blob: b0a348985708df204f974741f3974f11dc4cd718 [file] [log] [blame]
use crate::traits::error_reporting::TypeErrCtxtExt;
use crate::traits::query::evaluate_obligation::InferCtxtExt;
use crate::traits::{needs_normalization, BoundVarReplacer, PlaceholderReplacer};
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_infer::infer::at::At;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::traits::TraitEngineExt;
use rustc_infer::traits::{FulfillmentError, Obligation, TraitEngine};
use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
use rustc_middle::traits::Reveal;
use rustc_middle::ty::{self, AliasTy, Ty, TyCtxt, UniverseIndex};
use rustc_middle::ty::{FallibleTypeFolder, TypeSuperFoldable};
use rustc_middle::ty::{TypeFoldable, TypeVisitableExt};
use super::FulfillmentCtxt;
/// Deeply normalize all aliases in `value`. This does not handle inference and expects
/// its input to be already fully resolved.
pub(crate) fn deeply_normalize<'tcx, T: TypeFoldable<TyCtxt<'tcx>>>(
at: At<'_, 'tcx>,
value: T,
) -> Result<T, Vec<FulfillmentError<'tcx>>> {
assert!(!value.has_escaping_bound_vars());
deeply_normalize_with_skipped_universes(at, value, vec![])
}
/// Deeply normalize all aliases in `value`. This does not handle inference and expects
/// its input to be already fully resolved.
///
/// Additionally takes a list of universes which represents the binders which have been
/// entered before passing `value` to the function. This is currently needed for
/// `normalize_erasing_regions`, which skips binders as it walks through a type.
pub(crate) fn deeply_normalize_with_skipped_universes<'tcx, T: TypeFoldable<TyCtxt<'tcx>>>(
at: At<'_, 'tcx>,
value: T,
universes: Vec<Option<UniverseIndex>>,
) -> Result<T, Vec<FulfillmentError<'tcx>>> {
let fulfill_cx = FulfillmentCtxt::new(at.infcx);
let mut folder = NormalizationFolder { at, fulfill_cx, depth: 0, universes };
value.try_fold_with(&mut folder)
}
struct NormalizationFolder<'me, 'tcx> {
at: At<'me, 'tcx>,
fulfill_cx: FulfillmentCtxt<'tcx>,
depth: usize,
universes: Vec<Option<UniverseIndex>>,
}
impl<'tcx> NormalizationFolder<'_, 'tcx> {
fn normalize_alias_ty(
&mut self,
alias: AliasTy<'tcx>,
) -> Result<Ty<'tcx>, Vec<FulfillmentError<'tcx>>> {
let infcx = self.at.infcx;
let tcx = infcx.tcx;
let recursion_limit = tcx.recursion_limit();
if !recursion_limit.value_within_limit(self.depth) {
self.at.infcx.err_ctxt().report_overflow_error(
&alias.to_ty(tcx),
self.at.cause.span,
true,
|_| {},
);
}
self.depth += 1;
let new_infer_ty = infcx.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::NormalizeProjectionType,
span: self.at.cause.span,
});
let obligation = Obligation::new(
tcx,
self.at.cause.clone(),
self.at.param_env,
ty::ProjectionPredicate { projection_ty: alias, term: new_infer_ty.into() },
);
// Do not emit an error if normalization is known to fail but instead
// keep the projection unnormalized. This is the case for projections
// with a `T: Trait` where-clause and opaque types outside of the defining
// scope.
let result = if infcx.predicate_may_hold(&obligation) {
self.fulfill_cx.register_predicate_obligation(infcx, obligation);
let errors = self.fulfill_cx.select_all_or_error(infcx);
if !errors.is_empty() {
return Err(errors);
}
let ty = infcx.resolve_vars_if_possible(new_infer_ty);
ty.try_fold_with(self)?
} else {
alias.to_ty(tcx).try_super_fold_with(self)?
};
self.depth -= 1;
Ok(result)
}
fn normalize_unevaluated_const(
&mut self,
ty: Ty<'tcx>,
uv: ty::UnevaluatedConst<'tcx>,
) -> Result<ty::Const<'tcx>, Vec<FulfillmentError<'tcx>>> {
let infcx = self.at.infcx;
let tcx = infcx.tcx;
let recursion_limit = tcx.recursion_limit();
if !recursion_limit.value_within_limit(self.depth) {
self.at.infcx.err_ctxt().report_overflow_error(
&ty::Const::new_unevaluated(tcx, uv, ty),
self.at.cause.span,
true,
|_| {},
);
}
self.depth += 1;
let new_infer_ct = infcx.next_const_var(
ty,
ConstVariableOrigin {
kind: ConstVariableOriginKind::MiscVariable,
span: self.at.cause.span,
},
);
let obligation = Obligation::new(
tcx,
self.at.cause.clone(),
self.at.param_env,
ty::ProjectionPredicate {
projection_ty: AliasTy::new(tcx, uv.def, uv.args),
term: new_infer_ct.into(),
},
);
let result = if infcx.predicate_may_hold(&obligation) {
self.fulfill_cx.register_predicate_obligation(infcx, obligation);
let errors = self.fulfill_cx.select_all_or_error(infcx);
if !errors.is_empty() {
return Err(errors);
}
let ct = infcx.resolve_vars_if_possible(new_infer_ct);
ct.try_fold_with(self)?
} else {
ty::Const::new_unevaluated(tcx, uv, ty).try_super_fold_with(self)?
};
self.depth -= 1;
Ok(result)
}
}
impl<'tcx> FallibleTypeFolder<TyCtxt<'tcx>> for NormalizationFolder<'_, 'tcx> {
type Error = Vec<FulfillmentError<'tcx>>;
fn interner(&self) -> TyCtxt<'tcx> {
self.at.infcx.tcx
}
fn try_fold_binder<T: TypeFoldable<TyCtxt<'tcx>>>(
&mut self,
t: ty::Binder<'tcx, T>,
) -> Result<ty::Binder<'tcx, T>, Self::Error> {
self.universes.push(None);
let t = t.try_super_fold_with(self)?;
self.universes.pop();
Ok(t)
}
fn try_fold_ty(&mut self, ty: Ty<'tcx>) -> Result<Ty<'tcx>, Self::Error> {
let reveal = self.at.param_env.reveal();
let infcx = self.at.infcx;
debug_assert_eq!(ty, infcx.shallow_resolve(ty));
if !needs_normalization(&ty, reveal) {
return Ok(ty);
}
// We don't normalize opaque types unless we have
// `Reveal::All`, even if we're in the defining scope.
let data = match *ty.kind() {
ty::Alias(kind, alias_ty) if kind != ty::Opaque || reveal == Reveal::All => alias_ty,
_ => return ty.try_super_fold_with(self),
};
if data.has_escaping_bound_vars() {
let (data, mapped_regions, mapped_types, mapped_consts) =
BoundVarReplacer::replace_bound_vars(infcx, &mut self.universes, data);
let result = ensure_sufficient_stack(|| self.normalize_alias_ty(data))?;
Ok(PlaceholderReplacer::replace_placeholders(
infcx,
mapped_regions,
mapped_types,
mapped_consts,
&self.universes,
result,
))
} else {
ensure_sufficient_stack(|| self.normalize_alias_ty(data))
}
}
fn try_fold_const(&mut self, ct: ty::Const<'tcx>) -> Result<ty::Const<'tcx>, Self::Error> {
let reveal = self.at.param_env.reveal();
let infcx = self.at.infcx;
debug_assert_eq!(ct, infcx.shallow_resolve(ct));
if !needs_normalization(&ct, reveal) {
return Ok(ct);
}
let uv = match ct.kind() {
ty::ConstKind::Unevaluated(ct) => ct,
_ => return ct.try_super_fold_with(self),
};
if uv.has_escaping_bound_vars() {
let (uv, mapped_regions, mapped_types, mapped_consts) =
BoundVarReplacer::replace_bound_vars(infcx, &mut self.universes, uv);
let result = ensure_sufficient_stack(|| self.normalize_unevaluated_const(ct.ty(), uv))?;
Ok(PlaceholderReplacer::replace_placeholders(
infcx,
mapped_regions,
mapped_types,
mapped_consts,
&self.universes,
result,
))
} else {
ensure_sufficient_stack(|| self.normalize_unevaluated_const(ct.ty(), uv))
}
}
}