blob: 80a549b30f799967e729d13bc5c9d67d9b08e2d0 [file] [log] [blame]
use crate::code_stats::CodeStats;
pub use crate::code_stats::{DataTypeKind, FieldInfo, FieldKind, SizeKind, VariantInfo};
use crate::config::{
self, CrateType, InstrumentCoverage, OptLevel, OutFileName, OutputType,
RemapPathScopeComponents, SwitchWithOptPath,
};
use crate::config::{ErrorOutputType, Input};
use crate::errors;
use crate::parse::{add_feature_diagnostics, ParseSess};
use crate::search_paths::{PathKind, SearchPath};
use crate::{filesearch, lint};
pub use rustc_ast::attr::MarkedAttrs;
pub use rustc_ast::Attribute;
use rustc_data_structures::flock;
use rustc_data_structures::fx::{FxHashMap, FxIndexSet};
use rustc_data_structures::jobserver::{self, Client};
use rustc_data_structures::profiling::{duration_to_secs_str, SelfProfiler, SelfProfilerRef};
use rustc_data_structures::sync::{
AtomicU64, AtomicUsize, Lock, Lrc, OneThread, Ordering, Ordering::SeqCst,
};
use rustc_errors::annotate_snippet_emitter_writer::AnnotateSnippetEmitterWriter;
use rustc_errors::emitter::{DynEmitter, EmitterWriter, HumanReadableErrorType};
use rustc_errors::json::JsonEmitter;
use rustc_errors::registry::Registry;
use rustc_errors::{
error_code, fallback_fluent_bundle, DiagnosticBuilder, DiagnosticId, DiagnosticMessage,
ErrorGuaranteed, FluentBundle, Handler, IntoDiagnostic, LazyFallbackBundle, MultiSpan, Noted,
TerminalUrl,
};
use rustc_macros::HashStable_Generic;
pub use rustc_span::def_id::StableCrateId;
use rustc_span::edition::Edition;
use rustc_span::source_map::{FileLoader, RealFileLoader, SourceMap};
use rustc_span::{SourceFileHashAlgorithm, Span, Symbol};
use rustc_target::asm::InlineAsmArch;
use rustc_target::spec::{CodeModel, PanicStrategy, RelocModel, RelroLevel};
use rustc_target::spec::{
DebuginfoKind, SanitizerSet, SplitDebuginfo, StackProtector, Target, TargetTriple, TlsModel,
};
use std::cell::{self, RefCell};
use std::env;
use std::fmt;
use std::ops::{Div, Mul};
use std::path::{Path, PathBuf};
use std::str::FromStr;
use std::sync::{atomic::AtomicBool, Arc};
use std::time::Duration;
pub struct OptimizationFuel {
/// If `-zfuel=crate=n` is specified, initially set to `n`, otherwise `0`.
remaining: u64,
/// We're rejecting all further optimizations.
out_of_fuel: bool,
}
/// The behavior of the CTFE engine when an error occurs with regards to backtraces.
#[derive(Clone, Copy)]
pub enum CtfeBacktrace {
/// Do nothing special, return the error as usual without a backtrace.
Disabled,
/// Capture a backtrace at the point the error is created and return it in the error
/// (to be printed later if/when the error ever actually gets shown to the user).
Capture,
/// Capture a backtrace at the point the error is created and immediately print it out.
Immediate,
}
/// New-type wrapper around `usize` for representing limits. Ensures that comparisons against
/// limits are consistent throughout the compiler.
#[derive(Clone, Copy, Debug, HashStable_Generic)]
pub struct Limit(pub usize);
impl Limit {
/// Create a new limit from a `usize`.
pub fn new(value: usize) -> Self {
Limit(value)
}
/// Check that `value` is within the limit. Ensures that the same comparisons are used
/// throughout the compiler, as mismatches can cause ICEs, see #72540.
#[inline]
pub fn value_within_limit(&self, value: usize) -> bool {
value <= self.0
}
}
impl From<usize> for Limit {
fn from(value: usize) -> Self {
Self::new(value)
}
}
impl fmt::Display for Limit {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl Div<usize> for Limit {
type Output = Limit;
fn div(self, rhs: usize) -> Self::Output {
Limit::new(self.0 / rhs)
}
}
impl Mul<usize> for Limit {
type Output = Limit;
fn mul(self, rhs: usize) -> Self::Output {
Limit::new(self.0 * rhs)
}
}
impl rustc_errors::IntoDiagnosticArg for Limit {
fn into_diagnostic_arg(self) -> rustc_errors::DiagnosticArgValue<'static> {
self.to_string().into_diagnostic_arg()
}
}
#[derive(Clone, Copy, Debug, HashStable_Generic)]
pub struct Limits {
/// The maximum recursion limit for potentially infinitely recursive
/// operations such as auto-dereference and monomorphization.
pub recursion_limit: Limit,
/// The size at which the `large_assignments` lint starts
/// being emitted.
pub move_size_limit: Limit,
/// The maximum length of types during monomorphization.
pub type_length_limit: Limit,
}
pub struct CompilerIO {
pub input: Input,
pub output_dir: Option<PathBuf>,
pub output_file: Option<OutFileName>,
pub temps_dir: Option<PathBuf>,
}
/// Represents the data associated with a compilation
/// session for a single crate.
pub struct Session {
pub target: Target,
pub host: Target,
pub opts: config::Options,
pub host_tlib_path: Lrc<SearchPath>,
pub target_tlib_path: Lrc<SearchPath>,
pub parse_sess: ParseSess,
pub sysroot: PathBuf,
/// Input, input file path and output file path to this compilation process.
pub io: CompilerIO,
incr_comp_session: OneThread<RefCell<IncrCompSession>>,
/// Used by `-Z self-profile`.
pub prof: SelfProfilerRef,
/// Some measurements that are being gathered during compilation.
pub perf_stats: PerfStats,
/// Data about code being compiled, gathered during compilation.
pub code_stats: CodeStats,
/// Tracks fuel info if `-zfuel=crate=n` is specified.
optimization_fuel: Lock<OptimizationFuel>,
/// Always set to zero and incremented so that we can print fuel expended by a crate.
pub print_fuel: AtomicU64,
/// Loaded up early on in the initialization of this `Session` to avoid
/// false positives about a job server in our environment.
pub jobserver: Client,
/// Cap lint level specified by a driver specifically.
pub driver_lint_caps: FxHashMap<lint::LintId, lint::Level>,
/// Tracks the current behavior of the CTFE engine when an error occurs.
/// Options range from returning the error without a backtrace to returning an error
/// and immediately printing the backtrace to stderr.
/// The `Lock` is only used by miri to allow setting `ctfe_backtrace` after analysis when
/// `MIRI_BACKTRACE` is set. This makes it only apply to miri's errors and not to all CTFE
/// errors.
pub ctfe_backtrace: Lock<CtfeBacktrace>,
/// This tracks where `-Zunleash-the-miri-inside-of-you` was used to get around a
/// const check, optionally with the relevant feature gate. We use this to
/// warn about unleashing, but with a single diagnostic instead of dozens that
/// drown everything else in noise.
miri_unleashed_features: Lock<Vec<(Span, Option<Symbol>)>>,
/// Architecture to use for interpreting asm!.
pub asm_arch: Option<InlineAsmArch>,
/// Set of enabled features for the current target.
pub target_features: FxIndexSet<Symbol>,
/// Set of enabled features for the current target, including unstable ones.
pub unstable_target_features: FxIndexSet<Symbol>,
/// The version of the rustc process, possibly including a commit hash and description.
pub cfg_version: &'static str,
/// The inner atomic value is set to true when a feature marked as `internal` is
/// enabled. Makes it so that "please report a bug" is hidden, as ICEs with
/// internal features are wontfix, and they are usually the cause of the ICEs.
/// None signifies that this is not tracked.
pub using_internal_features: Arc<AtomicBool>,
/// All commandline args used to invoke the compiler, with @file args fully expanded.
/// This will only be used within debug info, e.g. in the pdb file on windows
/// This is mainly useful for other tools that reads that debuginfo to figure out
/// how to call the compiler with the same arguments.
pub expanded_args: Vec<String>,
}
pub struct PerfStats {
/// The accumulated time spent on computing symbol hashes.
pub symbol_hash_time: Lock<Duration>,
/// Total number of values canonicalized queries constructed.
pub queries_canonicalized: AtomicUsize,
/// Number of times this query is invoked.
pub normalize_generic_arg_after_erasing_regions: AtomicUsize,
/// Number of times this query is invoked.
pub normalize_projection_ty: AtomicUsize,
}
#[derive(PartialEq, Eq, PartialOrd, Ord)]
pub enum MetadataKind {
None,
Uncompressed,
Compressed,
}
#[derive(Clone, Copy)]
pub enum CodegenUnits {
/// Specified by the user. In this case we try fairly hard to produce the
/// number of CGUs requested.
User(usize),
/// A default value, i.e. not specified by the user. In this case we take
/// more liberties about CGU formation, e.g. avoid producing very small
/// CGUs.
Default(usize),
}
impl CodegenUnits {
pub fn as_usize(self) -> usize {
match self {
CodegenUnits::User(n) => n,
CodegenUnits::Default(n) => n,
}
}
}
impl Session {
pub fn miri_unleashed_feature(&self, span: Span, feature_gate: Option<Symbol>) {
self.miri_unleashed_features.lock().push((span, feature_gate));
}
pub fn local_crate_source_file(&self) -> Option<PathBuf> {
let path = self.io.input.opt_path()?;
if self.should_prefer_remapped_for_codegen() {
Some(self.opts.file_path_mapping().map_prefix(path).0.into_owned())
} else {
Some(path.to_path_buf())
}
}
fn check_miri_unleashed_features(&self) {
let unleashed_features = self.miri_unleashed_features.lock();
if !unleashed_features.is_empty() {
let mut must_err = false;
// Create a diagnostic pointing at where things got unleashed.
self.emit_warning(errors::SkippingConstChecks {
unleashed_features: unleashed_features
.iter()
.map(|(span, gate)| {
gate.map(|gate| {
must_err = true;
errors::UnleashedFeatureHelp::Named { span: *span, gate }
})
.unwrap_or(errors::UnleashedFeatureHelp::Unnamed { span: *span })
})
.collect(),
});
// If we should err, make sure we did.
if must_err && self.has_errors().is_none() {
// We have skipped a feature gate, and not run into other errors... reject.
self.emit_err(errors::NotCircumventFeature);
}
}
}
/// Invoked all the way at the end to finish off diagnostics printing.
pub fn finish_diagnostics(&self, registry: &Registry) {
self.check_miri_unleashed_features();
self.diagnostic().print_error_count(registry);
self.emit_future_breakage();
}
fn emit_future_breakage(&self) {
if !self.opts.json_future_incompat {
return;
}
let diags = self.diagnostic().take_future_breakage_diagnostics();
if diags.is_empty() {
return;
}
self.parse_sess.span_diagnostic.emit_future_breakage_report(diags);
}
/// Returns true if the crate is a testing one.
pub fn is_test_crate(&self) -> bool {
self.opts.test
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn struct_span_warn<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, ()> {
self.diagnostic().struct_span_warn(sp, msg)
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn struct_span_warn_with_expectation<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<DiagnosticMessage>,
id: lint::LintExpectationId,
) -> DiagnosticBuilder<'_, ()> {
self.diagnostic().struct_span_warn_with_expectation(sp, msg, id)
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn struct_span_warn_with_code<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) -> DiagnosticBuilder<'_, ()> {
self.diagnostic().struct_span_warn_with_code(sp, msg, code)
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn struct_warn(&self, msg: impl Into<DiagnosticMessage>) -> DiagnosticBuilder<'_, ()> {
self.diagnostic().struct_warn(msg)
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn struct_warn_with_expectation(
&self,
msg: impl Into<DiagnosticMessage>,
id: lint::LintExpectationId,
) -> DiagnosticBuilder<'_, ()> {
self.diagnostic().struct_warn_with_expectation(msg, id)
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn struct_span_allow<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, ()> {
self.diagnostic().struct_span_allow(sp, msg)
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn struct_allow(&self, msg: impl Into<DiagnosticMessage>) -> DiagnosticBuilder<'_, ()> {
self.diagnostic().struct_allow(msg)
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn struct_expect(
&self,
msg: impl Into<DiagnosticMessage>,
id: lint::LintExpectationId,
) -> DiagnosticBuilder<'_, ()> {
self.diagnostic().struct_expect(msg, id)
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn struct_span_err<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
self.diagnostic().struct_span_err(sp, msg)
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn struct_span_err_with_code<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
self.diagnostic().struct_span_err_with_code(sp, msg, code)
}
// FIXME: This method should be removed (every error should have an associated error code).
#[rustc_lint_diagnostics]
#[track_caller]
pub fn struct_err(
&self,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
self.parse_sess.struct_err(msg)
}
#[track_caller]
#[rustc_lint_diagnostics]
pub fn struct_err_with_code(
&self,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
self.diagnostic().struct_err_with_code(msg, code)
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn struct_warn_with_code(
&self,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) -> DiagnosticBuilder<'_, ()> {
self.diagnostic().struct_warn_with_code(msg, code)
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn struct_span_fatal<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, !> {
self.diagnostic().struct_span_fatal(sp, msg)
}
#[rustc_lint_diagnostics]
pub fn struct_span_fatal_with_code<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) -> DiagnosticBuilder<'_, !> {
self.diagnostic().struct_span_fatal_with_code(sp, msg, code)
}
#[rustc_lint_diagnostics]
pub fn struct_fatal(&self, msg: impl Into<DiagnosticMessage>) -> DiagnosticBuilder<'_, !> {
self.diagnostic().struct_fatal(msg)
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn span_fatal<S: Into<MultiSpan>>(&self, sp: S, msg: impl Into<DiagnosticMessage>) -> ! {
self.diagnostic().span_fatal(sp, msg)
}
#[rustc_lint_diagnostics]
pub fn span_fatal_with_code<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) -> ! {
self.diagnostic().span_fatal_with_code(sp, msg, code)
}
#[rustc_lint_diagnostics]
pub fn fatal(&self, msg: impl Into<DiagnosticMessage>) -> ! {
self.diagnostic().fatal(msg).raise()
}
#[rustc_lint_diagnostics]
#[track_caller]
pub fn span_err<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<DiagnosticMessage>,
) -> ErrorGuaranteed {
self.diagnostic().span_err(sp, msg)
}
#[rustc_lint_diagnostics]
pub fn span_err_with_code<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) {
self.diagnostic().span_err_with_code(sp, msg, code)
}
#[rustc_lint_diagnostics]
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
pub fn err(&self, msg: impl Into<DiagnosticMessage>) -> ErrorGuaranteed {
self.diagnostic().err(msg)
}
#[track_caller]
pub fn create_err<'a>(
&'a self,
err: impl IntoDiagnostic<'a>,
) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
self.parse_sess.create_err(err)
}
#[track_caller]
pub fn create_feature_err<'a>(
&'a self,
err: impl IntoDiagnostic<'a>,
feature: Symbol,
) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
let mut err = self.parse_sess.create_err(err);
if err.code.is_none() {
err.code = std::option::Option::Some(error_code!(E0658));
}
add_feature_diagnostics(&mut err, &self.parse_sess, feature);
err
}
#[track_caller]
pub fn emit_err<'a>(&'a self, err: impl IntoDiagnostic<'a>) -> ErrorGuaranteed {
self.parse_sess.emit_err(err)
}
#[track_caller]
pub fn create_warning<'a>(
&'a self,
err: impl IntoDiagnostic<'a, ()>,
) -> DiagnosticBuilder<'a, ()> {
self.parse_sess.create_warning(err)
}
#[track_caller]
pub fn emit_warning<'a>(&'a self, warning: impl IntoDiagnostic<'a, ()>) {
self.parse_sess.emit_warning(warning)
}
#[track_caller]
pub fn create_note<'a>(
&'a self,
note: impl IntoDiagnostic<'a, Noted>,
) -> DiagnosticBuilder<'a, Noted> {
self.parse_sess.create_note(note)
}
#[track_caller]
pub fn emit_note<'a>(&'a self, note: impl IntoDiagnostic<'a, Noted>) -> Noted {
self.parse_sess.emit_note(note)
}
#[track_caller]
pub fn create_fatal<'a>(
&'a self,
fatal: impl IntoDiagnostic<'a, !>,
) -> DiagnosticBuilder<'a, !> {
self.parse_sess.create_fatal(fatal)
}
#[track_caller]
pub fn emit_fatal<'a>(&'a self, fatal: impl IntoDiagnostic<'a, !>) -> ! {
self.parse_sess.emit_fatal(fatal)
}
#[inline]
pub fn err_count(&self) -> usize {
self.diagnostic().err_count()
}
pub fn has_errors(&self) -> Option<ErrorGuaranteed> {
self.diagnostic().has_errors()
}
pub fn has_errors_or_delayed_span_bugs(&self) -> Option<ErrorGuaranteed> {
self.diagnostic().has_errors_or_delayed_span_bugs()
}
pub fn is_compilation_going_to_fail(&self) -> Option<ErrorGuaranteed> {
self.diagnostic().is_compilation_going_to_fail()
}
pub fn abort_if_errors(&self) {
self.diagnostic().abort_if_errors();
}
pub fn compile_status(&self) -> Result<(), ErrorGuaranteed> {
if let Some(reported) = self.diagnostic().has_errors_or_lint_errors() {
let _ = self.diagnostic().emit_stashed_diagnostics();
Err(reported)
} else {
Ok(())
}
}
// FIXME(matthewjasper) Remove this method, it should never be needed.
pub fn track_errors<F, T>(&self, f: F) -> Result<T, ErrorGuaranteed>
where
F: FnOnce() -> T,
{
let old_count = self.err_count();
let result = f();
if self.err_count() == old_count {
Ok(result)
} else {
Err(self.delay_span_bug(
rustc_span::DUMMY_SP,
"`self.err_count()` changed but an error was not emitted",
))
}
}
#[rustc_lint_diagnostics]
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
#[track_caller]
pub fn span_warn<S: Into<MultiSpan>>(&self, sp: S, msg: impl Into<DiagnosticMessage>) {
self.diagnostic().span_warn(sp, msg)
}
#[rustc_lint_diagnostics]
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
pub fn span_warn_with_code<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) {
self.diagnostic().span_warn_with_code(sp, msg, code)
}
#[rustc_lint_diagnostics]
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
pub fn warn(&self, msg: impl Into<DiagnosticMessage>) {
self.diagnostic().warn(msg)
}
/// Ensures that compilation cannot succeed.
///
/// If this function has been called but no errors have been emitted and
/// compilation succeeds, it will cause an internal compiler error (ICE).
///
/// This can be used in code paths that should never run on successful compilations.
/// For example, it can be used to create an [`ErrorGuaranteed`]
/// (but you should prefer threading through the [`ErrorGuaranteed`] from an error emission directly).
///
/// If no span is available, use [`DUMMY_SP`].
///
/// [`DUMMY_SP`]: rustc_span::DUMMY_SP
#[track_caller]
pub fn delay_span_bug<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<String>,
) -> ErrorGuaranteed {
self.diagnostic().delay_span_bug(sp, msg)
}
/// Used for code paths of expensive computations that should only take place when
/// warnings or errors are emitted. If no messages are emitted ("good path"), then
/// it's likely a bug.
pub fn delay_good_path_bug(&self, msg: impl Into<DiagnosticMessage>) {
if self.opts.unstable_opts.print_type_sizes
|| self.opts.unstable_opts.query_dep_graph
|| self.opts.unstable_opts.dump_mir.is_some()
|| self.opts.unstable_opts.unpretty.is_some()
|| self.opts.output_types.contains_key(&OutputType::Mir)
|| std::env::var_os("RUSTC_LOG").is_some()
{
return;
}
self.diagnostic().delay_good_path_bug(msg)
}
#[rustc_lint_diagnostics]
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
pub fn note_without_error(&self, msg: impl Into<DiagnosticMessage>) {
self.diagnostic().note_without_error(msg)
}
#[track_caller]
#[rustc_lint_diagnostics]
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
pub fn span_note_without_error<S: Into<MultiSpan>>(
&self,
sp: S,
msg: impl Into<DiagnosticMessage>,
) {
self.diagnostic().span_note_without_error(sp, msg)
}
#[rustc_lint_diagnostics]
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
pub fn struct_note_without_error(
&self,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, ()> {
self.diagnostic().struct_note_without_error(msg)
}
#[inline]
pub fn diagnostic(&self) -> &rustc_errors::Handler {
&self.parse_sess.span_diagnostic
}
#[inline]
pub fn source_map(&self) -> &SourceMap {
self.parse_sess.source_map()
}
/// Returns `true` if internal lints should be added to the lint store - i.e. if
/// `-Zunstable-options` is provided and this isn't rustdoc (internal lints can trigger errors
/// to be emitted under rustdoc).
pub fn enable_internal_lints(&self) -> bool {
self.unstable_options() && !self.opts.actually_rustdoc
}
pub fn instrument_coverage(&self) -> bool {
self.opts.cg.instrument_coverage() != InstrumentCoverage::Off
}
pub fn instrument_coverage_branch(&self) -> bool {
self.opts.cg.instrument_coverage() == InstrumentCoverage::Branch
}
pub fn instrument_coverage_except_unused_generics(&self) -> bool {
self.opts.cg.instrument_coverage() == InstrumentCoverage::ExceptUnusedGenerics
}
pub fn instrument_coverage_except_unused_functions(&self) -> bool {
self.opts.cg.instrument_coverage() == InstrumentCoverage::ExceptUnusedFunctions
}
pub fn is_sanitizer_cfi_enabled(&self) -> bool {
self.opts.unstable_opts.sanitizer.contains(SanitizerSet::CFI)
}
pub fn is_sanitizer_cfi_canonical_jump_tables_disabled(&self) -> bool {
self.opts.unstable_opts.sanitizer_cfi_canonical_jump_tables == Some(false)
}
pub fn is_sanitizer_cfi_canonical_jump_tables_enabled(&self) -> bool {
self.opts.unstable_opts.sanitizer_cfi_canonical_jump_tables == Some(true)
}
pub fn is_sanitizer_cfi_generalize_pointers_enabled(&self) -> bool {
self.opts.unstable_opts.sanitizer_cfi_generalize_pointers == Some(true)
}
pub fn is_sanitizer_cfi_normalize_integers_enabled(&self) -> bool {
self.opts.unstable_opts.sanitizer_cfi_normalize_integers == Some(true)
}
pub fn is_sanitizer_kcfi_enabled(&self) -> bool {
self.opts.unstable_opts.sanitizer.contains(SanitizerSet::KCFI)
}
pub fn is_split_lto_unit_enabled(&self) -> bool {
self.opts.unstable_opts.split_lto_unit == Some(true)
}
/// Check whether this compile session and crate type use static crt.
pub fn crt_static(&self, crate_type: Option<CrateType>) -> bool {
if !self.target.crt_static_respected {
// If the target does not opt in to crt-static support, use its default.
return self.target.crt_static_default;
}
let requested_features = self.opts.cg.target_feature.split(',');
let found_negative = requested_features.clone().any(|r| r == "-crt-static");
let found_positive = requested_features.clone().any(|r| r == "+crt-static");
// JUSTIFICATION: necessary use of crate_types directly (see FIXME below)
#[allow(rustc::bad_opt_access)]
if found_positive || found_negative {
found_positive
} else if crate_type == Some(CrateType::ProcMacro)
|| crate_type == None && self.opts.crate_types.contains(&CrateType::ProcMacro)
{
// FIXME: When crate_type is not available,
// we use compiler options to determine the crate_type.
// We can't check `#![crate_type = "proc-macro"]` here.
false
} else {
self.target.crt_static_default
}
}
pub fn is_wasi_reactor(&self) -> bool {
self.target.options.os == "wasi"
&& matches!(
self.opts.unstable_opts.wasi_exec_model,
Some(config::WasiExecModel::Reactor)
)
}
/// Returns `true` if the target can use the current split debuginfo configuration.
pub fn target_can_use_split_dwarf(&self) -> bool {
self.target.debuginfo_kind == DebuginfoKind::Dwarf
}
pub fn generate_proc_macro_decls_symbol(&self, stable_crate_id: StableCrateId) -> String {
format!("__rustc_proc_macro_decls_{:08x}__", stable_crate_id.as_u64())
}
pub fn target_filesearch(&self, kind: PathKind) -> filesearch::FileSearch<'_> {
filesearch::FileSearch::new(
&self.sysroot,
self.opts.target_triple.triple(),
&self.opts.search_paths,
&self.target_tlib_path,
kind,
)
}
pub fn host_filesearch(&self, kind: PathKind) -> filesearch::FileSearch<'_> {
filesearch::FileSearch::new(
&self.sysroot,
config::host_triple(),
&self.opts.search_paths,
&self.host_tlib_path,
kind,
)
}
/// Returns a list of directories where target-specific tool binaries are located.
pub fn get_tools_search_paths(&self, self_contained: bool) -> Vec<PathBuf> {
let rustlib_path = rustc_target::target_rustlib_path(&self.sysroot, &config::host_triple());
let p = PathBuf::from_iter([
Path::new(&self.sysroot),
Path::new(&rustlib_path),
Path::new("bin"),
]);
if self_contained { vec![p.clone(), p.join("self-contained")] } else { vec![p] }
}
pub fn init_incr_comp_session(
&self,
session_dir: PathBuf,
lock_file: flock::Lock,
load_dep_graph: bool,
) {
let mut incr_comp_session = self.incr_comp_session.borrow_mut();
if let IncrCompSession::NotInitialized = *incr_comp_session {
} else {
panic!("Trying to initialize IncrCompSession `{:?}`", *incr_comp_session)
}
*incr_comp_session =
IncrCompSession::Active { session_directory: session_dir, lock_file, load_dep_graph };
}
pub fn finalize_incr_comp_session(&self, new_directory_path: PathBuf) {
let mut incr_comp_session = self.incr_comp_session.borrow_mut();
if let IncrCompSession::Active { .. } = *incr_comp_session {
} else {
panic!("trying to finalize `IncrCompSession` `{:?}`", *incr_comp_session);
}
// Note: this will also drop the lock file, thus unlocking the directory.
*incr_comp_session = IncrCompSession::Finalized { session_directory: new_directory_path };
}
pub fn mark_incr_comp_session_as_invalid(&self) {
let mut incr_comp_session = self.incr_comp_session.borrow_mut();
let session_directory = match *incr_comp_session {
IncrCompSession::Active { ref session_directory, .. } => session_directory.clone(),
IncrCompSession::InvalidBecauseOfErrors { .. } => return,
_ => panic!("trying to invalidate `IncrCompSession` `{:?}`", *incr_comp_session),
};
// Note: this will also drop the lock file, thus unlocking the directory.
*incr_comp_session = IncrCompSession::InvalidBecauseOfErrors { session_directory };
}
pub fn incr_comp_session_dir(&self) -> cell::Ref<'_, PathBuf> {
let incr_comp_session = self.incr_comp_session.borrow();
cell::Ref::map(incr_comp_session, |incr_comp_session| match *incr_comp_session {
IncrCompSession::NotInitialized => panic!(
"trying to get session directory from `IncrCompSession`: {:?}",
*incr_comp_session,
),
IncrCompSession::Active { ref session_directory, .. }
| IncrCompSession::Finalized { ref session_directory }
| IncrCompSession::InvalidBecauseOfErrors { ref session_directory } => {
session_directory
}
})
}
pub fn incr_comp_session_dir_opt(&self) -> Option<cell::Ref<'_, PathBuf>> {
self.opts.incremental.as_ref().map(|_| self.incr_comp_session_dir())
}
pub fn print_perf_stats(&self) {
eprintln!(
"Total time spent computing symbol hashes: {}",
duration_to_secs_str(*self.perf_stats.symbol_hash_time.lock())
);
eprintln!(
"Total queries canonicalized: {}",
self.perf_stats.queries_canonicalized.load(Ordering::Relaxed)
);
eprintln!(
"normalize_generic_arg_after_erasing_regions: {}",
self.perf_stats.normalize_generic_arg_after_erasing_regions.load(Ordering::Relaxed)
);
eprintln!(
"normalize_projection_ty: {}",
self.perf_stats.normalize_projection_ty.load(Ordering::Relaxed)
);
}
/// We want to know if we're allowed to do an optimization for crate foo from -z fuel=foo=n.
/// This expends fuel if applicable, and records fuel if applicable.
pub fn consider_optimizing(
&self,
get_crate_name: impl Fn() -> Symbol,
msg: impl Fn() -> String,
) -> bool {
let mut ret = true;
if let Some((ref c, _)) = self.opts.unstable_opts.fuel {
if c == get_crate_name().as_str() {
assert_eq!(self.threads(), 1);
let mut fuel = self.optimization_fuel.lock();
ret = fuel.remaining != 0;
if fuel.remaining == 0 && !fuel.out_of_fuel {
if self.diagnostic().can_emit_warnings() {
// We only call `msg` in case we can actually emit warnings.
// Otherwise, this could cause a `delay_good_path_bug` to
// trigger (issue #79546).
self.emit_warning(errors::OptimisationFuelExhausted { msg: msg() });
}
fuel.out_of_fuel = true;
} else if fuel.remaining > 0 {
fuel.remaining -= 1;
}
}
}
if let Some(ref c) = self.opts.unstable_opts.print_fuel {
if c == get_crate_name().as_str() {
assert_eq!(self.threads(), 1);
self.print_fuel.fetch_add(1, SeqCst);
}
}
ret
}
/// Is this edition 2015?
pub fn is_rust_2015(&self) -> bool {
self.edition().is_rust_2015()
}
/// Are we allowed to use features from the Rust 2018 edition?
pub fn at_least_rust_2018(&self) -> bool {
self.edition().at_least_rust_2018()
}
/// Are we allowed to use features from the Rust 2021 edition?
pub fn at_least_rust_2021(&self) -> bool {
self.edition().at_least_rust_2021()
}
/// Are we allowed to use features from the Rust 2024 edition?
pub fn at_least_rust_2024(&self) -> bool {
self.edition().at_least_rust_2024()
}
/// Returns `true` if we should use the PLT for shared library calls.
pub fn needs_plt(&self) -> bool {
// Check if the current target usually wants PLT to be enabled.
// The user can use the command line flag to override it.
let want_plt = self.target.plt_by_default;
let dbg_opts = &self.opts.unstable_opts;
let relro_level = dbg_opts.relro_level.unwrap_or(self.target.relro_level);
// Only enable this optimization by default if full relro is also enabled.
// In this case, lazy binding was already unavailable, so nothing is lost.
// This also ensures `-Wl,-z,now` is supported by the linker.
let full_relro = RelroLevel::Full == relro_level;
// If user didn't explicitly forced us to use / skip the PLT,
// then use it unless the target doesn't want it by default or the full relro forces it on.
dbg_opts.plt.unwrap_or(want_plt || !full_relro)
}
/// Checks if LLVM lifetime markers should be emitted.
pub fn emit_lifetime_markers(&self) -> bool {
self.opts.optimize != config::OptLevel::No
// AddressSanitizer and KernelAddressSanitizer uses lifetimes to detect use after scope bugs.
// MemorySanitizer uses lifetimes to detect use of uninitialized stack variables.
// HWAddressSanitizer will use lifetimes to detect use after scope bugs in the future.
|| self.opts.unstable_opts.sanitizer.intersects(SanitizerSet::ADDRESS | SanitizerSet::KERNELADDRESS | SanitizerSet::MEMORY | SanitizerSet::HWADDRESS)
}
pub fn diagnostic_width(&self) -> usize {
let default_column_width = 140;
if let Some(width) = self.opts.diagnostic_width {
width
} else if self.opts.unstable_opts.ui_testing {
default_column_width
} else {
termize::dimensions().map_or(default_column_width, |(w, _)| w)
}
}
}
// JUSTIFICATION: defn of the suggested wrapper fns
#[allow(rustc::bad_opt_access)]
impl Session {
pub fn verbose(&self) -> bool {
self.opts.unstable_opts.verbose
}
pub fn print_llvm_stats(&self) -> bool {
self.opts.unstable_opts.print_codegen_stats
}
pub fn verify_llvm_ir(&self) -> bool {
self.opts.unstable_opts.verify_llvm_ir || option_env!("RUSTC_VERIFY_LLVM_IR").is_some()
}
pub fn binary_dep_depinfo(&self) -> bool {
self.opts.unstable_opts.binary_dep_depinfo
}
pub fn mir_opt_level(&self) -> usize {
self.opts
.unstable_opts
.mir_opt_level
.unwrap_or_else(|| if self.opts.optimize != OptLevel::No { 2 } else { 1 })
}
/// Calculates the flavor of LTO to use for this compilation.
pub fn lto(&self) -> config::Lto {
// If our target has codegen requirements ignore the command line
if self.target.requires_lto {
return config::Lto::Fat;
}
// If the user specified something, return that. If they only said `-C
// lto` and we've for whatever reason forced off ThinLTO via the CLI,
// then ensure we can't use a ThinLTO.
match self.opts.cg.lto {
config::LtoCli::Unspecified => {
// The compiler was invoked without the `-Clto` flag. Fall
// through to the default handling
}
config::LtoCli::No => {
// The user explicitly opted out of any kind of LTO
return config::Lto::No;
}
config::LtoCli::Yes | config::LtoCli::Fat | config::LtoCli::NoParam => {
// All of these mean fat LTO
return config::Lto::Fat;
}
config::LtoCli::Thin => {
// The user explicitly asked for ThinLTO
return config::Lto::Thin;
}
}
// Ok at this point the target doesn't require anything and the user
// hasn't asked for anything. Our next decision is whether or not
// we enable "auto" ThinLTO where we use multiple codegen units and
// then do ThinLTO over those codegen units. The logic below will
// either return `No` or `ThinLocal`.
// If processing command line options determined that we're incompatible
// with ThinLTO (e.g., `-C lto --emit llvm-ir`) then return that option.
if self.opts.cli_forced_local_thinlto_off {
return config::Lto::No;
}
// If `-Z thinlto` specified process that, but note that this is mostly
// a deprecated option now that `-C lto=thin` exists.
if let Some(enabled) = self.opts.unstable_opts.thinlto {
if enabled {
return config::Lto::ThinLocal;
} else {
return config::Lto::No;
}
}
// If there's only one codegen unit and LTO isn't enabled then there's
// no need for ThinLTO so just return false.
if self.codegen_units().as_usize() == 1 {
return config::Lto::No;
}
// Now we're in "defaults" territory. By default we enable ThinLTO for
// optimized compiles (anything greater than O0).
match self.opts.optimize {
config::OptLevel::No => config::Lto::No,
_ => config::Lto::ThinLocal,
}
}
/// Returns the panic strategy for this compile session. If the user explicitly selected one
/// using '-C panic', use that, otherwise use the panic strategy defined by the target.
pub fn panic_strategy(&self) -> PanicStrategy {
self.opts.cg.panic.unwrap_or(self.target.panic_strategy)
}
pub fn fewer_names(&self) -> bool {
if let Some(fewer_names) = self.opts.unstable_opts.fewer_names {
fewer_names
} else {
let more_names = self.opts.output_types.contains_key(&OutputType::LlvmAssembly)
|| self.opts.output_types.contains_key(&OutputType::Bitcode)
// AddressSanitizer and MemorySanitizer use alloca name when reporting an issue.
|| self.opts.unstable_opts.sanitizer.intersects(SanitizerSet::ADDRESS | SanitizerSet::MEMORY);
!more_names
}
}
pub fn unstable_options(&self) -> bool {
self.opts.unstable_opts.unstable_options
}
pub fn is_nightly_build(&self) -> bool {
self.opts.unstable_features.is_nightly_build()
}
pub fn overflow_checks(&self) -> bool {
self.opts.cg.overflow_checks.unwrap_or(self.opts.debug_assertions)
}
pub fn relocation_model(&self) -> RelocModel {
self.opts.cg.relocation_model.unwrap_or(self.target.relocation_model)
}
pub fn code_model(&self) -> Option<CodeModel> {
self.opts.cg.code_model.or(self.target.code_model)
}
pub fn tls_model(&self) -> TlsModel {
self.opts.unstable_opts.tls_model.unwrap_or(self.target.tls_model)
}
pub fn split_debuginfo(&self) -> SplitDebuginfo {
self.opts.cg.split_debuginfo.unwrap_or(self.target.split_debuginfo)
}
pub fn stack_protector(&self) -> StackProtector {
if self.target.options.supports_stack_protector {
self.opts.unstable_opts.stack_protector
} else {
StackProtector::None
}
}
pub fn must_emit_unwind_tables(&self) -> bool {
// This is used to control the emission of the `uwtable` attribute on
// LLVM functions.
//
// Unwind tables are needed when compiling with `-C panic=unwind`, but
// LLVM won't omit unwind tables unless the function is also marked as
// `nounwind`, so users are allowed to disable `uwtable` emission.
// Historically rustc always emits `uwtable` attributes by default, so
// even they can be disabled, they're still emitted by default.
//
// On some targets (including windows), however, exceptions include
// other events such as illegal instructions, segfaults, etc. This means
// that on Windows we end up still needing unwind tables even if the `-C
// panic=abort` flag is passed.
//
// You can also find more info on why Windows needs unwind tables in:
// https://bugzilla.mozilla.org/show_bug.cgi?id=1302078
//
// If a target requires unwind tables, then they must be emitted.
// Otherwise, we can defer to the `-C force-unwind-tables=<yes/no>`
// value, if it is provided, or disable them, if not.
self.target.requires_uwtable
|| self.opts.cg.force_unwind_tables.unwrap_or(
self.panic_strategy() == PanicStrategy::Unwind || self.target.default_uwtable,
)
}
/// Returns the number of query threads that should be used for this
/// compilation
#[inline]
pub fn threads(&self) -> usize {
self.opts.unstable_opts.threads
}
/// Returns the number of codegen units that should be used for this
/// compilation
pub fn codegen_units(&self) -> CodegenUnits {
if let Some(n) = self.opts.cli_forced_codegen_units {
return CodegenUnits::User(n);
}
if let Some(n) = self.target.default_codegen_units {
return CodegenUnits::Default(n as usize);
}
// If incremental compilation is turned on, we default to a high number
// codegen units in order to reduce the "collateral damage" small
// changes cause.
if self.opts.incremental.is_some() {
return CodegenUnits::Default(256);
}
// Why is 16 codegen units the default all the time?
//
// The main reason for enabling multiple codegen units by default is to
// leverage the ability for the codegen backend to do codegen and
// optimization in parallel. This allows us, especially for large crates, to
// make good use of all available resources on the machine once we've
// hit that stage of compilation. Large crates especially then often
// take a long time in codegen/optimization and this helps us amortize that
// cost.
//
// Note that a high number here doesn't mean that we'll be spawning a
// large number of threads in parallel. The backend of rustc contains
// global rate limiting through the `jobserver` crate so we'll never
// overload the system with too much work, but rather we'll only be
// optimizing when we're otherwise cooperating with other instances of
// rustc.
//
// Rather a high number here means that we should be able to keep a lot
// of idle cpus busy. By ensuring that no codegen unit takes *too* long
// to build we'll be guaranteed that all cpus will finish pretty closely
// to one another and we should make relatively optimal use of system
// resources
//
// Note that the main cost of codegen units is that it prevents LLVM
// from inlining across codegen units. Users in general don't have a lot
// of control over how codegen units are split up so it's our job in the
// compiler to ensure that undue performance isn't lost when using
// codegen units (aka we can't require everyone to slap `#[inline]` on
// everything).
//
// If we're compiling at `-O0` then the number doesn't really matter too
// much because performance doesn't matter and inlining is ok to lose.
// In debug mode we just want to try to guarantee that no cpu is stuck
// doing work that could otherwise be farmed to others.
//
// In release mode, however (O1 and above) performance does indeed
// matter! To recover the loss in performance due to inlining we'll be
// enabling ThinLTO by default (the function for which is just below).
// This will ensure that we recover any inlining wins we otherwise lost
// through codegen unit partitioning.
//
// ---
//
// Ok that's a lot of words but the basic tl;dr; is that we want a high
// number here -- but not too high. Additionally we're "safe" to have it
// always at the same number at all optimization levels.
//
// As a result 16 was chosen here! Mostly because it was a power of 2
// and most benchmarks agreed it was roughly a local optimum. Not very
// scientific.
CodegenUnits::Default(16)
}
pub fn teach(&self, code: &DiagnosticId) -> bool {
self.opts.unstable_opts.teach && self.diagnostic().must_teach(code)
}
pub fn edition(&self) -> Edition {
self.opts.edition
}
pub fn link_dead_code(&self) -> bool {
self.opts.cg.link_dead_code.unwrap_or(false)
}
pub fn should_prefer_remapped_for_codegen(&self) -> bool {
// bail out, if any of the requested crate types aren't:
// "compiled executables or libraries"
for crate_type in &self.opts.crate_types {
match crate_type {
CrateType::Executable
| CrateType::Dylib
| CrateType::Rlib
| CrateType::Staticlib
| CrateType::Cdylib => continue,
CrateType::ProcMacro => return false,
}
}
let has_split_debuginfo = match self.split_debuginfo() {
SplitDebuginfo::Off => false,
SplitDebuginfo::Packed => true,
SplitDebuginfo::Unpacked => true,
};
let remap_path_scopes = &self.opts.unstable_opts.remap_path_scope;
let mut prefer_remapped = false;
if remap_path_scopes.contains(RemapPathScopeComponents::UNSPLIT_DEBUGINFO) {
prefer_remapped |= !has_split_debuginfo;
}
if remap_path_scopes.contains(RemapPathScopeComponents::SPLIT_DEBUGINFO) {
prefer_remapped |= has_split_debuginfo;
}
prefer_remapped
}
pub fn should_prefer_remapped_for_split_debuginfo_paths(&self) -> bool {
let has_split_debuginfo = match self.split_debuginfo() {
SplitDebuginfo::Off => false,
SplitDebuginfo::Packed | SplitDebuginfo::Unpacked => true,
};
self.opts
.unstable_opts
.remap_path_scope
.contains(RemapPathScopeComponents::SPLIT_DEBUGINFO_PATH)
&& has_split_debuginfo
}
}
// JUSTIFICATION: part of session construction
#[allow(rustc::bad_opt_access)]
fn default_emitter(
sopts: &config::Options,
registry: rustc_errors::registry::Registry,
source_map: Lrc<SourceMap>,
bundle: Option<Lrc<FluentBundle>>,
fallback_bundle: LazyFallbackBundle,
) -> Box<DynEmitter> {
let macro_backtrace = sopts.unstable_opts.macro_backtrace;
let track_diagnostics = sopts.unstable_opts.track_diagnostics;
let terminal_url = match sopts.unstable_opts.terminal_urls {
TerminalUrl::Auto => {
match (std::env::var("COLORTERM").as_deref(), std::env::var("TERM").as_deref()) {
(Ok("truecolor"), Ok("xterm-256color"))
if sopts.unstable_features.is_nightly_build() =>
{
TerminalUrl::Yes
}
_ => TerminalUrl::No,
}
}
t => t,
};
match sopts.error_format {
config::ErrorOutputType::HumanReadable(kind) => {
let (short, color_config) = kind.unzip();
if let HumanReadableErrorType::AnnotateSnippet(_) = kind {
let emitter = AnnotateSnippetEmitterWriter::new(
Some(source_map),
bundle,
fallback_bundle,
short,
macro_backtrace,
);
Box::new(emitter.ui_testing(sopts.unstable_opts.ui_testing))
} else {
let emitter = EmitterWriter::stderr(color_config, fallback_bundle)
.fluent_bundle(bundle)
.sm(Some(source_map))
.short_message(short)
.teach(sopts.unstable_opts.teach)
.diagnostic_width(sopts.diagnostic_width)
.macro_backtrace(macro_backtrace)
.track_diagnostics(track_diagnostics)
.terminal_url(terminal_url)
.ignored_directories_in_source_blocks(
sopts.unstable_opts.ignore_directory_in_diagnostics_source_blocks.clone(),
);
Box::new(emitter.ui_testing(sopts.unstable_opts.ui_testing))
}
}
config::ErrorOutputType::Json { pretty, json_rendered } => Box::new(
JsonEmitter::stderr(
Some(registry),
source_map,
bundle,
fallback_bundle,
pretty,
json_rendered,
sopts.diagnostic_width,
macro_backtrace,
track_diagnostics,
terminal_url,
)
.ui_testing(sopts.unstable_opts.ui_testing)
.ignored_directories_in_source_blocks(
sopts.unstable_opts.ignore_directory_in_diagnostics_source_blocks.clone(),
),
),
}
}
// JUSTIFICATION: literally session construction
#[allow(rustc::bad_opt_access)]
pub fn build_session(
handler: &EarlyErrorHandler,
sopts: config::Options,
io: CompilerIO,
bundle: Option<Lrc<rustc_errors::FluentBundle>>,
registry: rustc_errors::registry::Registry,
fluent_resources: Vec<&'static str>,
driver_lint_caps: FxHashMap<lint::LintId, lint::Level>,
file_loader: Option<Box<dyn FileLoader + Send + Sync + 'static>>,
target_override: Option<Target>,
cfg_version: &'static str,
ice_file: Option<PathBuf>,
using_internal_features: Arc<AtomicBool>,
expanded_args: Vec<String>,
) -> Session {
// FIXME: This is not general enough to make the warning lint completely override
// normal diagnostic warnings, since the warning lint can also be denied and changed
// later via the source code.
let warnings_allow = sopts
.lint_opts
.iter()
.rfind(|&(key, _)| *key == "warnings")
.is_some_and(|&(_, level)| level == lint::Allow);
let cap_lints_allow = sopts.lint_cap.is_some_and(|cap| cap == lint::Allow);
let can_emit_warnings = !(warnings_allow || cap_lints_allow);
let sysroot = match &sopts.maybe_sysroot {
Some(sysroot) => sysroot.clone(),
None => filesearch::get_or_default_sysroot().expect("Failed finding sysroot"),
};
let target_cfg = config::build_target_config(handler, &sopts, target_override, &sysroot);
let host_triple = TargetTriple::from_triple(config::host_triple());
let (host, target_warnings) = Target::search(&host_triple, &sysroot)
.unwrap_or_else(|e| handler.early_error(format!("Error loading host specification: {e}")));
for warning in target_warnings.warning_messages() {
handler.early_warn(warning)
}
let loader = file_loader.unwrap_or_else(|| Box::new(RealFileLoader));
let hash_kind = sopts.unstable_opts.src_hash_algorithm.unwrap_or_else(|| {
if target_cfg.is_like_msvc {
SourceFileHashAlgorithm::Sha256
} else {
SourceFileHashAlgorithm::Md5
}
});
let source_map = Lrc::new(SourceMap::with_file_loader_and_hash_kind(
loader,
sopts.file_path_mapping(),
hash_kind,
));
let fallback_bundle = fallback_fluent_bundle(
fluent_resources,
sopts.unstable_opts.translate_directionality_markers,
);
let emitter = default_emitter(&sopts, registry, source_map.clone(), bundle, fallback_bundle);
let mut span_diagnostic = rustc_errors::Handler::with_emitter(emitter)
.with_flags(sopts.unstable_opts.diagnostic_handler_flags(can_emit_warnings));
if let Some(ice_file) = ice_file {
span_diagnostic = span_diagnostic.with_ice_file(ice_file);
}
let self_profiler = if let SwitchWithOptPath::Enabled(ref d) = sopts.unstable_opts.self_profile
{
let directory =
if let Some(ref directory) = d { directory } else { std::path::Path::new(".") };
let profiler = SelfProfiler::new(
directory,
sopts.crate_name.as_deref(),
sopts.unstable_opts.self_profile_events.as_deref(),
&sopts.unstable_opts.self_profile_counter,
);
match profiler {
Ok(profiler) => Some(Arc::new(profiler)),
Err(e) => {
handler.early_warn(format!("failed to create profiler: {e}"));
None
}
}
} else {
None
};
let mut parse_sess = ParseSess::with_span_handler(span_diagnostic, source_map);
parse_sess.assume_incomplete_release = sopts.unstable_opts.assume_incomplete_release;
let host_triple = config::host_triple();
let target_triple = sopts.target_triple.triple();
let host_tlib_path = Lrc::new(SearchPath::from_sysroot_and_triple(&sysroot, host_triple));
let target_tlib_path = if host_triple == target_triple {
// Use the same `SearchPath` if host and target triple are identical to avoid unnecessary
// rescanning of the target lib path and an unnecessary allocation.
host_tlib_path.clone()
} else {
Lrc::new(SearchPath::from_sysroot_and_triple(&sysroot, target_triple))
};
let optimization_fuel = Lock::new(OptimizationFuel {
remaining: sopts.unstable_opts.fuel.as_ref().map_or(0, |&(_, i)| i),
out_of_fuel: false,
});
let print_fuel = AtomicU64::new(0);
let prof = SelfProfilerRef::new(
self_profiler,
sopts.unstable_opts.time_passes.then(|| sopts.unstable_opts.time_passes_format),
);
let ctfe_backtrace = Lock::new(match env::var("RUSTC_CTFE_BACKTRACE") {
Ok(ref val) if val == "immediate" => CtfeBacktrace::Immediate,
Ok(ref val) if val != "0" => CtfeBacktrace::Capture,
_ => CtfeBacktrace::Disabled,
});
let asm_arch =
if target_cfg.allow_asm { InlineAsmArch::from_str(&target_cfg.arch).ok() } else { None };
let sess = Session {
target: target_cfg,
host,
opts: sopts,
host_tlib_path,
target_tlib_path,
parse_sess,
sysroot,
io,
incr_comp_session: OneThread::new(RefCell::new(IncrCompSession::NotInitialized)),
prof,
perf_stats: PerfStats {
symbol_hash_time: Lock::new(Duration::from_secs(0)),
queries_canonicalized: AtomicUsize::new(0),
normalize_generic_arg_after_erasing_regions: AtomicUsize::new(0),
normalize_projection_ty: AtomicUsize::new(0),
},
code_stats: Default::default(),
optimization_fuel,
print_fuel,
jobserver: jobserver::client(),
driver_lint_caps,
ctfe_backtrace,
miri_unleashed_features: Lock::new(Default::default()),
asm_arch,
target_features: Default::default(),
unstable_target_features: Default::default(),
cfg_version,
using_internal_features,
expanded_args,
};
validate_commandline_args_with_session_available(&sess);
sess
}
/// Validate command line arguments with a `Session`.
///
/// If it is useful to have a Session available already for validating a commandline argument, you
/// can do so here.
// JUSTIFICATION: needs to access args to validate them
#[allow(rustc::bad_opt_access)]
fn validate_commandline_args_with_session_available(sess: &Session) {
// Since we don't know if code in an rlib will be linked to statically or
// dynamically downstream, rustc generates `__imp_` symbols that help linkers
// on Windows deal with this lack of knowledge (#27438). Unfortunately,
// these manually generated symbols confuse LLD when it tries to merge
// bitcode during ThinLTO. Therefore we disallow dynamic linking on Windows
// when compiling for LLD ThinLTO. This way we can validly just not generate
// the `dllimport` attributes and `__imp_` symbols in that case.
if sess.opts.cg.linker_plugin_lto.enabled()
&& sess.opts.cg.prefer_dynamic
&& sess.target.is_like_windows
{
sess.emit_err(errors::LinkerPluginToWindowsNotSupported);
}
// Make sure that any given profiling data actually exists so LLVM can't
// decide to silently skip PGO.
if let Some(ref path) = sess.opts.cg.profile_use {
if !path.exists() {
sess.emit_err(errors::ProfileUseFileDoesNotExist { path });
}
}
// Do the same for sample profile data.
if let Some(ref path) = sess.opts.unstable_opts.profile_sample_use {
if !path.exists() {
sess.emit_err(errors::ProfileSampleUseFileDoesNotExist { path });
}
}
// Unwind tables cannot be disabled if the target requires them.
if let Some(include_uwtables) = sess.opts.cg.force_unwind_tables {
if sess.target.requires_uwtable && !include_uwtables {
sess.emit_err(errors::TargetRequiresUnwindTables);
}
}
// Sanitizers can only be used on platforms that we know have working sanitizer codegen.
let supported_sanitizers = sess.target.options.supported_sanitizers;
let unsupported_sanitizers = sess.opts.unstable_opts.sanitizer - supported_sanitizers;
match unsupported_sanitizers.into_iter().count() {
0 => {}
1 => {
sess.emit_err(errors::SanitizerNotSupported { us: unsupported_sanitizers.to_string() });
}
_ => {
sess.emit_err(errors::SanitizersNotSupported {
us: unsupported_sanitizers.to_string(),
});
}
}
// Cannot mix and match sanitizers.
let mut sanitizer_iter = sess.opts.unstable_opts.sanitizer.into_iter();
if let (Some(first), Some(second)) = (sanitizer_iter.next(), sanitizer_iter.next()) {
sess.emit_err(errors::CannotMixAndMatchSanitizers {
first: first.to_string(),
second: second.to_string(),
});
}
// Cannot enable crt-static with sanitizers on Linux
if sess.crt_static(None) && !sess.opts.unstable_opts.sanitizer.is_empty() {
sess.emit_err(errors::CannotEnableCrtStaticLinux);
}
// LLVM CFI requires LTO.
if sess.is_sanitizer_cfi_enabled()
&& !(sess.lto() == config::Lto::Fat || sess.opts.cg.linker_plugin_lto.enabled())
{
sess.emit_err(errors::SanitizerCfiRequiresLto);
}
// LLVM CFI using rustc LTO requires a single codegen unit.
if sess.is_sanitizer_cfi_enabled()
&& sess.lto() == config::Lto::Fat
&& !(sess.codegen_units().as_usize() == 1)
{
sess.emit_err(errors::SanitizerCfiRequiresSingleCodegenUnit);
}
// LLVM CFI is incompatible with LLVM KCFI.
if sess.is_sanitizer_cfi_enabled() && sess.is_sanitizer_kcfi_enabled() {
sess.emit_err(errors::CannotMixAndMatchSanitizers {
first: "cfi".to_string(),
second: "kcfi".to_string(),
});
}
// Canonical jump tables requires CFI.
if sess.is_sanitizer_cfi_canonical_jump_tables_disabled() {
if !sess.is_sanitizer_cfi_enabled() {
sess.emit_err(errors::SanitizerCfiCanonicalJumpTablesRequiresCfi);
}
}
// LLVM CFI pointer generalization requires CFI or KCFI.
if sess.is_sanitizer_cfi_generalize_pointers_enabled() {
if !(sess.is_sanitizer_cfi_enabled() || sess.is_sanitizer_kcfi_enabled()) {
sess.emit_err(errors::SanitizerCfiGeneralizePointersRequiresCfi);
}
}
// LLVM CFI integer normalization requires CFI or KCFI.
if sess.is_sanitizer_cfi_normalize_integers_enabled() {
if !(sess.is_sanitizer_cfi_enabled() || sess.is_sanitizer_kcfi_enabled()) {
sess.emit_err(errors::SanitizerCfiNormalizeIntegersRequiresCfi);
}
}
// LTO unit splitting requires LTO.
if sess.is_split_lto_unit_enabled()
&& !(sess.lto() == config::Lto::Fat
|| sess.lto() == config::Lto::Thin
|| sess.opts.cg.linker_plugin_lto.enabled())
{
sess.emit_err(errors::SplitLtoUnitRequiresLto);
}
// VFE requires LTO.
if sess.lto() != config::Lto::Fat {
if sess.opts.unstable_opts.virtual_function_elimination {
sess.emit_err(errors::UnstableVirtualFunctionElimination);
}
}
if sess.opts.unstable_opts.stack_protector != StackProtector::None {
if !sess.target.options.supports_stack_protector {
sess.emit_warning(errors::StackProtectorNotSupportedForTarget {
stack_protector: sess.opts.unstable_opts.stack_protector,
target_triple: &sess.opts.target_triple,
});
}
}
if sess.opts.unstable_opts.branch_protection.is_some() && sess.target.arch != "aarch64" {
sess.emit_err(errors::BranchProtectionRequiresAArch64);
}
if let Some(dwarf_version) = sess.opts.unstable_opts.dwarf_version {
if dwarf_version > 5 {
sess.emit_err(errors::UnsupportedDwarfVersion { dwarf_version });
}
}
if !sess.target.options.supported_split_debuginfo.contains(&sess.split_debuginfo())
&& !sess.opts.unstable_opts.unstable_options
{
sess.emit_err(errors::SplitDebugInfoUnstablePlatform { debuginfo: sess.split_debuginfo() });
}
if sess.opts.unstable_opts.instrument_xray.is_some() && !sess.target.options.supports_xray {
sess.emit_err(errors::InstrumentationNotSupported { us: "XRay".to_string() });
}
if let Some(flavor) = sess.opts.cg.linker_flavor {
if let Some(compatible_list) = sess.target.linker_flavor.check_compatibility(flavor) {
let flavor = flavor.desc();
sess.emit_err(errors::IncompatibleLinkerFlavor { flavor, compatible_list });
}
}
}
/// Holds data on the current incremental compilation session, if there is one.
#[derive(Debug)]
pub enum IncrCompSession {
/// This is the state the session will be in until the incr. comp. dir is
/// needed.
NotInitialized,
/// This is the state during which the session directory is private and can
/// be modified.
Active { session_directory: PathBuf, lock_file: flock::Lock, load_dep_graph: bool },
/// This is the state after the session directory has been finalized. In this
/// state, the contents of the directory must not be modified any more.
Finalized { session_directory: PathBuf },
/// This is an error state that is reached when some compilation error has
/// occurred. It indicates that the contents of the session directory must
/// not be used, since they might be invalid.
InvalidBecauseOfErrors { session_directory: PathBuf },
}
/// A wrapper around an [`Handler`] that is used for early error emissions.
pub struct EarlyErrorHandler {
handler: Handler,
}
impl EarlyErrorHandler {
pub fn new(output: ErrorOutputType) -> Self {
let emitter = mk_emitter(output);
Self { handler: rustc_errors::Handler::with_emitter(emitter) }
}
pub fn abort_if_errors(&self) {
self.handler.abort_if_errors()
}
/// Swap out the underlying handler once we acquire the user's preference on error emission
/// format. Any errors prior to that will cause an abort and all stashed diagnostics of the
/// previous handler will be emitted.
pub fn abort_if_error_and_set_error_format(&mut self, output: ErrorOutputType) {
self.handler.abort_if_errors();
let emitter = mk_emitter(output);
self.handler = Handler::with_emitter(emitter);
}
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
pub fn early_note(&self, msg: impl Into<DiagnosticMessage>) {
self.handler.struct_note_without_error(msg).emit()
}
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
pub fn early_help(&self, msg: impl Into<DiagnosticMessage>) {
self.handler.struct_help(msg).emit()
}
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
#[must_use = "ErrorGuaranteed must be returned from `run_compiler` in order to exit with a non-zero status code"]
pub fn early_error_no_abort(&self, msg: impl Into<DiagnosticMessage>) -> ErrorGuaranteed {
self.handler.struct_err(msg).emit()
}
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
pub fn early_error(&self, msg: impl Into<DiagnosticMessage>) -> ! {
self.handler.struct_fatal(msg).emit()
}
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
pub(crate) fn early_struct_error(
&self,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, !> {
self.handler.struct_fatal(msg)
}
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
pub fn early_warn(&self, msg: impl Into<DiagnosticMessage>) {
self.handler.struct_warn(msg).emit()
}
}
fn mk_emitter(output: ErrorOutputType) -> Box<DynEmitter> {
// FIXME(#100717): early errors aren't translated at the moment, so this is fine, but it will
// need to reference every crate that might emit an early error for translation to work.
let fallback_bundle =
fallback_fluent_bundle(vec![rustc_errors::DEFAULT_LOCALE_RESOURCE], false);
let emitter: Box<DynEmitter> = match output {
config::ErrorOutputType::HumanReadable(kind) => {
let (short, color_config) = kind.unzip();
Box::new(EmitterWriter::stderr(color_config, fallback_bundle).short_message(short))
}
config::ErrorOutputType::Json { pretty, json_rendered } => Box::new(JsonEmitter::basic(
pretty,
json_rendered,
None,
fallback_bundle,
None,
false,
false,
TerminalUrl::No,
)),
};
emitter
}
pub trait RemapFileNameExt {
type Output<'a>
where
Self: 'a;
fn for_scope(&self, sess: &Session, scopes: RemapPathScopeComponents) -> Self::Output<'_>;
fn for_codegen(&self, sess: &Session) -> Self::Output<'_>;
}
impl RemapFileNameExt for rustc_span::FileName {
type Output<'a> = rustc_span::FileNameDisplay<'a>;
fn for_scope(&self, sess: &Session, scopes: RemapPathScopeComponents) -> Self::Output<'_> {
if sess.opts.unstable_opts.remap_path_scope.contains(scopes) {
self.prefer_remapped_unconditionaly()
} else {
self.prefer_local()
}
}
fn for_codegen(&self, sess: &Session) -> Self::Output<'_> {
if sess.should_prefer_remapped_for_codegen() {
self.prefer_remapped_unconditionaly()
} else {
self.prefer_local()
}
}
}
impl RemapFileNameExt for rustc_span::RealFileName {
type Output<'a> = &'a Path;
fn for_scope(&self, sess: &Session, scopes: RemapPathScopeComponents) -> Self::Output<'_> {
if sess.opts.unstable_opts.remap_path_scope.contains(scopes) {
self.remapped_path_if_available()
} else {
self.local_path_if_available()
}
}
fn for_codegen(&self, sess: &Session) -> Self::Output<'_> {
if sess.should_prefer_remapped_for_codegen() {
self.remapped_path_if_available()
} else {
self.local_path_if_available()
}
}
}