blob: e345fc39eade955d2227de965a32c85f2e05790a [file] [log] [blame]
use crate::solve;
use crate::traits::query::NoSolution;
use crate::traits::wf;
use crate::traits::ObligationCtxt;
use rustc_infer::infer::canonical::Canonical;
use rustc_infer::infer::outlives::components::{push_outlives_components, Component};
use rustc_infer::traits::query::OutlivesBound;
use rustc_middle::infer::canonical::CanonicalQueryResponse;
use rustc_middle::traits::ObligationCause;
use rustc_middle::ty::{self, ParamEnvAnd, Ty, TyCtxt, TypeVisitableExt};
use rustc_span::def_id::CRATE_DEF_ID;
use rustc_span::DUMMY_SP;
use smallvec::{smallvec, SmallVec};
#[derive(Copy, Clone, Debug, HashStable, TypeFoldable, TypeVisitable)]
pub struct ImpliedOutlivesBounds<'tcx> {
pub ty: Ty<'tcx>,
}
impl<'tcx> super::QueryTypeOp<'tcx> for ImpliedOutlivesBounds<'tcx> {
type QueryResponse = Vec<OutlivesBound<'tcx>>;
fn try_fast_path(
_tcx: TyCtxt<'tcx>,
key: &ParamEnvAnd<'tcx, Self>,
) -> Option<Self::QueryResponse> {
// Don't go into the query for things that can't possibly have lifetimes.
match key.value.ty.kind() {
ty::Tuple(elems) if elems.is_empty() => Some(vec![]),
ty::Never | ty::Str | ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) => {
Some(vec![])
}
_ => None,
}
}
fn perform_query(
tcx: TyCtxt<'tcx>,
canonicalized: Canonical<'tcx, ParamEnvAnd<'tcx, Self>>,
) -> Result<CanonicalQueryResponse<'tcx, Self::QueryResponse>, NoSolution> {
// FIXME this `unchecked_map` is only necessary because the
// query is defined as taking a `ParamEnvAnd<Ty>`; it should
// take an `ImpliedOutlivesBounds` instead
let canonicalized = canonicalized.unchecked_map(|ParamEnvAnd { param_env, value }| {
let ImpliedOutlivesBounds { ty } = value;
param_env.and(ty)
});
tcx.implied_outlives_bounds(canonicalized)
}
fn perform_locally_in_new_solver(
ocx: &ObligationCtxt<'_, 'tcx>,
key: ParamEnvAnd<'tcx, Self>,
) -> Result<Self::QueryResponse, NoSolution> {
compute_implied_outlives_bounds_inner(ocx, key.param_env, key.value.ty)
}
}
pub fn compute_implied_outlives_bounds_inner<'tcx>(
ocx: &ObligationCtxt<'_, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
ty: Ty<'tcx>,
) -> Result<Vec<OutlivesBound<'tcx>>, NoSolution> {
let tcx = ocx.infcx.tcx;
// Sometimes when we ask what it takes for T: WF, we get back that
// U: WF is required; in that case, we push U onto this stack and
// process it next. Because the resulting predicates aren't always
// guaranteed to be a subset of the original type, so we need to store the
// WF args we've computed in a set.
let mut checked_wf_args = rustc_data_structures::fx::FxHashSet::default();
let mut wf_args = vec![ty.into()];
let mut outlives_bounds: Vec<ty::OutlivesPredicate<ty::GenericArg<'tcx>, ty::Region<'tcx>>> =
vec![];
while let Some(arg) = wf_args.pop() {
if !checked_wf_args.insert(arg) {
continue;
}
// Compute the obligations for `arg` to be well-formed. If `arg` is
// an unresolved inference variable, just substituted an empty set
// -- because the return type here is going to be things we *add*
// to the environment, it's always ok for this set to be smaller
// than the ultimate set. (Note: normally there won't be
// unresolved inference variables here anyway, but there might be
// during typeck under some circumstances.)
//
// FIXME(@lcnr): It's not really "always fine", having fewer implied
// bounds can be backward incompatible, e.g. #101951 was caused by
// us not dealing with inference vars in `TypeOutlives` predicates.
let obligations = wf::obligations(ocx.infcx, param_env, CRATE_DEF_ID, 0, arg, DUMMY_SP)
.unwrap_or_default();
for obligation in obligations {
debug!(?obligation);
assert!(!obligation.has_escaping_bound_vars());
// While these predicates should all be implied by other parts of
// the program, they are still relevant as they may constrain
// inference variables, which is necessary to add the correct
// implied bounds in some cases, mostly when dealing with projections.
//
// Another important point here: we only register `Projection`
// predicates, since otherwise we might register outlives
// predicates containing inference variables, and we don't
// learn anything new from those.
if obligation.predicate.has_non_region_infer() {
match obligation.predicate.kind().skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Projection(..))
| ty::PredicateKind::AliasRelate(..) => {
ocx.register_obligation(obligation.clone());
}
_ => {}
}
}
let pred = match obligation.predicate.kind().no_bound_vars() {
None => continue,
Some(pred) => pred,
};
match pred {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(..))
// FIXME(const_generics): Make sure that `<'a, 'b, const N: &'a &'b u32>` is sound
// if we ever support that
| ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(..))
| ty::PredicateKind::Subtype(..)
| ty::PredicateKind::Coerce(..)
| ty::PredicateKind::Clause(ty::ClauseKind::Projection(..))
| ty::PredicateKind::ClosureKind(..)
| ty::PredicateKind::ObjectSafe(..)
| ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(..))
| ty::PredicateKind::ConstEquate(..)
| ty::PredicateKind::Ambiguous
| ty::PredicateKind::AliasRelate(..)
=> {}
// We need to search through *all* WellFormed predicates
ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
wf_args.push(arg);
}
// We need to register region relationships
ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(
r_a,
r_b,
))) => outlives_bounds.push(ty::OutlivesPredicate(r_a.into(), r_b)),
ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(
ty_a,
r_b,
))) => outlives_bounds.push(ty::OutlivesPredicate(ty_a.into(), r_b)),
}
}
}
// This call to `select_all_or_error` is necessary to constrain inference variables, which we
// use further down when computing the implied bounds.
match ocx.select_all_or_error().as_slice() {
[] => (),
_ => return Err(NoSolution),
}
// We lazily compute the outlives components as
// `select_all_or_error` constrains inference variables.
let mut implied_bounds = Vec::new();
for ty::OutlivesPredicate(a, r_b) in outlives_bounds {
match a.unpack() {
ty::GenericArgKind::Lifetime(r_a) => {
implied_bounds.push(OutlivesBound::RegionSubRegion(r_b, r_a))
}
ty::GenericArgKind::Type(ty_a) => {
let mut ty_a = ocx.infcx.resolve_vars_if_possible(ty_a);
// Need to manually normalize in the new solver as `wf::obligations` does not.
if ocx.infcx.next_trait_solver() {
ty_a = solve::deeply_normalize(
ocx.infcx.at(&ObligationCause::dummy(), param_env),
ty_a,
)
.map_err(|_errs| NoSolution)?;
}
let mut components = smallvec![];
push_outlives_components(tcx, ty_a, &mut components);
implied_bounds.extend(implied_bounds_from_components(r_b, components))
}
ty::GenericArgKind::Const(_) => unreachable!(),
}
}
Ok(implied_bounds)
}
/// When we have an implied bound that `T: 'a`, we can further break
/// this down to determine what relationships would have to hold for
/// `T: 'a` to hold. We get to assume that the caller has validated
/// those relationships.
fn implied_bounds_from_components<'tcx>(
sub_region: ty::Region<'tcx>,
sup_components: SmallVec<[Component<'tcx>; 4]>,
) -> Vec<OutlivesBound<'tcx>> {
sup_components
.into_iter()
.filter_map(|component| {
match component {
Component::Region(r) => Some(OutlivesBound::RegionSubRegion(sub_region, r)),
Component::Param(p) => Some(OutlivesBound::RegionSubParam(sub_region, p)),
Component::Alias(p) => Some(OutlivesBound::RegionSubAlias(sub_region, p)),
Component::EscapingAlias(_) =>
// If the projection has escaping regions, don't
// try to infer any implied bounds even for its
// free components. This is conservative, because
// the caller will still have to prove that those
// free components outlive `sub_region`. But the
// idea is that the WAY that the caller proves
// that may change in the future and we want to
// give ourselves room to get smarter here.
{
None
}
Component::UnresolvedInferenceVariable(..) => None,
}
})
.collect()
}