blob: 09a9a332269ef036530b7366724f2cd9a1539245 [file] [log] [blame]
#![allow(rustc::usage_of_ty_tykind)]
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::unify::{EqUnifyValue, UnifyKey};
use std::fmt;
use std::mem::discriminant;
use crate::HashStableContext;
use crate::Interner;
use crate::{DebruijnIndex, DebugWithInfcx, InferCtxtLike, WithInfcx};
use self::TyKind::*;
/// The movability of a coroutine / closure literal:
/// whether a coroutine contains self-references, causing it to be `!Unpin`.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable, Debug, Copy)]
#[derive(HashStable_Generic)]
pub enum Movability {
/// May contain self-references, `!Unpin`.
Static,
/// Must not contain self-references, `Unpin`.
Movable,
}
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Copy)]
#[derive(HashStable_Generic, Encodable, Decodable)]
pub enum Mutability {
// N.B. Order is deliberate, so that Not < Mut
Not,
Mut,
}
impl Mutability {
pub fn invert(self) -> Self {
match self {
Mutability::Mut => Mutability::Not,
Mutability::Not => Mutability::Mut,
}
}
/// Returns `""` (empty string) or `"mut "` depending on the mutability.
pub fn prefix_str(self) -> &'static str {
match self {
Mutability::Mut => "mut ",
Mutability::Not => "",
}
}
/// Returns `"&"` or `"&mut "` depending on the mutability.
pub fn ref_prefix_str(self) -> &'static str {
match self {
Mutability::Not => "&",
Mutability::Mut => "&mut ",
}
}
/// Returns `""` (empty string) or `"mutably "` depending on the mutability.
pub fn mutably_str(self) -> &'static str {
match self {
Mutability::Not => "",
Mutability::Mut => "mutably ",
}
}
/// Return `true` if self is mutable
pub fn is_mut(self) -> bool {
matches!(self, Self::Mut)
}
/// Return `true` if self is **not** mutable
pub fn is_not(self) -> bool {
matches!(self, Self::Not)
}
}
/// Specifies how a trait object is represented.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum DynKind {
/// An unsized `dyn Trait` object
Dyn,
/// A sized `dyn* Trait` object
///
/// These objects are represented as a `(data, vtable)` pair where `data` is a value of some
/// ptr-sized and ptr-aligned dynamically determined type `T` and `vtable` is a pointer to the
/// vtable of `impl T for Trait`. This allows a `dyn*` object to be treated agnostically with
/// respect to whether it points to a `Box<T>`, `Rc<T>`, etc.
DynStar,
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum AliasKind {
/// A projection `<Type as Trait>::AssocType`.
/// Can get normalized away if monomorphic enough.
Projection,
/// An associated type in an inherent `impl`
Inherent,
/// An opaque type (usually from `impl Trait` in type aliases or function return types)
/// Can only be normalized away in RevealAll mode
Opaque,
/// A type alias that actually checks its trait bounds.
/// Currently only used if the type alias references opaque types.
/// Can always be normalized away.
Weak,
}
/// Defines the kinds of types used by the type system.
///
/// Types written by the user start out as `hir::TyKind` and get
/// converted to this representation using `AstConv::ast_ty_to_ty`.
#[rustc_diagnostic_item = "IrTyKind"]
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
PartialOrd(bound = ""),
PartialOrd = "feature_allow_slow_enum",
Ord(bound = ""),
Ord = "feature_allow_slow_enum",
Hash(bound = "")
)]
#[derive(TyEncodable, TyDecodable)]
pub enum TyKind<I: Interner> {
/// The primitive boolean type. Written as `bool`.
Bool,
/// The primitive character type; holds a Unicode scalar value
/// (a non-surrogate code point). Written as `char`.
Char,
/// A primitive signed integer type. For example, `i32`.
Int(IntTy),
/// A primitive unsigned integer type. For example, `u32`.
Uint(UintTy),
/// A primitive floating-point type. For example, `f64`.
Float(FloatTy),
/// Algebraic data types (ADT). For example: structures, enumerations and unions.
///
/// For example, the type `List<i32>` would be represented using the `AdtDef`
/// for `struct List<T>` and the args `[i32]`.
///
/// Note that generic parameters in fields only get lazily substituted
/// by using something like `adt_def.all_fields().map(|field| field.ty(tcx, args))`.
Adt(I::AdtDef, I::GenericArgs),
/// An unsized FFI type that is opaque to Rust. Written as `extern type T`.
Foreign(I::DefId),
/// The pointee of a string slice. Written as `str`.
Str,
/// An array with the given length. Written as `[T; N]`.
Array(I::Ty, I::Const),
/// The pointee of an array slice. Written as `[T]`.
Slice(I::Ty),
/// A raw pointer. Written as `*mut T` or `*const T`
RawPtr(I::TypeAndMut),
/// A reference; a pointer with an associated lifetime. Written as
/// `&'a mut T` or `&'a T`.
Ref(I::Region, I::Ty, Mutability),
/// The anonymous type of a function declaration/definition. Each
/// function has a unique type.
///
/// For the function `fn foo() -> i32 { 3 }` this type would be
/// shown to the user as `fn() -> i32 {foo}`.
///
/// For example the type of `bar` here:
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar = foo; // bar: fn() -> i32 {foo}
/// ```
FnDef(I::DefId, I::GenericArgs),
/// A pointer to a function. Written as `fn() -> i32`.
///
/// Note that both functions and closures start out as either
/// [FnDef] or [Closure] which can be then be coerced to this variant.
///
/// For example the type of `bar` here:
///
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar: fn() -> i32 = foo;
/// ```
FnPtr(I::PolyFnSig),
/// A trait object. Written as `dyn for<'b> Trait<'b, Assoc = u32> + Send + 'a`.
Dynamic(I::BoundExistentialPredicates, I::Region, DynKind),
/// The anonymous type of a closure. Used to represent the type of `|a| a`.
///
/// Closure args contain both the - potentially substituted - generic parameters
/// of its parent and some synthetic parameters. See the documentation for
/// `ClosureArgs` for more details.
Closure(I::DefId, I::GenericArgs),
/// The anonymous type of a coroutine. Used to represent the type of
/// `|a| yield a`.
///
/// For more info about coroutine args, visit the documentation for
/// `CoroutineArgs`.
Coroutine(I::DefId, I::GenericArgs, Movability),
/// A type representing the types stored inside a coroutine.
/// This should only appear as part of the `CoroutineArgs`.
///
/// Unlike upvars, the witness can reference lifetimes from
/// inside of the coroutine itself. To deal with them in
/// the type of the coroutine, we convert them to higher ranked
/// lifetimes bound by the witness itself.
///
/// This contains the `DefId` and the `GenericArgsRef` of the coroutine.
/// The actual witness types are computed on MIR by the `mir_coroutine_witnesses` query.
///
/// Looking at the following example, the witness for this coroutine
/// may end up as something like `for<'a> [Vec<i32>, &'a Vec<i32>]`:
///
/// ```ignore UNSOLVED (ask @compiler-errors, should this error? can we just swap the yields?)
/// #![feature(coroutines)]
/// |a| {
/// let x = &vec![3];
/// yield a;
/// yield x[0];
/// }
/// # ;
/// ```
CoroutineWitness(I::DefId, I::GenericArgs),
/// The never type `!`.
Never,
/// A tuple type. For example, `(i32, bool)`.
Tuple(I::Tys),
/// A projection, opaque type, weak type alias, or inherent associated type.
/// All of these types are represented as pairs of def-id and args, and can
/// be normalized, so they are grouped conceptually.
Alias(AliasKind, I::AliasTy),
/// A type parameter; for example, `T` in `fn f<T>(x: T) {}`.
Param(I::ParamTy),
/// Bound type variable, used to represent the `'a` in `for<'a> fn(&'a ())`.
///
/// For canonical queries, we replace inference variables with bound variables,
/// so e.g. when checking whether `&'_ (): Trait<_>` holds, we canonicalize that to
/// `for<'a, T> &'a (): Trait<T>` and then convert the introduced bound variables
/// back to inference variables in a new inference context when inside of the query.
///
/// It is conventional to render anonymous bound types like `^N` or `^D_N`,
/// where `N` is the bound variable's anonymous index into the binder, and
/// `D` is the debruijn index, or totally omitted if the debruijn index is zero.
///
/// See the `rustc-dev-guide` for more details about
/// [higher-ranked trait bounds][1] and [canonical queries][2].
///
/// [1]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
/// [2]: https://rustc-dev-guide.rust-lang.org/traits/canonical-queries.html
Bound(DebruijnIndex, I::BoundTy),
/// A placeholder type, used during higher ranked subtyping to instantiate
/// bound variables.
///
/// It is conventional to render anonymous placeholer types like `!N` or `!U_N`,
/// where `N` is the placeholder variable's anonymous index (which corresponds
/// to the bound variable's index from the binder from which it was instantiated),
/// and `U` is the universe index in which it is instantiated, or totally omitted
/// if the universe index is zero.
Placeholder(I::PlaceholderTy),
/// A type variable used during type checking.
///
/// Similar to placeholders, inference variables also live in a universe to
/// correctly deal with higher ranked types. Though unlike placeholders,
/// that universe is stored in the `InferCtxt` instead of directly
/// inside of the type.
Infer(I::InferTy),
/// A placeholder for a type which could not be computed; this is
/// propagated to avoid useless error messages.
Error(I::ErrorGuaranteed),
}
impl<I: Interner> TyKind<I> {
#[inline]
pub fn is_primitive(&self) -> bool {
matches!(self, Bool | Char | Int(_) | Uint(_) | Float(_))
}
}
// This is manually implemented for `TyKind` because `std::mem::discriminant`
// returns an opaque value that is `PartialEq` but not `PartialOrd`
#[inline]
const fn tykind_discriminant<I: Interner>(value: &TyKind<I>) -> usize {
match value {
Bool => 0,
Char => 1,
Int(_) => 2,
Uint(_) => 3,
Float(_) => 4,
Adt(_, _) => 5,
Foreign(_) => 6,
Str => 7,
Array(_, _) => 8,
Slice(_) => 9,
RawPtr(_) => 10,
Ref(_, _, _) => 11,
FnDef(_, _) => 12,
FnPtr(_) => 13,
Dynamic(..) => 14,
Closure(_, _) => 15,
Coroutine(_, _, _) => 16,
CoroutineWitness(_, _) => 17,
Never => 18,
Tuple(_) => 19,
Alias(_, _) => 20,
Param(_) => 21,
Bound(_, _) => 22,
Placeholder(_) => 23,
Infer(_) => 24,
Error(_) => 25,
}
}
// This is manually implemented because a derive would require `I: PartialEq`
impl<I: Interner> PartialEq for TyKind<I> {
#[inline]
fn eq(&self, other: &TyKind<I>) -> bool {
// You might expect this `match` to be preceded with this:
//
// tykind_discriminant(self) == tykind_discriminant(other) &&
//
// but the data patterns in practice are such that a comparison
// succeeds 99%+ of the time, and it's faster to omit it.
match (self, other) {
(Int(a_i), Int(b_i)) => a_i == b_i,
(Uint(a_u), Uint(b_u)) => a_u == b_u,
(Float(a_f), Float(b_f)) => a_f == b_f,
(Adt(a_d, a_s), Adt(b_d, b_s)) => a_d == b_d && a_s == b_s,
(Foreign(a_d), Foreign(b_d)) => a_d == b_d,
(Array(a_t, a_c), Array(b_t, b_c)) => a_t == b_t && a_c == b_c,
(Slice(a_t), Slice(b_t)) => a_t == b_t,
(RawPtr(a_t), RawPtr(b_t)) => a_t == b_t,
(Ref(a_r, a_t, a_m), Ref(b_r, b_t, b_m)) => a_r == b_r && a_t == b_t && a_m == b_m,
(FnDef(a_d, a_s), FnDef(b_d, b_s)) => a_d == b_d && a_s == b_s,
(FnPtr(a_s), FnPtr(b_s)) => a_s == b_s,
(Dynamic(a_p, a_r, a_repr), Dynamic(b_p, b_r, b_repr)) => {
a_p == b_p && a_r == b_r && a_repr == b_repr
}
(Closure(a_d, a_s), Closure(b_d, b_s)) => a_d == b_d && a_s == b_s,
(Coroutine(a_d, a_s, a_m), Coroutine(b_d, b_s, b_m)) => {
a_d == b_d && a_s == b_s && a_m == b_m
}
(CoroutineWitness(a_d, a_s), CoroutineWitness(b_d, b_s)) => a_d == b_d && a_s == b_s,
(Tuple(a_t), Tuple(b_t)) => a_t == b_t,
(Alias(a_i, a_p), Alias(b_i, b_p)) => a_i == b_i && a_p == b_p,
(Param(a_p), Param(b_p)) => a_p == b_p,
(Bound(a_d, a_b), Bound(b_d, b_b)) => a_d == b_d && a_b == b_b,
(Placeholder(a_p), Placeholder(b_p)) => a_p == b_p,
(Infer(a_t), Infer(b_t)) => a_t == b_t,
(Error(a_e), Error(b_e)) => a_e == b_e,
(Bool, Bool) | (Char, Char) | (Str, Str) | (Never, Never) => true,
_ => {
debug_assert!(
tykind_discriminant(self) != tykind_discriminant(other),
"This branch must be unreachable, maybe the match is missing an arm? self = self = {self:?}, other = {other:?}"
);
false
}
}
}
}
// This is manually implemented because a derive would require `I: Eq`
impl<I: Interner> Eq for TyKind<I> {}
impl<I: Interner> DebugWithInfcx<I> for TyKind<I> {
fn fmt<Infcx: InferCtxtLike<Interner = I>>(
this: WithInfcx<'_, Infcx, &Self>,
f: &mut core::fmt::Formatter<'_>,
) -> fmt::Result {
match this.data {
Bool => write!(f, "bool"),
Char => write!(f, "char"),
Int(i) => write!(f, "{i:?}"),
Uint(u) => write!(f, "{u:?}"),
Float(float) => write!(f, "{float:?}"),
Adt(d, s) => {
write!(f, "{d:?}")?;
let mut s = s.clone().into_iter();
let first = s.next();
match first {
Some(first) => write!(f, "<{:?}", first)?,
None => return Ok(()),
};
for arg in s {
write!(f, ", {:?}", arg)?;
}
write!(f, ">")
}
Foreign(d) => f.debug_tuple_field1_finish("Foreign", d),
Str => write!(f, "str"),
Array(t, c) => write!(f, "[{:?}; {:?}]", &this.wrap(t), &this.wrap(c)),
Slice(t) => write!(f, "[{:?}]", &this.wrap(t)),
RawPtr(p) => {
let (ty, mutbl) = I::ty_and_mut_to_parts(p.clone());
match mutbl {
Mutability::Mut => write!(f, "*mut "),
Mutability::Not => write!(f, "*const "),
}?;
write!(f, "{:?}", &this.wrap(ty))
}
Ref(r, t, m) => match m {
Mutability::Mut => write!(f, "&{:?} mut {:?}", &this.wrap(r), &this.wrap(t)),
Mutability::Not => write!(f, "&{:?} {:?}", &this.wrap(r), &this.wrap(t)),
},
FnDef(d, s) => f.debug_tuple_field2_finish("FnDef", d, &this.wrap(s)),
FnPtr(s) => write!(f, "{:?}", &this.wrap(s)),
Dynamic(p, r, repr) => match repr {
DynKind::Dyn => write!(f, "dyn {:?} + {:?}", &this.wrap(p), &this.wrap(r)),
DynKind::DynStar => {
write!(f, "dyn* {:?} + {:?}", &this.wrap(p), &this.wrap(r))
}
},
Closure(d, s) => f.debug_tuple_field2_finish("Closure", d, &this.wrap(s)),
Coroutine(d, s, m) => f.debug_tuple_field3_finish("Coroutine", d, &this.wrap(s), m),
CoroutineWitness(d, s) => {
f.debug_tuple_field2_finish("CoroutineWitness", d, &this.wrap(s))
}
Never => write!(f, "!"),
Tuple(t) => {
write!(f, "(")?;
let mut count = 0;
for ty in t.clone() {
if count > 0 {
write!(f, ", ")?;
}
write!(f, "{:?}", &this.wrap(ty))?;
count += 1;
}
// unary tuples need a trailing comma
if count == 1 {
write!(f, ",")?;
}
write!(f, ")")
}
Alias(i, a) => f.debug_tuple_field2_finish("Alias", i, &this.wrap(a)),
Param(p) => write!(f, "{p:?}"),
Bound(d, b) => crate::debug_bound_var(f, *d, b),
Placeholder(p) => write!(f, "{p:?}"),
Infer(t) => write!(f, "{:?}", this.wrap(t)),
TyKind::Error(_) => write!(f, "{{type error}}"),
}
}
}
// This is manually implemented because a derive would require `I: Debug`
impl<I: Interner> fmt::Debug for TyKind<I> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
WithInfcx::with_no_infcx(self).fmt(f)
}
}
// This is not a derived impl because a derive would require `I: HashStable`
#[allow(rustc::usage_of_ty_tykind)]
impl<CTX: HashStableContext, I: Interner> HashStable<CTX> for TyKind<I>
where
I::AdtDef: HashStable<CTX>,
I::DefId: HashStable<CTX>,
I::GenericArgs: HashStable<CTX>,
I::Ty: HashStable<CTX>,
I::Const: HashStable<CTX>,
I::TypeAndMut: HashStable<CTX>,
I::PolyFnSig: HashStable<CTX>,
I::BoundExistentialPredicates: HashStable<CTX>,
I::Region: HashStable<CTX>,
I::Tys: HashStable<CTX>,
I::AliasTy: HashStable<CTX>,
I::BoundTy: HashStable<CTX>,
I::ParamTy: HashStable<CTX>,
I::PlaceholderTy: HashStable<CTX>,
I::InferTy: HashStable<CTX>,
I::ErrorGuaranteed: HashStable<CTX>,
{
#[inline]
fn hash_stable(&self, __hcx: &mut CTX, __hasher: &mut StableHasher) {
std::mem::discriminant(self).hash_stable(__hcx, __hasher);
match self {
Bool => {}
Char => {}
Int(i) => {
i.hash_stable(__hcx, __hasher);
}
Uint(u) => {
u.hash_stable(__hcx, __hasher);
}
Float(f) => {
f.hash_stable(__hcx, __hasher);
}
Adt(adt, args) => {
adt.hash_stable(__hcx, __hasher);
args.hash_stable(__hcx, __hasher);
}
Foreign(def_id) => {
def_id.hash_stable(__hcx, __hasher);
}
Str => {}
Array(t, c) => {
t.hash_stable(__hcx, __hasher);
c.hash_stable(__hcx, __hasher);
}
Slice(t) => {
t.hash_stable(__hcx, __hasher);
}
RawPtr(tam) => {
tam.hash_stable(__hcx, __hasher);
}
Ref(r, t, m) => {
r.hash_stable(__hcx, __hasher);
t.hash_stable(__hcx, __hasher);
m.hash_stable(__hcx, __hasher);
}
FnDef(def_id, args) => {
def_id.hash_stable(__hcx, __hasher);
args.hash_stable(__hcx, __hasher);
}
FnPtr(polyfnsig) => {
polyfnsig.hash_stable(__hcx, __hasher);
}
Dynamic(l, r, repr) => {
l.hash_stable(__hcx, __hasher);
r.hash_stable(__hcx, __hasher);
repr.hash_stable(__hcx, __hasher);
}
Closure(def_id, args) => {
def_id.hash_stable(__hcx, __hasher);
args.hash_stable(__hcx, __hasher);
}
Coroutine(def_id, args, m) => {
def_id.hash_stable(__hcx, __hasher);
args.hash_stable(__hcx, __hasher);
m.hash_stable(__hcx, __hasher);
}
CoroutineWitness(def_id, args) => {
def_id.hash_stable(__hcx, __hasher);
args.hash_stable(__hcx, __hasher);
}
Never => {}
Tuple(args) => {
args.hash_stable(__hcx, __hasher);
}
Alias(k, p) => {
k.hash_stable(__hcx, __hasher);
p.hash_stable(__hcx, __hasher);
}
Param(p) => {
p.hash_stable(__hcx, __hasher);
}
Bound(d, b) => {
d.hash_stable(__hcx, __hasher);
b.hash_stable(__hcx, __hasher);
}
Placeholder(p) => {
p.hash_stable(__hcx, __hasher);
}
Infer(i) => {
i.hash_stable(__hcx, __hasher);
}
Error(d) => {
d.hash_stable(__hcx, __hasher);
}
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum IntTy {
Isize,
I8,
I16,
I32,
I64,
I128,
}
impl IntTy {
pub fn name_str(&self) -> &'static str {
match *self {
IntTy::Isize => "isize",
IntTy::I8 => "i8",
IntTy::I16 => "i16",
IntTy::I32 => "i32",
IntTy::I64 => "i64",
IntTy::I128 => "i128",
}
}
pub fn bit_width(&self) -> Option<u64> {
Some(match *self {
IntTy::Isize => return None,
IntTy::I8 => 8,
IntTy::I16 => 16,
IntTy::I32 => 32,
IntTy::I64 => 64,
IntTy::I128 => 128,
})
}
pub fn normalize(&self, target_width: u32) -> Self {
match self {
IntTy::Isize => match target_width {
16 => IntTy::I16,
32 => IntTy::I32,
64 => IntTy::I64,
_ => unreachable!(),
},
_ => *self,
}
}
pub fn to_unsigned(self) -> UintTy {
match self {
IntTy::Isize => UintTy::Usize,
IntTy::I8 => UintTy::U8,
IntTy::I16 => UintTy::U16,
IntTy::I32 => UintTy::U32,
IntTy::I64 => UintTy::U64,
IntTy::I128 => UintTy::U128,
}
}
}
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Copy)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum UintTy {
Usize,
U8,
U16,
U32,
U64,
U128,
}
impl UintTy {
pub fn name_str(&self) -> &'static str {
match *self {
UintTy::Usize => "usize",
UintTy::U8 => "u8",
UintTy::U16 => "u16",
UintTy::U32 => "u32",
UintTy::U64 => "u64",
UintTy::U128 => "u128",
}
}
pub fn bit_width(&self) -> Option<u64> {
Some(match *self {
UintTy::Usize => return None,
UintTy::U8 => 8,
UintTy::U16 => 16,
UintTy::U32 => 32,
UintTy::U64 => 64,
UintTy::U128 => 128,
})
}
pub fn normalize(&self, target_width: u32) -> Self {
match self {
UintTy::Usize => match target_width {
16 => UintTy::U16,
32 => UintTy::U32,
64 => UintTy::U64,
_ => unreachable!(),
},
_ => *self,
}
}
pub fn to_signed(self) -> IntTy {
match self {
UintTy::Usize => IntTy::Isize,
UintTy::U8 => IntTy::I8,
UintTy::U16 => IntTy::I16,
UintTy::U32 => IntTy::I32,
UintTy::U64 => IntTy::I64,
UintTy::U128 => IntTy::I128,
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum FloatTy {
F32,
F64,
}
impl FloatTy {
pub fn name_str(self) -> &'static str {
match self {
FloatTy::F32 => "f32",
FloatTy::F64 => "f64",
}
}
pub fn bit_width(self) -> u64 {
match self {
FloatTy::F32 => 32,
FloatTy::F64 => 64,
}
}
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum IntVarValue {
IntType(IntTy),
UintType(UintTy),
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub FloatTy);
rustc_index::newtype_index! {
/// A **ty**pe **v**ariable **ID**.
#[debug_format = "?{}t"]
pub struct TyVid {}
}
rustc_index::newtype_index! {
/// An **int**egral (`u32`, `i32`, `usize`, etc.) type **v**ariable **ID**.
#[debug_format = "?{}i"]
pub struct IntVid {}
}
rustc_index::newtype_index! {
/// A **float**ing-point (`f32` or `f64`) type **v**ariable **ID**.
#[debug_format = "?{}f"]
pub struct FloatVid {}
}
/// A placeholder for a type that hasn't been inferred yet.
///
/// E.g., if we have an empty array (`[]`), then we create a fresh
/// type variable for the element type since we won't know until it's
/// used what the element type is supposed to be.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
pub enum InferTy {
/// A type variable.
TyVar(TyVid),
/// An integral type variable (`{integer}`).
///
/// These are created when the compiler sees an integer literal like
/// `1` that could be several different types (`u8`, `i32`, `u32`, etc.).
/// We don't know until it's used what type it's supposed to be, so
/// we create a fresh type variable.
IntVar(IntVid),
/// A floating-point type variable (`{float}`).
///
/// These are created when the compiler sees an float literal like
/// `1.0` that could be either an `f32` or an `f64`.
/// We don't know until it's used what type it's supposed to be, so
/// we create a fresh type variable.
FloatVar(FloatVid),
/// A [`FreshTy`][Self::FreshTy] is one that is generated as a replacement
/// for an unbound type variable. This is convenient for caching etc. See
/// `rustc_infer::infer::freshen` for more details.
///
/// Compare with [`TyVar`][Self::TyVar].
FreshTy(u32),
/// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`IntVar`][Self::IntVar].
FreshIntTy(u32),
/// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`FloatVar`][Self::FloatVar].
FreshFloatTy(u32),
}
/// Raw `TyVid` are used as the unification key for `sub_relations`;
/// they carry no values.
impl UnifyKey for TyVid {
type Value = ();
#[inline]
fn index(&self) -> u32 {
self.as_u32()
}
#[inline]
fn from_index(i: u32) -> TyVid {
TyVid::from_u32(i)
}
fn tag() -> &'static str {
"TyVid"
}
}
impl EqUnifyValue for IntVarValue {}
impl UnifyKey for IntVid {
type Value = Option<IntVarValue>;
#[inline] // make this function eligible for inlining - it is quite hot.
fn index(&self) -> u32 {
self.as_u32()
}
#[inline]
fn from_index(i: u32) -> IntVid {
IntVid::from_u32(i)
}
fn tag() -> &'static str {
"IntVid"
}
}
impl EqUnifyValue for FloatVarValue {}
impl UnifyKey for FloatVid {
type Value = Option<FloatVarValue>;
#[inline]
fn index(&self) -> u32 {
self.as_u32()
}
#[inline]
fn from_index(i: u32) -> FloatVid {
FloatVid::from_u32(i)
}
fn tag() -> &'static str {
"FloatVid"
}
}
impl<CTX> HashStable<CTX> for InferTy {
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
use InferTy::*;
discriminant(self).hash_stable(ctx, hasher);
match self {
TyVar(_) | IntVar(_) | FloatVar(_) => {
panic!("type variables should not be hashed: {self:?}")
}
FreshTy(v) | FreshIntTy(v) | FreshFloatTy(v) => v.hash_stable(ctx, hasher),
}
}
}
impl fmt::Debug for IntVarValue {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
IntVarValue::IntType(ref v) => v.fmt(f),
IntVarValue::UintType(ref v) => v.fmt(f),
}
}
}
impl fmt::Debug for FloatVarValue {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl fmt::Display for InferTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use InferTy::*;
match *self {
TyVar(_) => write!(f, "_"),
IntVar(_) => write!(f, "{}", "{integer}"),
FloatVar(_) => write!(f, "{}", "{float}"),
FreshTy(v) => write!(f, "FreshTy({v})"),
FreshIntTy(v) => write!(f, "FreshIntTy({v})"),
FreshFloatTy(v) => write!(f, "FreshFloatTy({v})"),
}
}
}
impl fmt::Debug for IntTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.name_str())
}
}
impl fmt::Debug for UintTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.name_str())
}
}
impl fmt::Debug for FloatTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.name_str())
}
}
impl fmt::Debug for InferTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use InferTy::*;
match *self {
TyVar(ref v) => v.fmt(f),
IntVar(ref v) => v.fmt(f),
FloatVar(ref v) => v.fmt(f),
FreshTy(v) => write!(f, "FreshTy({v:?})"),
FreshIntTy(v) => write!(f, "FreshIntTy({v:?})"),
FreshFloatTy(v) => write!(f, "FreshFloatTy({v:?})"),
}
}
}
impl<I: Interner<InferTy = InferTy>> DebugWithInfcx<I> for InferTy {
fn fmt<Infcx: InferCtxtLike<Interner = I>>(
this: WithInfcx<'_, Infcx, &Self>,
f: &mut fmt::Formatter<'_>,
) -> fmt::Result {
use InferTy::*;
match this.infcx.universe_of_ty(*this.data) {
None => write!(f, "{:?}", this.data),
Some(universe) => match *this.data {
TyVar(ty_vid) => write!(f, "?{}_{}t", ty_vid.index(), universe.index()),
IntVar(_) | FloatVar(_) | FreshTy(_) | FreshIntTy(_) | FreshFloatTy(_) => {
unreachable!()
}
},
}
}
}