blob: 070a2da6afb8d2f489bff568ea99266556693b75 [file] [log] [blame]
//! Shim which is passed to Cargo as "rustc" when running the bootstrap.
//!
//! This shim will take care of some various tasks that our build process
//! requires that Cargo can't quite do through normal configuration:
//!
//! 1. When compiling build scripts and build dependencies, we need a guaranteed
//! full standard library available. The only compiler which actually has
//! this is the snapshot, so we detect this situation and always compile with
//! the snapshot compiler.
//! 2. We pass a bunch of `--cfg` and other flags based on what we're compiling
//! (and this slightly differs based on a whether we're using a snapshot or
//! not), so we do that all here.
//!
//! This may one day be replaced by RUSTFLAGS, but the dynamic nature of
//! switching compilers for the bootstrap and for build scripts will probably
//! never get replaced.
use std::env;
use std::path::PathBuf;
use std::process::{Child, Command};
use std::time::Instant;
use dylib_util::{dylib_path, dylib_path_var};
#[path = "../utils/bin_helpers.rs"]
mod bin_helpers;
#[path = "../utils/dylib.rs"]
mod dylib_util;
fn main() {
let args = env::args_os().skip(1).collect::<Vec<_>>();
let arg = |name| args.windows(2).find(|args| args[0] == name).and_then(|args| args[1].to_str());
// We don't use the stage in this shim, but let's parse it to make sure that we're invoked
// by bootstrap, or that we provide a helpful error message if not.
bin_helpers::parse_rustc_stage();
let verbose = bin_helpers::parse_rustc_verbose();
// Detect whether or not we're a build script depending on whether --target
// is passed (a bit janky...)
let target = arg("--target");
let version = args.iter().find(|w| &**w == "-vV");
// Use a different compiler for build scripts, since there may not yet be a
// libstd for the real compiler to use. However, if Cargo is attempting to
// determine the version of the compiler, the real compiler needs to be
// used. Currently, these two states are differentiated based on whether
// --target and -vV is/isn't passed.
let (rustc, libdir) = if target.is_none() && version.is_none() {
("RUSTC_SNAPSHOT", "RUSTC_SNAPSHOT_LIBDIR")
} else {
("RUSTC_REAL", "RUSTC_LIBDIR")
};
let sysroot = env::var_os("RUSTC_SYSROOT").expect("RUSTC_SYSROOT was not set");
let on_fail = env::var_os("RUSTC_ON_FAIL").map(Command::new);
let rustc = env::var_os(rustc).unwrap_or_else(|| panic!("{:?} was not set", rustc));
let libdir = env::var_os(libdir).unwrap_or_else(|| panic!("{:?} was not set", libdir));
let mut dylib_path = dylib_path();
dylib_path.insert(0, PathBuf::from(&libdir));
let mut cmd = Command::new(rustc);
cmd.args(&args).env(dylib_path_var(), env::join_paths(&dylib_path).unwrap());
// Get the name of the crate we're compiling, if any.
let crate_name = arg("--crate-name");
if let Some(crate_name) = crate_name {
if let Some(target) = env::var_os("RUSTC_TIME") {
if target == "all"
|| target.into_string().unwrap().split(',').any(|c| c.trim() == crate_name)
{
cmd.arg("-Ztime-passes");
}
}
}
// Print backtrace in case of ICE
if env::var("RUSTC_BACKTRACE_ON_ICE").is_ok() && env::var("RUST_BACKTRACE").is_err() {
cmd.env("RUST_BACKTRACE", "1");
}
if let Ok(lint_flags) = env::var("RUSTC_LINT_FLAGS") {
cmd.args(lint_flags.split_whitespace());
}
if target.is_some() {
// The stage0 compiler has a special sysroot distinct from what we
// actually downloaded, so we just always pass the `--sysroot` option,
// unless one is already set.
if !args.iter().any(|arg| arg == "--sysroot") {
cmd.arg("--sysroot").arg(&sysroot);
}
// If we're compiling specifically the `panic_abort` crate then we pass
// the `-C panic=abort` option. Note that we do not do this for any
// other crate intentionally as this is the only crate for now that we
// ship with panic=abort.
//
// This... is a bit of a hack how we detect this. Ideally this
// information should be encoded in the crate I guess? Would likely
// require an RFC amendment to RFC 1513, however.
if crate_name == Some("panic_abort") {
cmd.arg("-C").arg("panic=abort");
}
// `-Ztls-model=initial-exec` must not be applied to proc-macros, see
// issue https://github.com/rust-lang/rust/issues/100530
if env::var("RUSTC_TLS_MODEL_INITIAL_EXEC").is_ok()
&& arg("--crate-type") != Some("proc-macro")
&& !matches!(crate_name, Some("proc_macro2" | "quote" | "syn" | "synstructure"))
{
cmd.arg("-Ztls-model=initial-exec");
}
} else {
// Find any host flags that were passed by bootstrap.
// The flags are stored in a RUSTC_HOST_FLAGS variable, separated by spaces.
if let Ok(flags) = std::env::var("RUSTC_HOST_FLAGS") {
for flag in flags.split(' ') {
cmd.arg(flag);
}
}
}
if let Ok(map) = env::var("RUSTC_DEBUGINFO_MAP") {
cmd.arg("--remap-path-prefix").arg(&map);
}
// The remap flags for Cargo registry sources need to be passed after the remapping for the
// Rust source code directory, to handle cases when $CARGO_HOME is inside the source directory.
if let Ok(maps) = env::var("RUSTC_CARGO_REGISTRY_SRC_TO_REMAP") {
for map in maps.split('\t') {
cmd.arg("--remap-path-prefix").arg(map);
}
}
// Force all crates compiled by this compiler to (a) be unstable and (b)
// allow the `rustc_private` feature to link to other unstable crates
// also in the sysroot. We also do this for host crates, since those
// may be proc macros, in which case we might ship them.
if env::var_os("RUSTC_FORCE_UNSTABLE").is_some() {
cmd.arg("-Z").arg("force-unstable-if-unmarked");
}
// allow-features is handled from within this rustc wrapper because of
// issues with build scripts. Some packages use build scripts to
// dynamically detect if certain nightly features are available.
// There are different ways this causes problems:
//
// * rustix runs `rustc` on a small test program to see if the feature is
// available (and sets a `cfg` if it is). It does not honor
// CARGO_ENCODED_RUSTFLAGS.
// * proc-macro2 detects if `rustc -vV` says "nighty" or "dev" and enables
// nightly features. It will scan CARGO_ENCODED_RUSTFLAGS for
// -Zallow-features. Unfortunately CARGO_ENCODED_RUSTFLAGS is not set
// for build-dependencies when --target is used.
//
// The issues above means we can't just use RUSTFLAGS, and we can't use
// `cargo -Zallow-features=…`. Passing it through here ensures that it
// always gets set. Unfortunately that also means we need to enable more
// features than we really want (like those for proc-macro2), but there
// isn't much of a way around it.
//
// I think it is unfortunate that build scripts are doing this at all,
// since changes to nightly features can cause crates to break even if the
// user didn't want or care about the use of the nightly features. I think
// nightly features should be opt-in only. Unfortunately the dynamic
// checks are now too wide spread that we just need to deal with it.
//
// If you want to try to remove this, I suggest working with the crate
// authors to remove the dynamic checking. Another option is to pursue
// https://github.com/rust-lang/cargo/issues/11244 and
// https://github.com/rust-lang/cargo/issues/4423, which will likely be
// very difficult, but could help expose -Zallow-features into build
// scripts so they could try to honor them.
if let Ok(allow_features) = env::var("RUSTC_ALLOW_FEATURES") {
cmd.arg(format!("-Zallow-features={allow_features}"));
}
if let Ok(flags) = env::var("MAGIC_EXTRA_RUSTFLAGS") {
for flag in flags.split(' ') {
cmd.arg(flag);
}
}
let is_test = args.iter().any(|a| a == "--test");
if verbose > 2 {
let rust_env_vars =
env::vars().filter(|(k, _)| k.starts_with("RUST") || k.starts_with("CARGO"));
let prefix = if is_test { "[RUSTC-SHIM] rustc --test" } else { "[RUSTC-SHIM] rustc" };
let prefix = match crate_name {
Some(crate_name) => format!("{prefix} {crate_name}"),
None => prefix.to_string(),
};
for (i, (k, v)) in rust_env_vars.enumerate() {
eprintln!("{prefix} env[{i}]: {k:?}={v:?}");
}
eprintln!("{} working directory: {}", prefix, env::current_dir().unwrap().display());
eprintln!(
"{} command: {:?}={:?} {:?}",
prefix,
dylib_path_var(),
env::join_paths(&dylib_path).unwrap(),
cmd,
);
eprintln!("{prefix} sysroot: {sysroot:?}");
eprintln!("{prefix} libdir: {libdir:?}");
}
if env::var_os("RUSTC_BOLT_LINK_FLAGS").is_some() {
if let Some("rustc_driver") = crate_name {
cmd.arg("-Clink-args=-Wl,-q");
}
}
let start = Instant::now();
let (child, status) = {
let errmsg = format!("\nFailed to run:\n{cmd:?}\n-------------");
let mut child = cmd.spawn().expect(&errmsg);
let status = child.wait().expect(&errmsg);
(child, status)
};
if env::var_os("RUSTC_PRINT_STEP_TIMINGS").is_some()
|| env::var_os("RUSTC_PRINT_STEP_RUSAGE").is_some()
{
if let Some(crate_name) = crate_name {
let dur = start.elapsed();
// If the user requested resource usage data, then
// include that in addition to the timing output.
let rusage_data =
env::var_os("RUSTC_PRINT_STEP_RUSAGE").and_then(|_| format_rusage_data(child));
eprintln!(
"[RUSTC-TIMING] {} test:{} {}.{:03}{}{}",
crate_name,
is_test,
dur.as_secs(),
dur.subsec_millis(),
if rusage_data.is_some() { " " } else { "" },
rusage_data.unwrap_or(String::new()),
);
}
}
if status.success() {
std::process::exit(0);
// NOTE: everything below here is unreachable. do not put code that
// should run on success, after this block.
}
if verbose > 0 {
println!("\nDid not run successfully: {status}\n{cmd:?}\n-------------");
}
if let Some(mut on_fail) = on_fail {
on_fail.status().expect("Could not run the on_fail command");
}
// Preserve the exit code. In case of signal, exit with 0xfe since it's
// awkward to preserve this status in a cross-platform way.
match status.code() {
Some(i) => std::process::exit(i),
None => {
eprintln!("rustc exited with {status}");
std::process::exit(0xfe);
}
}
}
#[cfg(all(not(unix), not(windows)))]
// In the future we can add this for more platforms
fn format_rusage_data(_child: Child) -> Option<String> {
None
}
#[cfg(windows)]
fn format_rusage_data(child: Child) -> Option<String> {
use std::os::windows::io::AsRawHandle;
use windows::{
Win32::Foundation::HANDLE,
Win32::System::ProcessStatus::{
K32GetProcessMemoryInfo, PROCESS_MEMORY_COUNTERS, PROCESS_MEMORY_COUNTERS_EX,
},
Win32::System::Threading::GetProcessTimes,
Win32::System::Time::FileTimeToSystemTime,
};
let handle = HANDLE(child.as_raw_handle() as isize);
let mut user_filetime = Default::default();
let mut user_time = Default::default();
let mut kernel_filetime = Default::default();
let mut kernel_time = Default::default();
let mut memory_counters = PROCESS_MEMORY_COUNTERS::default();
unsafe {
GetProcessTimes(
handle,
&mut Default::default(),
&mut Default::default(),
&mut kernel_filetime,
&mut user_filetime,
)
}
.ok()?;
unsafe { FileTimeToSystemTime(&user_filetime, &mut user_time) }.ok()?;
unsafe { FileTimeToSystemTime(&kernel_filetime, &mut kernel_time) }.ok()?;
// Unlike on Linux with RUSAGE_CHILDREN, this will only return memory information for the process
// with the given handle and none of that process's children.
unsafe {
K32GetProcessMemoryInfo(
handle,
&mut memory_counters,
std::mem::size_of::<PROCESS_MEMORY_COUNTERS_EX>() as u32,
)
}
.ok()
.ok()?;
// Guide on interpreting these numbers:
// https://docs.microsoft.com/en-us/windows/win32/psapi/process-memory-usage-information
let peak_working_set = memory_counters.PeakWorkingSetSize / 1024;
let peak_page_file = memory_counters.PeakPagefileUsage / 1024;
let peak_paged_pool = memory_counters.QuotaPeakPagedPoolUsage / 1024;
let peak_nonpaged_pool = memory_counters.QuotaPeakNonPagedPoolUsage / 1024;
Some(format!(
"user: {USER_SEC}.{USER_USEC:03} \
sys: {SYS_SEC}.{SYS_USEC:03} \
peak working set (kb): {PEAK_WORKING_SET} \
peak page file usage (kb): {PEAK_PAGE_FILE} \
peak paged pool usage (kb): {PEAK_PAGED_POOL} \
peak non-paged pool usage (kb): {PEAK_NONPAGED_POOL} \
page faults: {PAGE_FAULTS}",
USER_SEC = user_time.wSecond + (user_time.wMinute * 60),
USER_USEC = user_time.wMilliseconds,
SYS_SEC = kernel_time.wSecond + (kernel_time.wMinute * 60),
SYS_USEC = kernel_time.wMilliseconds,
PEAK_WORKING_SET = peak_working_set,
PEAK_PAGE_FILE = peak_page_file,
PEAK_PAGED_POOL = peak_paged_pool,
PEAK_NONPAGED_POOL = peak_nonpaged_pool,
PAGE_FAULTS = memory_counters.PageFaultCount,
))
}
#[cfg(unix)]
/// Tries to build a string with human readable data for several of the rusage
/// fields. Note that we are focusing mainly on data that we believe to be
/// supplied on Linux (the `rusage` struct has other fields in it but they are
/// currently unsupported by Linux).
fn format_rusage_data(_child: Child) -> Option<String> {
let rusage: libc::rusage = unsafe {
let mut recv = std::mem::zeroed();
// -1 is RUSAGE_CHILDREN, which means to get the rusage for all children
// (and grandchildren, etc) processes that have respectively terminated
// and been waited for.
let retval = libc::getrusage(-1, &mut recv);
if retval != 0 {
return None;
}
recv
};
// Mac OS X reports the maxrss in bytes, not kb.
let divisor = if env::consts::OS == "macos" { 1024 } else { 1 };
let maxrss = (rusage.ru_maxrss + (divisor - 1)) / divisor;
let mut init_str = format!(
"user: {USER_SEC}.{USER_USEC:03} \
sys: {SYS_SEC}.{SYS_USEC:03} \
max rss (kb): {MAXRSS}",
USER_SEC = rusage.ru_utime.tv_sec,
USER_USEC = rusage.ru_utime.tv_usec,
SYS_SEC = rusage.ru_stime.tv_sec,
SYS_USEC = rusage.ru_stime.tv_usec,
MAXRSS = maxrss
);
// The remaining rusage stats vary in platform support. So we treat
// uniformly zero values in each category as "not worth printing", since it
// either means no events of that type occurred, or that the platform
// does not support it.
let minflt = rusage.ru_minflt;
let majflt = rusage.ru_majflt;
if minflt != 0 || majflt != 0 {
init_str.push_str(&format!(" page reclaims: {minflt} page faults: {majflt}"));
}
let inblock = rusage.ru_inblock;
let oublock = rusage.ru_oublock;
if inblock != 0 || oublock != 0 {
init_str.push_str(&format!(" fs block inputs: {inblock} fs block outputs: {oublock}"));
}
let nvcsw = rusage.ru_nvcsw;
let nivcsw = rusage.ru_nivcsw;
if nvcsw != 0 || nivcsw != 0 {
init_str.push_str(&format!(
" voluntary ctxt switches: {nvcsw} involuntary ctxt switches: {nivcsw}"
));
}
return Some(init_str);
}