blob: abaed103fab1f06625e49d721f3e944942a7f788 [file] [log] [blame]
//! This is the implementation of the pass which transforms coroutines into state machines.
//!
//! MIR generation for coroutines creates a function which has a self argument which
//! passes by value. This argument is effectively a coroutine type which only contains upvars and
//! is only used for this argument inside the MIR for the coroutine.
//! It is passed by value to enable upvars to be moved out of it. Drop elaboration runs on that
//! MIR before this pass and creates drop flags for MIR locals.
//! It will also drop the coroutine argument (which only consists of upvars) if any of the upvars
//! are moved out of. This pass elaborates the drops of upvars / coroutine argument in the case
//! that none of the upvars were moved out of. This is because we cannot have any drops of this
//! coroutine in the MIR, since it is used to create the drop glue for the coroutine. We'd get
//! infinite recursion otherwise.
//!
//! This pass creates the implementation for either the `Coroutine::resume` or `Future::poll`
//! function and the drop shim for the coroutine based on the MIR input.
//! It converts the coroutine argument from Self to &mut Self adding derefs in the MIR as needed.
//! It computes the final layout of the coroutine struct which looks like this:
//! First upvars are stored
//! It is followed by the coroutine state field.
//! Then finally the MIR locals which are live across a suspension point are stored.
//! ```ignore (illustrative)
//! struct Coroutine {
//! upvars...,
//! state: u32,
//! mir_locals...,
//! }
//! ```
//! This pass computes the meaning of the state field and the MIR locals which are live
//! across a suspension point. There are however three hardcoded coroutine states:
//! 0 - Coroutine have not been resumed yet
//! 1 - Coroutine has returned / is completed
//! 2 - Coroutine has been poisoned
//!
//! It also rewrites `return x` and `yield y` as setting a new coroutine state and returning
//! `CoroutineState::Complete(x)` and `CoroutineState::Yielded(y)`,
//! or `Poll::Ready(x)` and `Poll::Pending` respectively.
//! MIR locals which are live across a suspension point are moved to the coroutine struct
//! with references to them being updated with references to the coroutine struct.
//!
//! The pass creates two functions which have a switch on the coroutine state giving
//! the action to take.
//!
//! One of them is the implementation of `Coroutine::resume` / `Future::poll`.
//! For coroutines with state 0 (unresumed) it starts the execution of the coroutine.
//! For coroutines with state 1 (returned) and state 2 (poisoned) it panics.
//! Otherwise it continues the execution from the last suspension point.
//!
//! The other function is the drop glue for the coroutine.
//! For coroutines with state 0 (unresumed) it drops the upvars of the coroutine.
//! For coroutines with state 1 (returned) and state 2 (poisoned) it does nothing.
//! Otherwise it drops all the values in scope at the last suspension point.
use crate::abort_unwinding_calls;
use crate::deref_separator::deref_finder;
use crate::errors;
use crate::pass_manager as pm;
use crate::simplify;
use crate::MirPass;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::pluralize;
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_hir::CoroutineKind;
use rustc_index::bit_set::{BitMatrix, BitSet, GrowableBitSet};
use rustc_index::{Idx, IndexVec};
use rustc_middle::mir::dump_mir;
use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::InstanceDef;
use rustc_middle::ty::{self, AdtDef, Ty, TyCtxt};
use rustc_middle::ty::{CoroutineArgs, GenericArgsRef};
use rustc_mir_dataflow::impls::{
MaybeBorrowedLocals, MaybeLiveLocals, MaybeRequiresStorage, MaybeStorageLive,
};
use rustc_mir_dataflow::storage::always_storage_live_locals;
use rustc_mir_dataflow::{self, Analysis};
use rustc_span::def_id::{DefId, LocalDefId};
use rustc_span::symbol::sym;
use rustc_span::Span;
use rustc_target::abi::{FieldIdx, VariantIdx};
use rustc_target::spec::PanicStrategy;
use std::{iter, ops};
pub struct StateTransform;
struct RenameLocalVisitor<'tcx> {
from: Local,
to: Local,
tcx: TyCtxt<'tcx>,
}
impl<'tcx> MutVisitor<'tcx> for RenameLocalVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
if *local == self.from {
*local = self.to;
}
}
fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
match terminator.kind {
TerminatorKind::Return => {
// Do not replace the implicit `_0` access here, as that's not possible. The
// transform already handles `return` correctly.
}
_ => self.super_terminator(terminator, location),
}
}
}
struct DerefArgVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl<'tcx> MutVisitor<'tcx> for DerefArgVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
assert_ne!(*local, SELF_ARG);
}
fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
if place.local == SELF_ARG {
replace_base(
place,
Place {
local: SELF_ARG,
projection: self.tcx().mk_place_elems(&[ProjectionElem::Deref]),
},
self.tcx,
);
} else {
self.visit_local(&mut place.local, context, location);
for elem in place.projection.iter() {
if let PlaceElem::Index(local) = elem {
assert_ne!(local, SELF_ARG);
}
}
}
}
}
struct PinArgVisitor<'tcx> {
ref_coroutine_ty: Ty<'tcx>,
tcx: TyCtxt<'tcx>,
}
impl<'tcx> MutVisitor<'tcx> for PinArgVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
assert_ne!(*local, SELF_ARG);
}
fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
if place.local == SELF_ARG {
replace_base(
place,
Place {
local: SELF_ARG,
projection: self.tcx().mk_place_elems(&[ProjectionElem::Field(
FieldIdx::new(0),
self.ref_coroutine_ty,
)]),
},
self.tcx,
);
} else {
self.visit_local(&mut place.local, context, location);
for elem in place.projection.iter() {
if let PlaceElem::Index(local) = elem {
assert_ne!(local, SELF_ARG);
}
}
}
}
}
fn replace_base<'tcx>(place: &mut Place<'tcx>, new_base: Place<'tcx>, tcx: TyCtxt<'tcx>) {
place.local = new_base.local;
let mut new_projection = new_base.projection.to_vec();
new_projection.append(&mut place.projection.to_vec());
place.projection = tcx.mk_place_elems(&new_projection);
}
const SELF_ARG: Local = Local::from_u32(1);
/// Coroutine has not been resumed yet.
const UNRESUMED: usize = CoroutineArgs::UNRESUMED;
/// Coroutine has returned / is completed.
const RETURNED: usize = CoroutineArgs::RETURNED;
/// Coroutine has panicked and is poisoned.
const POISONED: usize = CoroutineArgs::POISONED;
/// Number of variants to reserve in coroutine state. Corresponds to
/// `UNRESUMED` (beginning of a coroutine) and `RETURNED`/`POISONED`
/// (end of a coroutine) states.
const RESERVED_VARIANTS: usize = 3;
/// A `yield` point in the coroutine.
struct SuspensionPoint<'tcx> {
/// State discriminant used when suspending or resuming at this point.
state: usize,
/// The block to jump to after resumption.
resume: BasicBlock,
/// Where to move the resume argument after resumption.
resume_arg: Place<'tcx>,
/// Which block to jump to if the coroutine is dropped in this state.
drop: Option<BasicBlock>,
/// Set of locals that have live storage while at this suspension point.
storage_liveness: GrowableBitSet<Local>,
}
struct TransformVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
coroutine_kind: hir::CoroutineKind,
state_adt_ref: AdtDef<'tcx>,
state_args: GenericArgsRef<'tcx>,
// The type of the discriminant in the coroutine struct
discr_ty: Ty<'tcx>,
// Mapping from Local to (type of local, coroutine struct index)
// FIXME(eddyb) This should use `IndexVec<Local, Option<_>>`.
remap: FxHashMap<Local, (Ty<'tcx>, VariantIdx, FieldIdx)>,
// A map from a suspension point in a block to the locals which have live storage at that point
storage_liveness: IndexVec<BasicBlock, Option<BitSet<Local>>>,
// A list of suspension points, generated during the transform
suspension_points: Vec<SuspensionPoint<'tcx>>,
// The set of locals that have no `StorageLive`/`StorageDead` annotations.
always_live_locals: BitSet<Local>,
// The original RETURN_PLACE local
new_ret_local: Local,
}
impl<'tcx> TransformVisitor<'tcx> {
fn insert_none_ret_block(&self, body: &mut Body<'tcx>) -> BasicBlock {
let block = BasicBlock::new(body.basic_blocks.len());
let source_info = SourceInfo::outermost(body.span);
let (kind, idx) = self.coroutine_state_adt_and_variant_idx(true);
assert_eq!(self.state_adt_ref.variant(idx).fields.len(), 0);
let statements = vec![Statement {
kind: StatementKind::Assign(Box::new((
Place::return_place(),
Rvalue::Aggregate(Box::new(kind), IndexVec::new()),
))),
source_info,
}];
body.basic_blocks_mut().push(BasicBlockData {
statements,
terminator: Some(Terminator { source_info, kind: TerminatorKind::Return }),
is_cleanup: false,
});
block
}
fn coroutine_state_adt_and_variant_idx(
&self,
is_return: bool,
) -> (AggregateKind<'tcx>, VariantIdx) {
let idx = VariantIdx::new(match (is_return, self.coroutine_kind) {
(true, hir::CoroutineKind::Coroutine) => 1, // CoroutineState::Complete
(false, hir::CoroutineKind::Coroutine) => 0, // CoroutineState::Yielded
(true, hir::CoroutineKind::Async(_)) => 0, // Poll::Ready
(false, hir::CoroutineKind::Async(_)) => 1, // Poll::Pending
(true, hir::CoroutineKind::Gen(_)) => 0, // Option::None
(false, hir::CoroutineKind::Gen(_)) => 1, // Option::Some
});
let kind = AggregateKind::Adt(self.state_adt_ref.did(), idx, self.state_args, None, None);
(kind, idx)
}
// Make a `CoroutineState` or `Poll` variant assignment.
//
// `core::ops::CoroutineState` only has single element tuple variants,
// so we can just write to the downcasted first field and then set the
// discriminant to the appropriate variant.
fn make_state(
&self,
val: Operand<'tcx>,
source_info: SourceInfo,
is_return: bool,
statements: &mut Vec<Statement<'tcx>>,
) {
let (kind, idx) = self.coroutine_state_adt_and_variant_idx(is_return);
match self.coroutine_kind {
// `Poll::Pending`
CoroutineKind::Async(_) => {
if !is_return {
assert_eq!(self.state_adt_ref.variant(idx).fields.len(), 0);
// FIXME(swatinem): assert that `val` is indeed unit?
statements.push(Statement {
kind: StatementKind::Assign(Box::new((
Place::return_place(),
Rvalue::Aggregate(Box::new(kind), IndexVec::new()),
))),
source_info,
});
return;
}
}
// `Option::None`
CoroutineKind::Gen(_) => {
if is_return {
assert_eq!(self.state_adt_ref.variant(idx).fields.len(), 0);
statements.push(Statement {
kind: StatementKind::Assign(Box::new((
Place::return_place(),
Rvalue::Aggregate(Box::new(kind), IndexVec::new()),
))),
source_info,
});
return;
}
}
CoroutineKind::Coroutine => {}
}
// else: `Poll::Ready(x)`, `CoroutineState::Yielded(x)`, `CoroutineState::Complete(x)`, or `Option::Some(x)`
assert_eq!(self.state_adt_ref.variant(idx).fields.len(), 1);
statements.push(Statement {
kind: StatementKind::Assign(Box::new((
Place::return_place(),
Rvalue::Aggregate(Box::new(kind), [val].into()),
))),
source_info,
});
}
// Create a Place referencing a coroutine struct field
fn make_field(&self, variant_index: VariantIdx, idx: FieldIdx, ty: Ty<'tcx>) -> Place<'tcx> {
let self_place = Place::from(SELF_ARG);
let base = self.tcx.mk_place_downcast_unnamed(self_place, variant_index);
let mut projection = base.projection.to_vec();
projection.push(ProjectionElem::Field(idx, ty));
Place { local: base.local, projection: self.tcx.mk_place_elems(&projection) }
}
// Create a statement which changes the discriminant
fn set_discr(&self, state_disc: VariantIdx, source_info: SourceInfo) -> Statement<'tcx> {
let self_place = Place::from(SELF_ARG);
Statement {
source_info,
kind: StatementKind::SetDiscriminant {
place: Box::new(self_place),
variant_index: state_disc,
},
}
}
// Create a statement which reads the discriminant into a temporary
fn get_discr(&self, body: &mut Body<'tcx>) -> (Statement<'tcx>, Place<'tcx>) {
let temp_decl = LocalDecl::new(self.discr_ty, body.span);
let local_decls_len = body.local_decls.push(temp_decl);
let temp = Place::from(local_decls_len);
let self_place = Place::from(SELF_ARG);
let assign = Statement {
source_info: SourceInfo::outermost(body.span),
kind: StatementKind::Assign(Box::new((temp, Rvalue::Discriminant(self_place)))),
};
(assign, temp)
}
}
impl<'tcx> MutVisitor<'tcx> for TransformVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
assert_eq!(self.remap.get(local), None);
}
fn visit_place(
&mut self,
place: &mut Place<'tcx>,
_context: PlaceContext,
_location: Location,
) {
// Replace an Local in the remap with a coroutine struct access
if let Some(&(ty, variant_index, idx)) = self.remap.get(&place.local) {
replace_base(place, self.make_field(variant_index, idx, ty), self.tcx);
}
}
fn visit_basic_block_data(&mut self, block: BasicBlock, data: &mut BasicBlockData<'tcx>) {
// Remove StorageLive and StorageDead statements for remapped locals
data.retain_statements(|s| match s.kind {
StatementKind::StorageLive(l) | StatementKind::StorageDead(l) => {
!self.remap.contains_key(&l)
}
_ => true,
});
let ret_val = match data.terminator().kind {
TerminatorKind::Return => {
Some((true, None, Operand::Move(Place::from(self.new_ret_local)), None))
}
TerminatorKind::Yield { ref value, resume, resume_arg, drop } => {
Some((false, Some((resume, resume_arg)), value.clone(), drop))
}
_ => None,
};
if let Some((is_return, resume, v, drop)) = ret_val {
let source_info = data.terminator().source_info;
// We must assign the value first in case it gets declared dead below
self.make_state(v, source_info, is_return, &mut data.statements);
let state = if let Some((resume, mut resume_arg)) = resume {
// Yield
let state = RESERVED_VARIANTS + self.suspension_points.len();
// The resume arg target location might itself be remapped if its base local is
// live across a yield.
let resume_arg =
if let Some(&(ty, variant, idx)) = self.remap.get(&resume_arg.local) {
replace_base(&mut resume_arg, self.make_field(variant, idx, ty), self.tcx);
resume_arg
} else {
resume_arg
};
self.suspension_points.push(SuspensionPoint {
state,
resume,
resume_arg,
drop,
storage_liveness: self.storage_liveness[block].clone().unwrap().into(),
});
VariantIdx::new(state)
} else {
// Return
VariantIdx::new(RETURNED) // state for returned
};
data.statements.push(self.set_discr(state, source_info));
data.terminator_mut().kind = TerminatorKind::Return;
}
self.super_basic_block_data(block, data);
}
}
fn make_coroutine_state_argument_indirect<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
let coroutine_ty = body.local_decls.raw[1].ty;
let ref_coroutine_ty = Ty::new_ref(
tcx,
tcx.lifetimes.re_erased,
ty::TypeAndMut { ty: coroutine_ty, mutbl: Mutability::Mut },
);
// Replace the by value coroutine argument
body.local_decls.raw[1].ty = ref_coroutine_ty;
// Add a deref to accesses of the coroutine state
DerefArgVisitor { tcx }.visit_body(body);
}
fn make_coroutine_state_argument_pinned<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
let ref_coroutine_ty = body.local_decls.raw[1].ty;
let pin_did = tcx.require_lang_item(LangItem::Pin, Some(body.span));
let pin_adt_ref = tcx.adt_def(pin_did);
let args = tcx.mk_args(&[ref_coroutine_ty.into()]);
let pin_ref_coroutine_ty = Ty::new_adt(tcx, pin_adt_ref, args);
// Replace the by ref coroutine argument
body.local_decls.raw[1].ty = pin_ref_coroutine_ty;
// Add the Pin field access to accesses of the coroutine state
PinArgVisitor { ref_coroutine_ty, tcx }.visit_body(body);
}
/// Allocates a new local and replaces all references of `local` with it. Returns the new local.
///
/// `local` will be changed to a new local decl with type `ty`.
///
/// Note that the new local will be uninitialized. It is the caller's responsibility to assign some
/// valid value to it before its first use.
fn replace_local<'tcx>(
local: Local,
ty: Ty<'tcx>,
body: &mut Body<'tcx>,
tcx: TyCtxt<'tcx>,
) -> Local {
let new_decl = LocalDecl::new(ty, body.span);
let new_local = body.local_decls.push(new_decl);
body.local_decls.swap(local, new_local);
RenameLocalVisitor { from: local, to: new_local, tcx }.visit_body(body);
new_local
}
/// Transforms the `body` of the coroutine applying the following transforms:
///
/// - Eliminates all the `get_context` calls that async lowering created.
/// - Replace all `Local` `ResumeTy` types with `&mut Context<'_>` (`context_mut_ref`).
///
/// The `Local`s that have their types replaced are:
/// - The `resume` argument itself.
/// - The argument to `get_context`.
/// - The yielded value of a `yield`.
///
/// The `ResumeTy` hides a `&mut Context<'_>` behind an unsafe raw pointer, and the
/// `get_context` function is being used to convert that back to a `&mut Context<'_>`.
///
/// Ideally the async lowering would not use the `ResumeTy`/`get_context` indirection,
/// but rather directly use `&mut Context<'_>`, however that would currently
/// lead to higher-kinded lifetime errors.
/// See <https://github.com/rust-lang/rust/issues/105501>.
///
/// The async lowering step and the type / lifetime inference / checking are
/// still using the `ResumeTy` indirection for the time being, and that indirection
/// is removed here. After this transform, the coroutine body only knows about `&mut Context<'_>`.
fn transform_async_context<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
let context_mut_ref = Ty::new_task_context(tcx);
// replace the type of the `resume` argument
replace_resume_ty_local(tcx, body, Local::new(2), context_mut_ref);
let get_context_def_id = tcx.require_lang_item(LangItem::GetContext, None);
for bb in START_BLOCK..body.basic_blocks.next_index() {
let bb_data = &body[bb];
if bb_data.is_cleanup {
continue;
}
match &bb_data.terminator().kind {
TerminatorKind::Call { func, .. } => {
let func_ty = func.ty(body, tcx);
if let ty::FnDef(def_id, _) = *func_ty.kind() {
if def_id == get_context_def_id {
let local = eliminate_get_context_call(&mut body[bb]);
replace_resume_ty_local(tcx, body, local, context_mut_ref);
}
} else {
continue;
}
}
TerminatorKind::Yield { resume_arg, .. } => {
replace_resume_ty_local(tcx, body, resume_arg.local, context_mut_ref);
}
_ => {}
}
}
}
fn eliminate_get_context_call<'tcx>(bb_data: &mut BasicBlockData<'tcx>) -> Local {
let terminator = bb_data.terminator.take().unwrap();
if let TerminatorKind::Call { mut args, destination, target, .. } = terminator.kind {
let arg = args.pop().unwrap();
let local = arg.place().unwrap().local;
let arg = Rvalue::Use(arg);
let assign = Statement {
source_info: terminator.source_info,
kind: StatementKind::Assign(Box::new((destination, arg))),
};
bb_data.statements.push(assign);
bb_data.terminator = Some(Terminator {
source_info: terminator.source_info,
kind: TerminatorKind::Goto { target: target.unwrap() },
});
local
} else {
bug!();
}
}
#[cfg_attr(not(debug_assertions), allow(unused))]
fn replace_resume_ty_local<'tcx>(
tcx: TyCtxt<'tcx>,
body: &mut Body<'tcx>,
local: Local,
context_mut_ref: Ty<'tcx>,
) {
let local_ty = std::mem::replace(&mut body.local_decls[local].ty, context_mut_ref);
// We have to replace the `ResumeTy` that is used for type and borrow checking
// with `&mut Context<'_>` in MIR.
#[cfg(debug_assertions)]
{
if let ty::Adt(resume_ty_adt, _) = local_ty.kind() {
let expected_adt = tcx.adt_def(tcx.require_lang_item(LangItem::ResumeTy, None));
assert_eq!(*resume_ty_adt, expected_adt);
} else {
panic!("expected `ResumeTy`, found `{:?}`", local_ty);
};
}
}
struct LivenessInfo {
/// Which locals are live across any suspension point.
saved_locals: CoroutineSavedLocals,
/// The set of saved locals live at each suspension point.
live_locals_at_suspension_points: Vec<BitSet<CoroutineSavedLocal>>,
/// Parallel vec to the above with SourceInfo for each yield terminator.
source_info_at_suspension_points: Vec<SourceInfo>,
/// For every saved local, the set of other saved locals that are
/// storage-live at the same time as this local. We cannot overlap locals in
/// the layout which have conflicting storage.
storage_conflicts: BitMatrix<CoroutineSavedLocal, CoroutineSavedLocal>,
/// For every suspending block, the locals which are storage-live across
/// that suspension point.
storage_liveness: IndexVec<BasicBlock, Option<BitSet<Local>>>,
}
/// Computes which locals have to be stored in the state-machine for the
/// given coroutine.
///
/// The basic idea is as follows:
/// - a local is live until we encounter a `StorageDead` statement. In
/// case none exist, the local is considered to be always live.
/// - a local has to be stored if it is either directly used after the
/// the suspend point, or if it is live and has been previously borrowed.
fn locals_live_across_suspend_points<'tcx>(
tcx: TyCtxt<'tcx>,
body: &Body<'tcx>,
always_live_locals: &BitSet<Local>,
movable: bool,
) -> LivenessInfo {
let body_ref: &Body<'_> = &body;
// Calculate when MIR locals have live storage. This gives us an upper bound of their
// lifetimes.
let mut storage_live = MaybeStorageLive::new(std::borrow::Cow::Borrowed(always_live_locals))
.into_engine(tcx, body_ref)
.iterate_to_fixpoint()
.into_results_cursor(body_ref);
// Calculate the MIR locals which have been previously
// borrowed (even if they are still active).
let borrowed_locals_results =
MaybeBorrowedLocals.into_engine(tcx, body_ref).pass_name("coroutine").iterate_to_fixpoint();
let mut borrowed_locals_cursor = borrowed_locals_results.cloned_results_cursor(body_ref);
// Calculate the MIR locals that we actually need to keep storage around
// for.
let mut requires_storage_results =
MaybeRequiresStorage::new(borrowed_locals_results.cloned_results_cursor(body))
.into_engine(tcx, body_ref)
.iterate_to_fixpoint();
let mut requires_storage_cursor = requires_storage_results.as_results_cursor(body_ref);
// Calculate the liveness of MIR locals ignoring borrows.
let mut liveness = MaybeLiveLocals
.into_engine(tcx, body_ref)
.pass_name("coroutine")
.iterate_to_fixpoint()
.into_results_cursor(body_ref);
let mut storage_liveness_map = IndexVec::from_elem(None, &body.basic_blocks);
let mut live_locals_at_suspension_points = Vec::new();
let mut source_info_at_suspension_points = Vec::new();
let mut live_locals_at_any_suspension_point = BitSet::new_empty(body.local_decls.len());
for (block, data) in body.basic_blocks.iter_enumerated() {
if let TerminatorKind::Yield { .. } = data.terminator().kind {
let loc = Location { block, statement_index: data.statements.len() };
liveness.seek_to_block_end(block);
let mut live_locals: BitSet<_> = BitSet::new_empty(body.local_decls.len());
live_locals.union(liveness.get());
if !movable {
// The `liveness` variable contains the liveness of MIR locals ignoring borrows.
// This is correct for movable coroutines since borrows cannot live across
// suspension points. However for immovable coroutines we need to account for
// borrows, so we conservatively assume that all borrowed locals are live until
// we find a StorageDead statement referencing the locals.
// To do this we just union our `liveness` result with `borrowed_locals`, which
// contains all the locals which has been borrowed before this suspension point.
// If a borrow is converted to a raw reference, we must also assume that it lives
// forever. Note that the final liveness is still bounded by the storage liveness
// of the local, which happens using the `intersect` operation below.
borrowed_locals_cursor.seek_before_primary_effect(loc);
live_locals.union(borrowed_locals_cursor.get());
}
// Store the storage liveness for later use so we can restore the state
// after a suspension point
storage_live.seek_before_primary_effect(loc);
storage_liveness_map[block] = Some(storage_live.get().clone());
// Locals live are live at this point only if they are used across
// suspension points (the `liveness` variable)
// and their storage is required (the `storage_required` variable)
requires_storage_cursor.seek_before_primary_effect(loc);
live_locals.intersect(requires_storage_cursor.get());
// The coroutine argument is ignored.
live_locals.remove(SELF_ARG);
debug!("loc = {:?}, live_locals = {:?}", loc, live_locals);
// Add the locals live at this suspension point to the set of locals which live across
// any suspension points
live_locals_at_any_suspension_point.union(&live_locals);
live_locals_at_suspension_points.push(live_locals);
source_info_at_suspension_points.push(data.terminator().source_info);
}
}
debug!("live_locals_anywhere = {:?}", live_locals_at_any_suspension_point);
let saved_locals = CoroutineSavedLocals(live_locals_at_any_suspension_point);
// Renumber our liveness_map bitsets to include only the locals we are
// saving.
let live_locals_at_suspension_points = live_locals_at_suspension_points
.iter()
.map(|live_here| saved_locals.renumber_bitset(&live_here))
.collect();
let storage_conflicts = compute_storage_conflicts(
body_ref,
&saved_locals,
always_live_locals.clone(),
requires_storage_results,
);
LivenessInfo {
saved_locals,
live_locals_at_suspension_points,
source_info_at_suspension_points,
storage_conflicts,
storage_liveness: storage_liveness_map,
}
}
/// The set of `Local`s that must be saved across yield points.
///
/// `CoroutineSavedLocal` is indexed in terms of the elements in this set;
/// i.e. `CoroutineSavedLocal::new(1)` corresponds to the second local
/// included in this set.
struct CoroutineSavedLocals(BitSet<Local>);
impl CoroutineSavedLocals {
/// Returns an iterator over each `CoroutineSavedLocal` along with the `Local` it corresponds
/// to.
fn iter_enumerated(&self) -> impl '_ + Iterator<Item = (CoroutineSavedLocal, Local)> {
self.iter().enumerate().map(|(i, l)| (CoroutineSavedLocal::from(i), l))
}
/// Transforms a `BitSet<Local>` that contains only locals saved across yield points to the
/// equivalent `BitSet<CoroutineSavedLocal>`.
fn renumber_bitset(&self, input: &BitSet<Local>) -> BitSet<CoroutineSavedLocal> {
assert!(self.superset(&input), "{:?} not a superset of {:?}", self.0, input);
let mut out = BitSet::new_empty(self.count());
for (saved_local, local) in self.iter_enumerated() {
if input.contains(local) {
out.insert(saved_local);
}
}
out
}
fn get(&self, local: Local) -> Option<CoroutineSavedLocal> {
if !self.contains(local) {
return None;
}
let idx = self.iter().take_while(|&l| l < local).count();
Some(CoroutineSavedLocal::new(idx))
}
}
impl ops::Deref for CoroutineSavedLocals {
type Target = BitSet<Local>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
/// For every saved local, looks for which locals are StorageLive at the same
/// time. Generates a bitset for every local of all the other locals that may be
/// StorageLive simultaneously with that local. This is used in the layout
/// computation; see `CoroutineLayout` for more.
fn compute_storage_conflicts<'mir, 'tcx>(
body: &'mir Body<'tcx>,
saved_locals: &CoroutineSavedLocals,
always_live_locals: BitSet<Local>,
mut requires_storage: rustc_mir_dataflow::Results<'tcx, MaybeRequiresStorage<'_, 'mir, 'tcx>>,
) -> BitMatrix<CoroutineSavedLocal, CoroutineSavedLocal> {
assert_eq!(body.local_decls.len(), saved_locals.domain_size());
debug!("compute_storage_conflicts({:?})", body.span);
debug!("always_live = {:?}", always_live_locals);
// Locals that are always live or ones that need to be stored across
// suspension points are not eligible for overlap.
let mut ineligible_locals = always_live_locals;
ineligible_locals.intersect(&**saved_locals);
// Compute the storage conflicts for all eligible locals.
let mut visitor = StorageConflictVisitor {
body,
saved_locals: &saved_locals,
local_conflicts: BitMatrix::from_row_n(&ineligible_locals, body.local_decls.len()),
};
requires_storage.visit_reachable_with(body, &mut visitor);
let local_conflicts = visitor.local_conflicts;
// Compress the matrix using only stored locals (Local -> CoroutineSavedLocal).
//
// NOTE: Today we store a full conflict bitset for every local. Technically
// this is twice as many bits as we need, since the relation is symmetric.
// However, in practice these bitsets are not usually large. The layout code
// also needs to keep track of how many conflicts each local has, so it's
// simpler to keep it this way for now.
let mut storage_conflicts = BitMatrix::new(saved_locals.count(), saved_locals.count());
for (saved_local_a, local_a) in saved_locals.iter_enumerated() {
if ineligible_locals.contains(local_a) {
// Conflicts with everything.
storage_conflicts.insert_all_into_row(saved_local_a);
} else {
// Keep overlap information only for stored locals.
for (saved_local_b, local_b) in saved_locals.iter_enumerated() {
if local_conflicts.contains(local_a, local_b) {
storage_conflicts.insert(saved_local_a, saved_local_b);
}
}
}
}
storage_conflicts
}
struct StorageConflictVisitor<'mir, 'tcx, 's> {
body: &'mir Body<'tcx>,
saved_locals: &'s CoroutineSavedLocals,
// FIXME(tmandry): Consider using sparse bitsets here once we have good
// benchmarks for coroutines.
local_conflicts: BitMatrix<Local, Local>,
}
impl<'mir, 'tcx, R> rustc_mir_dataflow::ResultsVisitor<'mir, 'tcx, R>
for StorageConflictVisitor<'mir, 'tcx, '_>
{
type FlowState = BitSet<Local>;
fn visit_statement_before_primary_effect(
&mut self,
_results: &mut R,
state: &Self::FlowState,
_statement: &'mir Statement<'tcx>,
loc: Location,
) {
self.apply_state(state, loc);
}
fn visit_terminator_before_primary_effect(
&mut self,
_results: &mut R,
state: &Self::FlowState,
_terminator: &'mir Terminator<'tcx>,
loc: Location,
) {
self.apply_state(state, loc);
}
}
impl StorageConflictVisitor<'_, '_, '_> {
fn apply_state(&mut self, flow_state: &BitSet<Local>, loc: Location) {
// Ignore unreachable blocks.
if self.body.basic_blocks[loc.block].terminator().kind == TerminatorKind::Unreachable {
return;
}
let mut eligible_storage_live = flow_state.clone();
eligible_storage_live.intersect(&**self.saved_locals);
for local in eligible_storage_live.iter() {
self.local_conflicts.union_row_with(&eligible_storage_live, local);
}
if eligible_storage_live.count() > 1 {
trace!("at {:?}, eligible_storage_live={:?}", loc, eligible_storage_live);
}
}
}
fn compute_layout<'tcx>(
liveness: LivenessInfo,
body: &Body<'tcx>,
) -> (
FxHashMap<Local, (Ty<'tcx>, VariantIdx, FieldIdx)>,
CoroutineLayout<'tcx>,
IndexVec<BasicBlock, Option<BitSet<Local>>>,
) {
let LivenessInfo {
saved_locals,
live_locals_at_suspension_points,
source_info_at_suspension_points,
storage_conflicts,
storage_liveness,
} = liveness;
// Gather live local types and their indices.
let mut locals = IndexVec::<CoroutineSavedLocal, _>::new();
let mut tys = IndexVec::<CoroutineSavedLocal, _>::new();
for (saved_local, local) in saved_locals.iter_enumerated() {
debug!("coroutine saved local {:?} => {:?}", saved_local, local);
locals.push(local);
let decl = &body.local_decls[local];
debug!(?decl);
// Do not `assert_crate_local` here, as post-borrowck cleanup may have already cleared
// the information. This is alright, since `ignore_for_traits` is only relevant when
// this code runs on pre-cleanup MIR, and `ignore_for_traits = false` is the safer
// default.
let ignore_for_traits = match decl.local_info {
// Do not include raw pointers created from accessing `static` items, as those could
// well be re-created by another access to the same static.
ClearCrossCrate::Set(box LocalInfo::StaticRef { is_thread_local, .. }) => {
!is_thread_local
}
// Fake borrows are only read by fake reads, so do not have any reality in
// post-analysis MIR.
ClearCrossCrate::Set(box LocalInfo::FakeBorrow) => true,
_ => false,
};
let decl =
CoroutineSavedTy { ty: decl.ty, source_info: decl.source_info, ignore_for_traits };
debug!(?decl);
tys.push(decl);
}
// Leave empty variants for the UNRESUMED, RETURNED, and POISONED states.
// In debuginfo, these will correspond to the beginning (UNRESUMED) or end
// (RETURNED, POISONED) of the function.
let body_span = body.source_scopes[OUTERMOST_SOURCE_SCOPE].span;
let mut variant_source_info: IndexVec<VariantIdx, SourceInfo> = [
SourceInfo::outermost(body_span.shrink_to_lo()),
SourceInfo::outermost(body_span.shrink_to_hi()),
SourceInfo::outermost(body_span.shrink_to_hi()),
]
.iter()
.copied()
.collect();
// Build the coroutine variant field list.
// Create a map from local indices to coroutine struct indices.
let mut variant_fields: IndexVec<VariantIdx, IndexVec<FieldIdx, CoroutineSavedLocal>> =
iter::repeat(IndexVec::new()).take(RESERVED_VARIANTS).collect();
let mut remap = FxHashMap::default();
for (suspension_point_idx, live_locals) in live_locals_at_suspension_points.iter().enumerate() {
let variant_index = VariantIdx::from(RESERVED_VARIANTS + suspension_point_idx);
let mut fields = IndexVec::new();
for (idx, saved_local) in live_locals.iter().enumerate() {
fields.push(saved_local);
// Note that if a field is included in multiple variants, we will
// just use the first one here. That's fine; fields do not move
// around inside coroutines, so it doesn't matter which variant
// index we access them by.
let idx = FieldIdx::from_usize(idx);
remap.entry(locals[saved_local]).or_insert((tys[saved_local].ty, variant_index, idx));
}
variant_fields.push(fields);
variant_source_info.push(source_info_at_suspension_points[suspension_point_idx]);
}
debug!("coroutine variant_fields = {:?}", variant_fields);
debug!("coroutine storage_conflicts = {:#?}", storage_conflicts);
let mut field_names = IndexVec::from_elem(None, &tys);
for var in &body.var_debug_info {
let VarDebugInfoContents::Place(place) = &var.value else { continue };
let Some(local) = place.as_local() else { continue };
let Some(&(_, variant, field)) = remap.get(&local) else { continue };
let saved_local = variant_fields[variant][field];
field_names.get_or_insert_with(saved_local, || var.name);
}
let layout = CoroutineLayout {
field_tys: tys,
field_names,
variant_fields,
variant_source_info,
storage_conflicts,
};
debug!(?layout);
(remap, layout, storage_liveness)
}
/// Replaces the entry point of `body` with a block that switches on the coroutine discriminant and
/// dispatches to blocks according to `cases`.
///
/// After this function, the former entry point of the function will be bb1.
fn insert_switch<'tcx>(
body: &mut Body<'tcx>,
cases: Vec<(usize, BasicBlock)>,
transform: &TransformVisitor<'tcx>,
default: TerminatorKind<'tcx>,
) {
let default_block = insert_term_block(body, default);
let (assign, discr) = transform.get_discr(body);
let switch_targets =
SwitchTargets::new(cases.iter().map(|(i, bb)| ((*i) as u128, *bb)), default_block);
let switch = TerminatorKind::SwitchInt { discr: Operand::Move(discr), targets: switch_targets };
let source_info = SourceInfo::outermost(body.span);
body.basic_blocks_mut().raw.insert(
0,
BasicBlockData {
statements: vec![assign],
terminator: Some(Terminator { source_info, kind: switch }),
is_cleanup: false,
},
);
let blocks = body.basic_blocks_mut().iter_mut();
for target in blocks.flat_map(|b| b.terminator_mut().successors_mut()) {
*target = BasicBlock::new(target.index() + 1);
}
}
fn elaborate_coroutine_drops<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
use crate::shim::DropShimElaborator;
use rustc_middle::mir::patch::MirPatch;
use rustc_mir_dataflow::elaborate_drops::{elaborate_drop, Unwind};
// Note that `elaborate_drops` only drops the upvars of a coroutine, and
// this is ok because `open_drop` can only be reached within that own
// coroutine's resume function.
let def_id = body.source.def_id();
let param_env = tcx.param_env(def_id);
let mut elaborator = DropShimElaborator { body, patch: MirPatch::new(body), tcx, param_env };
for (block, block_data) in body.basic_blocks.iter_enumerated() {
let (target, unwind, source_info) = match block_data.terminator() {
Terminator {
source_info,
kind: TerminatorKind::Drop { place, target, unwind, replace: _ },
} => {
if let Some(local) = place.as_local() {
if local == SELF_ARG {
(target, unwind, source_info)
} else {
continue;
}
} else {
continue;
}
}
_ => continue,
};
let unwind = if block_data.is_cleanup {
Unwind::InCleanup
} else {
Unwind::To(match *unwind {
UnwindAction::Cleanup(tgt) => tgt,
UnwindAction::Continue => elaborator.patch.resume_block(),
UnwindAction::Unreachable => elaborator.patch.unreachable_cleanup_block(),
UnwindAction::Terminate(reason) => elaborator.patch.terminate_block(reason),
})
};
elaborate_drop(
&mut elaborator,
*source_info,
Place::from(SELF_ARG),
(),
*target,
unwind,
block,
);
}
elaborator.patch.apply(body);
}
fn create_coroutine_drop_shim<'tcx>(
tcx: TyCtxt<'tcx>,
transform: &TransformVisitor<'tcx>,
coroutine_ty: Ty<'tcx>,
body: &mut Body<'tcx>,
drop_clean: BasicBlock,
) -> Body<'tcx> {
let mut body = body.clone();
body.arg_count = 1; // make sure the resume argument is not included here
let source_info = SourceInfo::outermost(body.span);
let mut cases = create_cases(&mut body, transform, Operation::Drop);
cases.insert(0, (UNRESUMED, drop_clean));
// The returned state and the poisoned state fall through to the default
// case which is just to return
insert_switch(&mut body, cases, &transform, TerminatorKind::Return);
for block in body.basic_blocks_mut() {
let kind = &mut block.terminator_mut().kind;
if let TerminatorKind::CoroutineDrop = *kind {
*kind = TerminatorKind::Return;
}
}
// Replace the return variable
body.local_decls[RETURN_PLACE] = LocalDecl::with_source_info(Ty::new_unit(tcx), source_info);
make_coroutine_state_argument_indirect(tcx, &mut body);
// Change the coroutine argument from &mut to *mut
body.local_decls[SELF_ARG] = LocalDecl::with_source_info(
Ty::new_ptr(tcx, ty::TypeAndMut { ty: coroutine_ty, mutbl: hir::Mutability::Mut }),
source_info,
);
// Make sure we remove dead blocks to remove
// unrelated code from the resume part of the function
simplify::remove_dead_blocks(&mut body);
// Update the body's def to become the drop glue.
let coroutine_instance = body.source.instance;
let drop_in_place = tcx.require_lang_item(LangItem::DropInPlace, None);
let drop_instance = InstanceDef::DropGlue(drop_in_place, Some(coroutine_ty));
// Temporary change MirSource to coroutine's instance so that dump_mir produces more sensible
// filename.
body.source.instance = coroutine_instance;
dump_mir(tcx, false, "coroutine_drop", &0, &body, |_, _| Ok(()));
body.source.instance = drop_instance;
body
}
fn insert_term_block<'tcx>(body: &mut Body<'tcx>, kind: TerminatorKind<'tcx>) -> BasicBlock {
let source_info = SourceInfo::outermost(body.span);
body.basic_blocks_mut().push(BasicBlockData {
statements: Vec::new(),
terminator: Some(Terminator { source_info, kind }),
is_cleanup: false,
})
}
fn insert_panic_block<'tcx>(
tcx: TyCtxt<'tcx>,
body: &mut Body<'tcx>,
message: AssertMessage<'tcx>,
) -> BasicBlock {
let assert_block = BasicBlock::new(body.basic_blocks.len());
let term = TerminatorKind::Assert {
cond: Operand::Constant(Box::new(ConstOperand {
span: body.span,
user_ty: None,
const_: Const::from_bool(tcx, false),
})),
expected: true,
msg: Box::new(message),
target: assert_block,
unwind: UnwindAction::Continue,
};
let source_info = SourceInfo::outermost(body.span);
body.basic_blocks_mut().push(BasicBlockData {
statements: Vec::new(),
terminator: Some(Terminator { source_info, kind: term }),
is_cleanup: false,
});
assert_block
}
fn can_return<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
// Returning from a function with an uninhabited return type is undefined behavior.
if body.return_ty().is_privately_uninhabited(tcx, param_env) {
return false;
}
// If there's a return terminator the function may return.
for block in body.basic_blocks.iter() {
if let TerminatorKind::Return = block.terminator().kind {
return true;
}
}
// Otherwise the function can't return.
false
}
fn can_unwind<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>) -> bool {
// Nothing can unwind when landing pads are off.
if tcx.sess.panic_strategy() == PanicStrategy::Abort {
return false;
}
// Unwinds can only start at certain terminators.
for block in body.basic_blocks.iter() {
match block.terminator().kind {
// These never unwind.
TerminatorKind::Goto { .. }
| TerminatorKind::SwitchInt { .. }
| TerminatorKind::UnwindTerminate(_)
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::CoroutineDrop
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. } => {}
// Resume will *continue* unwinding, but if there's no other unwinding terminator it
// will never be reached.
TerminatorKind::UnwindResume => {}
TerminatorKind::Yield { .. } => {
unreachable!("`can_unwind` called before coroutine transform")
}
// These may unwind.
TerminatorKind::Drop { .. }
| TerminatorKind::Call { .. }
| TerminatorKind::InlineAsm { .. }
| TerminatorKind::Assert { .. } => return true,
}
}
// If we didn't find an unwinding terminator, the function cannot unwind.
false
}
fn create_coroutine_resume_function<'tcx>(
tcx: TyCtxt<'tcx>,
transform: TransformVisitor<'tcx>,
body: &mut Body<'tcx>,
can_return: bool,
) {
let can_unwind = can_unwind(tcx, body);
// Poison the coroutine when it unwinds
if can_unwind {
let source_info = SourceInfo::outermost(body.span);
let poison_block = body.basic_blocks_mut().push(BasicBlockData {
statements: vec![transform.set_discr(VariantIdx::new(POISONED), source_info)],
terminator: Some(Terminator { source_info, kind: TerminatorKind::UnwindResume }),
is_cleanup: true,
});
for (idx, block) in body.basic_blocks_mut().iter_enumerated_mut() {
let source_info = block.terminator().source_info;
if let TerminatorKind::UnwindResume = block.terminator().kind {
// An existing `Resume` terminator is redirected to jump to our dedicated
// "poisoning block" above.
if idx != poison_block {
*block.terminator_mut() = Terminator {
source_info,
kind: TerminatorKind::Goto { target: poison_block },
};
}
} else if !block.is_cleanup {
// Any terminators that *can* unwind but don't have an unwind target set are also
// pointed at our poisoning block (unless they're part of the cleanup path).
if let Some(unwind @ UnwindAction::Continue) = block.terminator_mut().unwind_mut() {
*unwind = UnwindAction::Cleanup(poison_block);
}
}
}
}
let mut cases = create_cases(body, &transform, Operation::Resume);
use rustc_middle::mir::AssertKind::{ResumedAfterPanic, ResumedAfterReturn};
// Jump to the entry point on the unresumed
cases.insert(0, (UNRESUMED, START_BLOCK));
// Panic when resumed on the returned or poisoned state
let coroutine_kind = body.coroutine_kind().unwrap();
if can_unwind {
cases.insert(
1,
(POISONED, insert_panic_block(tcx, body, ResumedAfterPanic(coroutine_kind))),
);
}
if can_return {
let block = match coroutine_kind {
CoroutineKind::Async(_) | CoroutineKind::Coroutine => {
insert_panic_block(tcx, body, ResumedAfterReturn(coroutine_kind))
}
CoroutineKind::Gen(_) => transform.insert_none_ret_block(body),
};
cases.insert(1, (RETURNED, block));
}
insert_switch(body, cases, &transform, TerminatorKind::Unreachable);
make_coroutine_state_argument_indirect(tcx, body);
make_coroutine_state_argument_pinned(tcx, body);
// Make sure we remove dead blocks to remove
// unrelated code from the drop part of the function
simplify::remove_dead_blocks(body);
pm::run_passes_no_validate(tcx, body, &[&abort_unwinding_calls::AbortUnwindingCalls], None);
dump_mir(tcx, false, "coroutine_resume", &0, body, |_, _| Ok(()));
}
fn insert_clean_drop(body: &mut Body<'_>) -> BasicBlock {
let return_block = insert_term_block(body, TerminatorKind::Return);
let term = TerminatorKind::Drop {
place: Place::from(SELF_ARG),
target: return_block,
unwind: UnwindAction::Continue,
replace: false,
};
let source_info = SourceInfo::outermost(body.span);
// Create a block to destroy an unresumed coroutines. This can only destroy upvars.
body.basic_blocks_mut().push(BasicBlockData {
statements: Vec::new(),
terminator: Some(Terminator { source_info, kind: term }),
is_cleanup: false,
})
}
/// An operation that can be performed on a coroutine.
#[derive(PartialEq, Copy, Clone)]
enum Operation {
Resume,
Drop,
}
impl Operation {
fn target_block(self, point: &SuspensionPoint<'_>) -> Option<BasicBlock> {
match self {
Operation::Resume => Some(point.resume),
Operation::Drop => point.drop,
}
}
}
fn create_cases<'tcx>(
body: &mut Body<'tcx>,
transform: &TransformVisitor<'tcx>,
operation: Operation,
) -> Vec<(usize, BasicBlock)> {
let source_info = SourceInfo::outermost(body.span);
transform
.suspension_points
.iter()
.filter_map(|point| {
// Find the target for this suspension point, if applicable
operation.target_block(point).map(|target| {
let mut statements = Vec::new();
// Create StorageLive instructions for locals with live storage
for i in 0..(body.local_decls.len()) {
if i == 2 {
// The resume argument is live on function entry. Don't insert a
// `StorageLive`, or the following `Assign` will read from uninitialized
// memory.
continue;
}
let l = Local::new(i);
let needs_storage_live = point.storage_liveness.contains(l)
&& !transform.remap.contains_key(&l)
&& !transform.always_live_locals.contains(l);
if needs_storage_live {
statements
.push(Statement { source_info, kind: StatementKind::StorageLive(l) });
}
}
if operation == Operation::Resume {
// Move the resume argument to the destination place of the `Yield` terminator
let resume_arg = Local::new(2); // 0 = return, 1 = self
statements.push(Statement {
source_info,
kind: StatementKind::Assign(Box::new((
point.resume_arg,
Rvalue::Use(Operand::Move(resume_arg.into())),
))),
});
}
// Then jump to the real target
let block = body.basic_blocks_mut().push(BasicBlockData {
statements,
terminator: Some(Terminator {
source_info,
kind: TerminatorKind::Goto { target },
}),
is_cleanup: false,
});
(point.state, block)
})
})
.collect()
}
#[instrument(level = "debug", skip(tcx), ret)]
pub(crate) fn mir_coroutine_witnesses<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
) -> Option<CoroutineLayout<'tcx>> {
let (body, _) = tcx.mir_promoted(def_id);
let body = body.borrow();
let body = &*body;
// The first argument is the coroutine type passed by value
let coroutine_ty = body.local_decls[ty::CAPTURE_STRUCT_LOCAL].ty;
let movable = match *coroutine_ty.kind() {
ty::Coroutine(_, _, movability) => movability == hir::Movability::Movable,
ty::Error(_) => return None,
_ => span_bug!(body.span, "unexpected coroutine type {}", coroutine_ty),
};
// The witness simply contains all locals live across suspend points.
let always_live_locals = always_storage_live_locals(&body);
let liveness_info = locals_live_across_suspend_points(tcx, body, &always_live_locals, movable);
// Extract locals which are live across suspension point into `layout`
// `remap` gives a mapping from local indices onto coroutine struct indices
// `storage_liveness` tells us which locals have live storage at suspension points
let (_, coroutine_layout, _) = compute_layout(liveness_info, body);
check_suspend_tys(tcx, &coroutine_layout, &body);
Some(coroutine_layout)
}
impl<'tcx> MirPass<'tcx> for StateTransform {
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
let Some(yield_ty) = body.yield_ty() else {
// This only applies to coroutines
return;
};
assert!(body.coroutine_drop().is_none());
// The first argument is the coroutine type passed by value
let coroutine_ty = body.local_decls.raw[1].ty;
// Get the discriminant type and args which typeck computed
let (discr_ty, movable) = match *coroutine_ty.kind() {
ty::Coroutine(_, args, movability) => {
let args = args.as_coroutine();
(args.discr_ty(tcx), movability == hir::Movability::Movable)
}
_ => {
tcx.sess
.delay_span_bug(body.span, format!("unexpected coroutine type {coroutine_ty}"));
return;
}
};
let is_async_kind = matches!(body.coroutine_kind(), Some(CoroutineKind::Async(_)));
let (state_adt_ref, state_args) = match body.coroutine_kind().unwrap() {
CoroutineKind::Async(_) => {
// Compute Poll<return_ty>
let poll_did = tcx.require_lang_item(LangItem::Poll, None);
let poll_adt_ref = tcx.adt_def(poll_did);
let poll_args = tcx.mk_args(&[body.return_ty().into()]);
(poll_adt_ref, poll_args)
}
CoroutineKind::Gen(_) => {
// Compute Option<yield_ty>
let option_did = tcx.require_lang_item(LangItem::Option, None);
let option_adt_ref = tcx.adt_def(option_did);
let option_args = tcx.mk_args(&[body.yield_ty().unwrap().into()]);
(option_adt_ref, option_args)
}
CoroutineKind::Coroutine => {
// Compute CoroutineState<yield_ty, return_ty>
let state_did = tcx.require_lang_item(LangItem::CoroutineState, None);
let state_adt_ref = tcx.adt_def(state_did);
let state_args = tcx.mk_args(&[yield_ty.into(), body.return_ty().into()]);
(state_adt_ref, state_args)
}
};
let ret_ty = Ty::new_adt(tcx, state_adt_ref, state_args);
// We rename RETURN_PLACE which has type mir.return_ty to new_ret_local
// RETURN_PLACE then is a fresh unused local with type ret_ty.
let new_ret_local = replace_local(RETURN_PLACE, ret_ty, body, tcx);
// Replace all occurrences of `ResumeTy` with `&mut Context<'_>` within async bodies.
if is_async_kind {
transform_async_context(tcx, body);
}
// We also replace the resume argument and insert an `Assign`.
// This is needed because the resume argument `_2` might be live across a `yield`, in which
// case there is no `Assign` to it that the transform can turn into a store to the coroutine
// state. After the yield the slot in the coroutine state would then be uninitialized.
let resume_local = Local::new(2);
let resume_ty = if is_async_kind {
Ty::new_task_context(tcx)
} else {
body.local_decls[resume_local].ty
};
let new_resume_local = replace_local(resume_local, resume_ty, body, tcx);
// When first entering the coroutine, move the resume argument into its new local.
let source_info = SourceInfo::outermost(body.span);
let stmts = &mut body.basic_blocks_mut()[START_BLOCK].statements;
stmts.insert(
0,
Statement {
source_info,
kind: StatementKind::Assign(Box::new((
new_resume_local.into(),
Rvalue::Use(Operand::Move(resume_local.into())),
))),
},
);
let always_live_locals = always_storage_live_locals(&body);
let liveness_info =
locals_live_across_suspend_points(tcx, body, &always_live_locals, movable);
if tcx.sess.opts.unstable_opts.validate_mir {
let mut vis = EnsureCoroutineFieldAssignmentsNeverAlias {
assigned_local: None,
saved_locals: &liveness_info.saved_locals,
storage_conflicts: &liveness_info.storage_conflicts,
};
vis.visit_body(body);
}
// Extract locals which are live across suspension point into `layout`
// `remap` gives a mapping from local indices onto coroutine struct indices
// `storage_liveness` tells us which locals have live storage at suspension points
let (remap, layout, storage_liveness) = compute_layout(liveness_info, body);
let can_return = can_return(tcx, body, tcx.param_env(body.source.def_id()));
// Run the transformation which converts Places from Local to coroutine struct
// accesses for locals in `remap`.
// It also rewrites `return x` and `yield y` as writing a new coroutine state and returning
// either CoroutineState::Complete(x) and CoroutineState::Yielded(y),
// or Poll::Ready(x) and Poll::Pending respectively depending on `is_async_kind`.
let mut transform = TransformVisitor {
tcx,
coroutine_kind: body.coroutine_kind().unwrap(),
state_adt_ref,
state_args,
remap,
storage_liveness,
always_live_locals,
suspension_points: Vec::new(),
new_ret_local,
discr_ty,
};
transform.visit_body(body);
// Update our MIR struct to reflect the changes we've made
body.arg_count = 2; // self, resume arg
body.spread_arg = None;
// The original arguments to the function are no longer arguments, mark them as such.
// Otherwise they'll conflict with our new arguments, which although they don't have
// argument_index set, will get emitted as unnamed arguments.
for var in &mut body.var_debug_info {
var.argument_index = None;
}
body.coroutine.as_mut().unwrap().yield_ty = None;
body.coroutine.as_mut().unwrap().coroutine_layout = Some(layout);
// Insert `drop(coroutine_struct)` which is used to drop upvars for coroutines in
// the unresumed state.
// This is expanded to a drop ladder in `elaborate_coroutine_drops`.
let drop_clean = insert_clean_drop(body);
dump_mir(tcx, false, "coroutine_pre-elab", &0, body, |_, _| Ok(()));
// Expand `drop(coroutine_struct)` to a drop ladder which destroys upvars.
// If any upvars are moved out of, drop elaboration will handle upvar destruction.
// However we need to also elaborate the code generated by `insert_clean_drop`.
elaborate_coroutine_drops(tcx, body);
dump_mir(tcx, false, "coroutine_post-transform", &0, body, |_, _| Ok(()));
// Create a copy of our MIR and use it to create the drop shim for the coroutine
let drop_shim = create_coroutine_drop_shim(tcx, &transform, coroutine_ty, body, drop_clean);
body.coroutine.as_mut().unwrap().coroutine_drop = Some(drop_shim);
// Create the Coroutine::resume / Future::poll function
create_coroutine_resume_function(tcx, transform, body, can_return);
// Run derefer to fix Derefs that are not in the first place
deref_finder(tcx, body);
}
}
/// Looks for any assignments between locals (e.g., `_4 = _5`) that will both be converted to fields
/// in the coroutine state machine but whose storage is not marked as conflicting
///
/// Validation needs to happen immediately *before* `TransformVisitor` is invoked, not after.
///
/// This condition would arise when the assignment is the last use of `_5` but the initial
/// definition of `_4` if we weren't extra careful to mark all locals used inside a statement as
/// conflicting. Non-conflicting coroutine saved locals may be stored at the same location within
/// the coroutine state machine, which would result in ill-formed MIR: the left-hand and right-hand
/// sides of an assignment may not alias. This caused a miscompilation in [#73137].
///
/// [#73137]: https://github.com/rust-lang/rust/issues/73137
struct EnsureCoroutineFieldAssignmentsNeverAlias<'a> {
saved_locals: &'a CoroutineSavedLocals,
storage_conflicts: &'a BitMatrix<CoroutineSavedLocal, CoroutineSavedLocal>,
assigned_local: Option<CoroutineSavedLocal>,
}
impl EnsureCoroutineFieldAssignmentsNeverAlias<'_> {
fn saved_local_for_direct_place(&self, place: Place<'_>) -> Option<CoroutineSavedLocal> {
if place.is_indirect() {
return None;
}
self.saved_locals.get(place.local)
}
fn check_assigned_place(&mut self, place: Place<'_>, f: impl FnOnce(&mut Self)) {
if let Some(assigned_local) = self.saved_local_for_direct_place(place) {
assert!(self.assigned_local.is_none(), "`check_assigned_place` must not recurse");
self.assigned_local = Some(assigned_local);
f(self);
self.assigned_local = None;
}
}
}
impl<'tcx> Visitor<'tcx> for EnsureCoroutineFieldAssignmentsNeverAlias<'_> {
fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, location: Location) {
let Some(lhs) = self.assigned_local else {
// This visitor only invokes `visit_place` for the right-hand side of an assignment
// and only after setting `self.assigned_local`. However, the default impl of
// `Visitor::super_body` may call `visit_place` with a `NonUseContext` for places
// with debuginfo. Ignore them here.
assert!(!context.is_use());
return;
};
let Some(rhs) = self.saved_local_for_direct_place(*place) else { return };
if !self.storage_conflicts.contains(lhs, rhs) {
bug!(
"Assignment between coroutine saved locals whose storage is not \
marked as conflicting: {:?}: {:?} = {:?}",
location,
lhs,
rhs,
);
}
}
fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
match &statement.kind {
StatementKind::Assign(box (lhs, rhs)) => {
self.check_assigned_place(*lhs, |this| this.visit_rvalue(rhs, location));
}
StatementKind::FakeRead(..)
| StatementKind::SetDiscriminant { .. }
| StatementKind::Deinit(..)
| StatementKind::StorageLive(_)
| StatementKind::StorageDead(_)
| StatementKind::Retag(..)
| StatementKind::AscribeUserType(..)
| StatementKind::PlaceMention(..)
| StatementKind::Coverage(..)
| StatementKind::Intrinsic(..)
| StatementKind::ConstEvalCounter
| StatementKind::Nop => {}
}
}
fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
// Checking for aliasing in terminators is probably overkill, but until we have actual
// semantics, we should be conservative here.
match &terminator.kind {
TerminatorKind::Call {
func,
args,
destination,
target: Some(_),
unwind: _,
call_source: _,
fn_span: _,
} => {
self.check_assigned_place(*destination, |this| {
this.visit_operand(func, location);
for arg in args {
this.visit_operand(arg, location);
}
});
}
TerminatorKind::Yield { value, resume: _, resume_arg, drop: _ } => {
self.check_assigned_place(*resume_arg, |this| this.visit_operand(value, location));
}
// FIXME: Does `asm!` have any aliasing requirements?
TerminatorKind::InlineAsm { .. } => {}
TerminatorKind::Call { .. }
| TerminatorKind::Goto { .. }
| TerminatorKind::SwitchInt { .. }
| TerminatorKind::UnwindResume
| TerminatorKind::UnwindTerminate(_)
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::Drop { .. }
| TerminatorKind::Assert { .. }
| TerminatorKind::CoroutineDrop
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. } => {}
}
}
}
fn check_suspend_tys<'tcx>(tcx: TyCtxt<'tcx>, layout: &CoroutineLayout<'tcx>, body: &Body<'tcx>) {
let mut linted_tys = FxHashSet::default();
// We want a user-facing param-env.
let param_env = tcx.param_env(body.source.def_id());
for (variant, yield_source_info) in
layout.variant_fields.iter().zip(&layout.variant_source_info)
{
debug!(?variant);
for &local in variant {
let decl = &layout.field_tys[local];
debug!(?decl);
if !decl.ignore_for_traits && linted_tys.insert(decl.ty) {
let Some(hir_id) = decl.source_info.scope.lint_root(&body.source_scopes) else {
continue;
};
check_must_not_suspend_ty(
tcx,
decl.ty,
hir_id,
param_env,
SuspendCheckData {
source_span: decl.source_info.span,
yield_span: yield_source_info.span,
plural_len: 1,
..Default::default()
},
);
}
}
}
}
#[derive(Default)]
struct SuspendCheckData<'a> {
source_span: Span,
yield_span: Span,
descr_pre: &'a str,
descr_post: &'a str,
plural_len: usize,
}
// Returns whether it emitted a diagnostic or not
// Note that this fn and the proceeding one are based on the code
// for creating must_use diagnostics
//
// Note that this technique was chosen over things like a `Suspend` marker trait
// as it is simpler and has precedent in the compiler
fn check_must_not_suspend_ty<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
hir_id: hir::HirId,
param_env: ty::ParamEnv<'tcx>,
data: SuspendCheckData<'_>,
) -> bool {
if ty.is_unit() {
return false;
}
let plural_suffix = pluralize!(data.plural_len);
debug!("Checking must_not_suspend for {}", ty);
match *ty.kind() {
ty::Adt(..) if ty.is_box() => {
let boxed_ty = ty.boxed_ty();
let descr_pre = &format!("{}boxed ", data.descr_pre);
check_must_not_suspend_ty(
tcx,
boxed_ty,
hir_id,
param_env,
SuspendCheckData { descr_pre, ..data },
)
}
ty::Adt(def, _) => check_must_not_suspend_def(tcx, def.did(), hir_id, data),
// FIXME: support adding the attribute to TAITs
ty::Alias(ty::Opaque, ty::AliasTy { def_id: def, .. }) => {
let mut has_emitted = false;
for &(predicate, _) in tcx.explicit_item_bounds(def).skip_binder() {
// We only look at the `DefId`, so it is safe to skip the binder here.
if let ty::ClauseKind::Trait(ref poly_trait_predicate) =
predicate.kind().skip_binder()
{
let def_id = poly_trait_predicate.trait_ref.def_id;
let descr_pre = &format!("{}implementer{} of ", data.descr_pre, plural_suffix);
if check_must_not_suspend_def(
tcx,
def_id,
hir_id,
SuspendCheckData { descr_pre, ..data },
) {
has_emitted = true;
break;
}
}
}
has_emitted
}
ty::Dynamic(binder, _, _) => {
let mut has_emitted = false;
for predicate in binder.iter() {
if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate.skip_binder() {
let def_id = trait_ref.def_id;
let descr_post = &format!(" trait object{}{}", plural_suffix, data.descr_post);
if check_must_not_suspend_def(
tcx,
def_id,
hir_id,
SuspendCheckData { descr_post, ..data },
) {
has_emitted = true;
break;
}
}
}
has_emitted
}
ty::Tuple(fields) => {
let mut has_emitted = false;
for (i, ty) in fields.iter().enumerate() {
let descr_post = &format!(" in tuple element {i}");
if check_must_not_suspend_ty(
tcx,
ty,
hir_id,
param_env,
SuspendCheckData { descr_post, ..data },
) {
has_emitted = true;
}
}
has_emitted
}
ty::Array(ty, len) => {
let descr_pre = &format!("{}array{} of ", data.descr_pre, plural_suffix);
check_must_not_suspend_ty(
tcx,
ty,
hir_id,
param_env,
SuspendCheckData {
descr_pre,
plural_len: len.try_eval_target_usize(tcx, param_env).unwrap_or(0) as usize + 1,
..data
},
)
}
// If drop tracking is enabled, we want to look through references, since the referent
// may not be considered live across the await point.
ty::Ref(_region, ty, _mutability) => {
let descr_pre = &format!("{}reference{} to ", data.descr_pre, plural_suffix);
check_must_not_suspend_ty(
tcx,
ty,
hir_id,
param_env,
SuspendCheckData { descr_pre, ..data },
)
}
_ => false,
}
}
fn check_must_not_suspend_def(
tcx: TyCtxt<'_>,
def_id: DefId,
hir_id: hir::HirId,
data: SuspendCheckData<'_>,
) -> bool {
if let Some(attr) = tcx.get_attr(def_id, sym::must_not_suspend) {
let reason = attr.value_str().map(|s| errors::MustNotSuspendReason {
span: data.source_span,
reason: s.as_str().to_string(),
});
tcx.emit_spanned_lint(
rustc_session::lint::builtin::MUST_NOT_SUSPEND,
hir_id,
data.source_span,
errors::MustNotSupend {
tcx,
yield_sp: data.yield_span,
reason,
src_sp: data.source_span,
pre: data.descr_pre,
def_id,
post: data.descr_post,
},
);
true
} else {
false
}
}