blob: 706493b0a6a696181ecda5a23dd15a3ac18d2a7e [file] [log] [blame]
// Reference: CSKY ABI Manual
// https://occ-oss-prod.oss-cn-hangzhou.aliyuncs.com/resource//1695027452256/T-HEAD_800_Series_ABI_Standards_Manual.pdf
//
// Reference: Clang CSKY lowering code
// https://github.com/llvm/llvm-project/blob/4a074f32a6914f2a8d7215d78758c24942dddc3d/clang/lib/CodeGen/Targets/CSKY.cpp#L76-L162
use crate::abi::call::{ArgAbi, FnAbi, Reg, Uniform};
fn classify_ret<Ty>(arg: &mut ArgAbi<'_, Ty>) {
// For return type, aggregate which <= 2*XLen will be returned in registers.
// Otherwise, aggregate will be returned indirectly.
if arg.layout.is_aggregate() {
let total = arg.layout.size;
if total.bits() > 64 {
arg.make_indirect();
} else if total.bits() > 32 {
arg.cast_to(Uniform { unit: Reg::i32(), total });
} else {
arg.cast_to(Reg::i32());
}
} else {
arg.extend_integer_width_to(32);
}
}
fn classify_arg<Ty>(arg: &mut ArgAbi<'_, Ty>) {
// For argument type, the first 4*XLen parts of aggregate will be passed
// in registers, and the rest will be passed in stack.
// So we can coerce to integers directly and let backend handle it correctly.
if arg.layout.is_aggregate() {
let total = arg.layout.size;
if total.bits() > 32 {
arg.cast_to(Uniform { unit: Reg::i32(), total });
} else {
arg.cast_to(Reg::i32());
}
} else {
arg.extend_integer_width_to(32);
}
}
pub fn compute_abi_info<Ty>(fn_abi: &mut FnAbi<'_, Ty>) {
if !fn_abi.ret.is_ignore() {
classify_ret(&mut fn_abi.ret);
}
for arg in fn_abi.args.iter_mut() {
if arg.is_ignore() {
continue;
}
classify_arg(arg);
}
}