eq_or_numeric((second_i, second_e))
|| second_i == '_'
|| !interned_chars.zip(existing_chars).all(eq_or_numeric)
{
// allowed similarity x_foo, y_foo
// or too many chars differ (x_foo, y_boo) or (xfoo, yboo)
continue;
}
}
},
}
span_lint_and_then(
self.0.cx,
SIMILAR_NAMES,
ident.span,
"binding's name is too similar to existing binding",
|diag| {
diag.span_note(existing_name.span, "existing binding defined here");
},
);
return;
}
self.0.names.push(ExistingName {
exemptions: get_exemptions(interned_name).unwrap_or(&[]),
interned: ident.name,
span: ident.span,
len: count,
});
}
}
impl<'a, 'b> SimilarNamesLocalVisitor<'a, 'b> {
/// ensure scoping rules work
fn apply<F: for<'c> Fn(&'c mut Self)>(&mut self, f: F) {
let n = self.names.len();
let single_char_count = self.single_char_names.len();
f(self);
self.names.truncate(n);
self.single_char_names.truncate(single_char_count);
}
}
impl<'a, 'tcx> Visitor<'tcx> for SimilarNamesLocalVisitor<'a, 'tcx> {
fn visit_local(&mut self, local: &'tcx Local) {
if let Some((init, els)) = &local.kind.init_else_opt() {
self.apply(|this| walk_expr(this, init));
if let Some(els) = els {
self.apply(|this| walk_block(this, els));
}
}
// add the pattern after the expression because the bindings aren't available
// yet in the init
// expression
SimilarNamesNameVisitor(self).visit_pat(&local.pat);
}
fn visit_block(&mut self, blk: &'tcx Block) {
self.single_char_names.push(vec![]);
self.apply(|this| walk_block(this, blk));
self.check_single_char_names();
self.single_char_names.pop();
}
fn visit_arm(&mut self, arm: &'tcx Arm) {
self.single_char_names.push(vec![]);
self.apply(|this| {
SimilarNamesNameVisitor(this).visit_pat(&arm.pat);
this.apply(|this| walk_expr(this, &arm.body));
});
self.check_single_char_names();
self.single_char_names.pop();
}
fn visit_item(&mut self, _: &Item) {
// do not recurse into inner items
}
}
impl EarlyLintPass for NonExpressiveNames {
fn check_item(&mut self, cx: &EarlyContext<'_>, item: &Item) {
if in_external_macro(cx.sess(), item.span) {
return;
}
if let ItemKind::Fn(box ast::Fn {
ref sig,
body: Some(ref blk),
..
}) = item.kind
{
do_check(*self, cx, &item.attrs, &sig.decl, blk);
}
}
fn check_impl_item(&mut self, cx: &EarlyContext<'_>, item: &AssocItem) {
if in_external_macro(cx.sess(), item.span) {
return;
}
if let AssocItemKind::Fn(box ast::Fn {
ref sig,
body: Some(ref blk),
..
}) = item.kind
{
do_check(*self, cx, &item.attrs, &sig.decl, blk);
}
}
}
fn do_check(lint: NonExpressiveNames, cx: &EarlyContext<'_>, attrs: &[Attribute], decl: &FnDecl, blk: &Block) {
if !attrs.iter().any(|attr| attr.has_name(sym::test)) {
let mut visitor = SimilarNamesLocalVisitor {
names: Vec::new(),
cx,
lint,
single_char_names: vec![vec![]],
};
// initialize with function arguments
for arg in &decl.inputs {
SimilarNamesNameVisitor(&mut visitor).visit_pat(&arg.pat);
}
// walk all other bindings
walk_block(&mut visitor, blk);
visitor.check_single_char_names();
}
}
/// Precondition: `a_name.chars().count() < b_name.chars().count()`.
#[must_use]
fn levenstein_not_1(a_name: &str, b_name: &str) -> bool {
debug_assert!(a_name.chars().count() < b_name.chars().count());
let mut a_chars = a_name.chars();
let mut b_chars = b_name.chars();
while let (Some(a), Some(b)) = (a_chars.next(), b_chars.next()) {
if a == b {
continue;
}
if let Some(b2) = b_chars.next() {
// check if there's just one character inserted
return a != b2 || a_chars.ne(b_chars);
}
// tuple
// ntuple
return true;
}
// for item in items
true
}