blob: df39c819ba9a19193f1e59dd1217d102ca72913f [file] [log] [blame]
use rustc_data_structures::fx::FxHashSet;
use rustc_index::bit_set::BitSet;
use rustc_index::IndexVec;
use rustc_middle::mir::visit::*;
use rustc_middle::mir::*;
use rustc_middle::ty::TyCtxt;
use rustc_mir_dataflow::impls::MaybeStorageDead;
use rustc_mir_dataflow::storage::always_storage_live_locals;
use rustc_mir_dataflow::Analysis;
use crate::ssa::{SsaLocals, StorageLiveLocals};
use crate::MirPass;
/// Propagate references using SSA analysis.
///
/// MIR building may produce a lot of borrow-dereference patterns.
///
/// This pass aims to transform the following pattern:
/// _1 = &raw? mut? PLACE;
/// _3 = *_1;
/// _4 = &raw? mut? *_1;
///
/// Into
/// _1 = &raw? mut? PLACE;
/// _3 = PLACE;
/// _4 = &raw? mut? PLACE;
///
/// where `PLACE` is a direct or an indirect place expression.
///
/// There are 3 properties that need to be upheld for this transformation to be legal:
/// - place stability: `PLACE` must refer to the same memory wherever it appears;
/// - pointer liveness: we must not introduce dereferences of dangling pointers;
/// - `&mut` borrow uniqueness.
///
/// # Stability
///
/// If `PLACE` is an indirect projection, if its of the form `(*LOCAL).PROJECTIONS` where:
/// - `LOCAL` is SSA;
/// - all projections in `PROJECTIONS` have a stable offset (no dereference and no indexing).
///
/// If `PLACE` is a direct projection of a local, we consider it as constant if:
/// - the local is always live, or it has a single `StorageLive`;
/// - all projections have a stable offset.
///
/// # Liveness
///
/// When performing a substitution, we must take care not to introduce uses of dangling locals.
/// To ensure this, we walk the body with the `MaybeStorageDead` dataflow analysis:
/// - if we want to replace `*x` by reborrow `*y` and `y` may be dead, we allow replacement and
/// mark storage statements on `y` for removal;
/// - if we want to replace `*x` by non-reborrow `y` and `y` must be live, we allow replacement;
/// - if we want to replace `*x` by non-reborrow `y` and `y` may be dead, we do not replace.
///
/// # Uniqueness
///
/// For `&mut` borrows, we also need to preserve the uniqueness property:
/// we must avoid creating a state where we interleave uses of `*_1` and `_2`.
/// To do it, we only perform full substitution of mutable borrows:
/// we replace either all or none of the occurrences of `*_1`.
///
/// Some care has to be taken when `_1` is copied in other locals.
/// _1 = &raw? mut? _2;
/// _3 = *_1;
/// _4 = _1
/// _5 = *_4
/// In such cases, fully substituting `_1` means fully substituting all of the copies.
///
/// For immutable borrows, we do not need to preserve such uniqueness property,
/// so we perform all the possible substitutions without removing the `_1 = &_2` statement.
pub struct ReferencePropagation;
impl<'tcx> MirPass<'tcx> for ReferencePropagation {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
sess.mir_opt_level() >= 2
}
#[instrument(level = "trace", skip(self, tcx, body))]
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
debug!(def_id = ?body.source.def_id());
while propagate_ssa(tcx, body) {}
}
}
fn propagate_ssa<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) -> bool {
let ssa = SsaLocals::new(body);
let mut replacer = compute_replacement(tcx, body, &ssa);
debug!(?replacer.targets);
debug!(?replacer.allowed_replacements);
debug!(?replacer.storage_to_remove);
replacer.visit_body_preserves_cfg(body);
if replacer.any_replacement {
crate::simplify::remove_unused_definitions(body);
}
replacer.any_replacement
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum Value<'tcx> {
/// Not a pointer, or we can't know.
Unknown,
/// We know the value to be a pointer to this place.
/// The boolean indicates whether the reference is mutable, subject the uniqueness rule.
Pointer(Place<'tcx>, bool),
}
/// For each local, save the place corresponding to `*local`.
#[instrument(level = "trace", skip(tcx, body, ssa))]
fn compute_replacement<'tcx>(
tcx: TyCtxt<'tcx>,
body: &Body<'tcx>,
ssa: &SsaLocals,
) -> Replacer<'tcx> {
let always_live_locals = always_storage_live_locals(body);
// Compute which locals have a single `StorageLive` statement ever.
let storage_live = StorageLiveLocals::new(body, &always_live_locals);
// Compute `MaybeStorageDead` dataflow to check that we only replace when the pointee is
// definitely live.
let mut maybe_dead = MaybeStorageDead::new(always_live_locals)
.into_engine(tcx, body)
.iterate_to_fixpoint()
.into_results_cursor(body);
// Map for each local to the pointee.
let mut targets = IndexVec::from_elem(Value::Unknown, &body.local_decls);
// Set of locals for which we will remove their storage statement. This is useful for
// reborrowed references.
let mut storage_to_remove = BitSet::new_empty(body.local_decls.len());
let fully_replacable_locals = fully_replacable_locals(ssa);
// Returns true iff we can use `place` as a pointee.
//
// Note that we only need to verify that there is a single `StorageLive` statement, and we do
// not need to verify that it dominates all uses of that local.
//
// Consider the three statements:
// SL : StorageLive(a)
// DEF: b = &raw? mut? a
// USE: stuff that uses *b
//
// First, we recall that DEF is checked to dominate USE. Now imagine for the sake of
// contradiction there is a DEF -> SL -> USE path. Consider two cases:
//
// - DEF dominates SL. We always have UB the first time control flow reaches DEF,
// because the storage of `a` is dead. Since DEF dominates USE, that means we cannot
// reach USE and so our optimization is ok.
//
// - DEF does not dominate SL. Then there is a `START_BLOCK -> SL` path not including DEF.
// But we can extend this path to USE, meaning there is also a `START_BLOCK -> USE` path not
// including DEF. This violates the DEF dominates USE condition, and so is impossible.
let is_constant_place = |place: Place<'_>| {
// We only allow `Deref` as the first projection, to avoid surprises.
if place.projection.first() == Some(&PlaceElem::Deref) {
// `place == (*some_local).xxx`, it is constant only if `some_local` is constant.
// We approximate constness using SSAness.
ssa.is_ssa(place.local) && place.projection[1..].iter().all(PlaceElem::is_stable_offset)
} else {
storage_live.has_single_storage(place.local)
&& place.projection[..].iter().all(PlaceElem::is_stable_offset)
}
};
let mut can_perform_opt = |target: Place<'tcx>, loc: Location| {
if target.projection.first() == Some(&PlaceElem::Deref) {
// We are creating a reborrow. As `place.local` is a reference, removing the storage
// statements should not make it much harder for LLVM to optimize.
storage_to_remove.insert(target.local);
true
} else {
// This is a proper dereference. We can only allow it if `target` is live.
maybe_dead.seek_after_primary_effect(loc);
let maybe_dead = maybe_dead.contains(target.local);
!maybe_dead
}
};
for (local, rvalue, location) in ssa.assignments(body) {
debug!(?local);
// Only visit if we have something to do.
let Value::Unknown = targets[local] else { bug!() };
let ty = body.local_decls[local].ty;
// If this is not a reference or pointer, do nothing.
if !ty.is_any_ptr() {
debug!("not a reference or pointer");
continue;
}
// Whether the current local is subject to the uniqueness rule.
let needs_unique = ty.is_mutable_ptr();
// If this a mutable reference that we cannot fully replace, mark it as unknown.
if needs_unique && !fully_replacable_locals.contains(local) {
debug!("not fully replaceable");
continue;
}
debug!(?rvalue);
match rvalue {
// This is a copy, just use the value we have in store for the previous one.
// As we are visiting in `assignment_order`, ie. reverse postorder, `rhs` should
// have been visited before.
Rvalue::Use(Operand::Copy(place) | Operand::Move(place))
| Rvalue::CopyForDeref(place) => {
if let Some(rhs) = place.as_local()
&& ssa.is_ssa(rhs)
{
let target = targets[rhs];
// Only see through immutable reference and pointers, as we do not know yet if
// mutable references are fully replaced.
if !needs_unique && matches!(target, Value::Pointer(..)) {
targets[local] = target;
} else {
targets[local] =
Value::Pointer(tcx.mk_place_deref(rhs.into()), needs_unique);
}
}
}
Rvalue::Ref(_, _, place) | Rvalue::AddressOf(_, place) => {
let mut place = *place;
// Try to see through `place` in order to collapse reborrow chains.
if place.projection.first() == Some(&PlaceElem::Deref)
&& let Value::Pointer(target, inner_needs_unique) = targets[place.local]
// Only see through immutable reference and pointers, as we do not know yet if
// mutable references are fully replaced.
&& !inner_needs_unique
// Only collapse chain if the pointee is definitely live.
&& can_perform_opt(target, location)
{
place = target.project_deeper(&place.projection[1..], tcx);
}
assert_ne!(place.local, local);
if is_constant_place(place) {
targets[local] = Value::Pointer(place, needs_unique);
}
}
// We do not know what to do, so keep as not-a-pointer.
_ => {}
}
}
debug!(?targets);
let mut finder = ReplacementFinder {
targets: &mut targets,
can_perform_opt,
allowed_replacements: FxHashSet::default(),
};
let reachable_blocks = traversal::reachable_as_bitset(body);
for (bb, bbdata) in body.basic_blocks.iter_enumerated() {
// Only visit reachable blocks as we rely on dataflow.
if reachable_blocks.contains(bb) {
finder.visit_basic_block_data(bb, bbdata);
}
}
let allowed_replacements = finder.allowed_replacements;
return Replacer {
tcx,
targets,
storage_to_remove,
allowed_replacements,
any_replacement: false,
};
struct ReplacementFinder<'a, 'tcx, F> {
targets: &'a mut IndexVec<Local, Value<'tcx>>,
can_perform_opt: F,
allowed_replacements: FxHashSet<(Local, Location)>,
}
impl<'tcx, F> Visitor<'tcx> for ReplacementFinder<'_, 'tcx, F>
where
F: FnMut(Place<'tcx>, Location) -> bool,
{
fn visit_place(&mut self, place: &Place<'tcx>, ctxt: PlaceContext, loc: Location) {
if matches!(ctxt, PlaceContext::NonUse(_)) {
// There is no need to check liveness for non-uses.
return;
}
if place.projection.first() != Some(&PlaceElem::Deref) {
// This is not a dereference, nothing to do.
return;
}
let mut place = place.as_ref();
loop {
if let Value::Pointer(target, needs_unique) = self.targets[place.local] {
let perform_opt = (self.can_perform_opt)(target, loc);
debug!(?place, ?target, ?needs_unique, ?perform_opt);
// This a reborrow chain, recursively allow the replacement.
//
// This also allows to detect cases where `target.local` is not replacable,
// and mark it as such.
if let &[PlaceElem::Deref] = &target.projection[..] {
assert!(perform_opt);
self.allowed_replacements.insert((target.local, loc));
place.local = target.local;
continue;
} else if perform_opt {
self.allowed_replacements.insert((target.local, loc));
} else if needs_unique {
// This mutable reference is not fully replacable, so drop it.
self.targets[place.local] = Value::Unknown;
}
}
break;
}
}
}
}
/// Compute the set of locals that can be fully replaced.
///
/// We consider a local to be replacable iff it's only used in a `Deref` projection `*_local` or
/// non-use position (like storage statements and debuginfo).
fn fully_replacable_locals(ssa: &SsaLocals) -> BitSet<Local> {
let mut replacable = BitSet::new_empty(ssa.num_locals());
// First pass: for each local, whether its uses can be fully replaced.
for local in ssa.locals() {
if ssa.num_direct_uses(local) == 0 {
replacable.insert(local);
}
}
// Second pass: a local can only be fully replaced if all its copies can.
ssa.meet_copy_equivalence(&mut replacable);
replacable
}
/// Utility to help performing subtitution of `*pattern` by `target`.
struct Replacer<'tcx> {
tcx: TyCtxt<'tcx>,
targets: IndexVec<Local, Value<'tcx>>,
storage_to_remove: BitSet<Local>,
allowed_replacements: FxHashSet<(Local, Location)>,
any_replacement: bool,
}
impl<'tcx> MutVisitor<'tcx> for Replacer<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_var_debug_info(&mut self, debuginfo: &mut VarDebugInfo<'tcx>) {
// If the debuginfo is a pointer to another place:
// - if it's a reborrow, see through it;
// - if it's a direct borrow, increase `debuginfo.references`.
while let VarDebugInfoContents::Place(ref mut place) = debuginfo.value
&& place.projection.is_empty()
&& let Value::Pointer(target, _) = self.targets[place.local]
&& target.projection.iter().all(|p| p.can_use_in_debuginfo())
{
if let Some((&PlaceElem::Deref, rest)) = target.projection.split_last() {
*place = Place::from(target.local).project_deeper(rest, self.tcx);
self.any_replacement = true;
} else {
break;
}
}
// Simplify eventual projections left inside `debuginfo`.
self.super_var_debug_info(debuginfo);
}
fn visit_place(&mut self, place: &mut Place<'tcx>, ctxt: PlaceContext, loc: Location) {
loop {
if place.projection.first() != Some(&PlaceElem::Deref) {
return;
}
let Value::Pointer(target, _) = self.targets[place.local] else { return };
let perform_opt = match ctxt {
PlaceContext::NonUse(NonUseContext::VarDebugInfo) => {
target.projection.iter().all(|p| p.can_use_in_debuginfo())
}
PlaceContext::NonUse(_) => true,
_ => self.allowed_replacements.contains(&(target.local, loc)),
};
if !perform_opt {
return;
}
*place = target.project_deeper(&place.projection[1..], self.tcx);
self.any_replacement = true;
}
}
fn visit_statement(&mut self, stmt: &mut Statement<'tcx>, loc: Location) {
match stmt.kind {
StatementKind::StorageLive(l) | StatementKind::StorageDead(l)
if self.storage_to_remove.contains(l) =>
{
stmt.make_nop();
}
// Do not remove assignments as they may still be useful for debuginfo.
_ => self.super_statement(stmt, loc),
}
}
}