blob: 0811ab6a0a6bd285883ee2391f27b808b137651b [file] [log] [blame]
//! Validation of patterns/matches.
mod check_match;
mod const_to_pat;
pub(crate) mod deconstruct_pat;
mod usefulness;
pub(crate) use self::check_match::check_match;
pub(crate) use self::usefulness::MatchCheckCtxt;
use crate::errors::*;
use crate::thir::util::UserAnnotatedTyHelpers;
use rustc_errors::error_code;
use rustc_hir as hir;
use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::pat_util::EnumerateAndAdjustIterator;
use rustc_hir::RangeEnd;
use rustc_index::Idx;
use rustc_middle::mir::interpret::{ErrorHandled, GlobalId, LitToConstError, LitToConstInput};
use rustc_middle::mir::{self, BorrowKind, Const, Mutability, UserTypeProjection};
use rustc_middle::thir::{
Ascription, BindingMode, FieldPat, LocalVarId, Pat, PatKind, PatRange, PatRangeBoundary,
};
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::{
self, AdtDef, CanonicalUserTypeAnnotation, GenericArg, GenericArgsRef, Region, Ty, TyCtxt,
TypeVisitableExt, UserType,
};
use rustc_span::def_id::LocalDefId;
use rustc_span::{ErrorGuaranteed, Span, Symbol};
use rustc_target::abi::{FieldIdx, Integer};
use std::cmp::Ordering;
struct PatCtxt<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
typeck_results: &'a ty::TypeckResults<'tcx>,
}
pub(super) fn pat_from_hir<'a, 'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
typeck_results: &'a ty::TypeckResults<'tcx>,
pat: &'tcx hir::Pat<'tcx>,
) -> Box<Pat<'tcx>> {
let mut pcx = PatCtxt { tcx, param_env, typeck_results };
let result = pcx.lower_pattern(pat);
debug!("pat_from_hir({:?}) = {:?}", pat, result);
result
}
impl<'a, 'tcx> PatCtxt<'a, 'tcx> {
fn lower_pattern(&mut self, pat: &'tcx hir::Pat<'tcx>) -> Box<Pat<'tcx>> {
// When implicit dereferences have been inserted in this pattern, the unadjusted lowered
// pattern has the type that results *after* dereferencing. For example, in this code:
//
// ```
// match &&Some(0i32) {
// Some(n) => { ... },
// _ => { ... },
// }
// ```
//
// the type assigned to `Some(n)` in `unadjusted_pat` would be `Option<i32>` (this is
// determined in rustc_hir_analysis::check::match). The adjustments would be
//
// `vec![&&Option<i32>, &Option<i32>]`.
//
// Applying the adjustments, we want to instead output `&&Some(n)` (as a THIR pattern). So
// we wrap the unadjusted pattern in `PatKind::Deref` repeatedly, consuming the
// adjustments in *reverse order* (last-in-first-out, so that the last `Deref` inserted
// gets the least-dereferenced type).
let unadjusted_pat = self.lower_pattern_unadjusted(pat);
self.typeck_results.pat_adjustments().get(pat.hir_id).unwrap_or(&vec![]).iter().rev().fold(
unadjusted_pat,
|pat: Box<_>, ref_ty| {
debug!("{:?}: wrapping pattern with type {:?}", pat, ref_ty);
Box::new(Pat {
span: pat.span,
ty: *ref_ty,
kind: PatKind::Deref { subpattern: pat },
})
},
)
}
fn lower_pattern_range_endpoint(
&mut self,
expr: Option<&'tcx hir::Expr<'tcx>>,
) -> Result<
(Option<PatRangeBoundary<'tcx>>, Option<Ascription<'tcx>>, Option<LocalDefId>),
ErrorGuaranteed,
> {
match expr {
None => Ok((None, None, None)),
Some(expr) => {
let (kind, ascr, inline_const) = match self.lower_lit(expr) {
PatKind::InlineConstant { subpattern, def } => {
(subpattern.kind, None, Some(def))
}
PatKind::AscribeUserType { ascription, subpattern: box Pat { kind, .. } } => {
(kind, Some(ascription), None)
}
kind => (kind, None, None),
};
let value = if let PatKind::Constant { value } = kind {
value
} else {
let msg = format!(
"found bad range pattern endpoint `{expr:?}` outside of error recovery"
);
return Err(self.tcx.sess.delay_span_bug(expr.span, msg));
};
Ok((Some(PatRangeBoundary::Finite(value)), ascr, inline_const))
}
}
}
/// Overflowing literals are linted against in a late pass. This is mostly fine, except when we
/// encounter a range pattern like `-130i8..2`: if we believe `eval_bits`, this looks like a
/// range where the endpoints are in the wrong order. To avoid a confusing error message, we
/// check for overflow then.
/// This is only called when the range is already known to be malformed.
fn error_on_literal_overflow(
&self,
expr: Option<&'tcx hir::Expr<'tcx>>,
ty: Ty<'tcx>,
) -> Result<(), ErrorGuaranteed> {
use hir::{ExprKind, UnOp};
use rustc_ast::ast::LitKind;
let Some(mut expr) = expr else {
return Ok(());
};
let span = expr.span;
// We need to inspect the original expression, because if we only inspect the output of
// `eval_bits`, an overflowed value has already been wrapped around.
// We mostly copy the logic from the `rustc_lint::OVERFLOWING_LITERALS` lint.
let mut negated = false;
if let ExprKind::Unary(UnOp::Neg, sub_expr) = expr.kind {
negated = true;
expr = sub_expr;
}
let ExprKind::Lit(lit) = expr.kind else {
return Ok(());
};
let LitKind::Int(lit_val, _) = lit.node else {
return Ok(());
};
let (min, max): (i128, u128) = match ty.kind() {
ty::Int(ity) => {
let size = Integer::from_int_ty(&self.tcx, *ity).size();
(size.signed_int_min(), size.signed_int_max() as u128)
}
ty::Uint(uty) => {
let size = Integer::from_uint_ty(&self.tcx, *uty).size();
(0, size.unsigned_int_max())
}
_ => {
return Ok(());
}
};
// Detect literal value out of range `[min, max]` inclusive, avoiding use of `-min` to
// prevent overflow/panic.
if (negated && lit_val > max + 1) || (!negated && lit_val > max) {
return Err(self.tcx.sess.emit_err(LiteralOutOfRange { span, ty, min, max }));
}
Ok(())
}
fn lower_pattern_range(
&mut self,
lo_expr: Option<&'tcx hir::Expr<'tcx>>,
hi_expr: Option<&'tcx hir::Expr<'tcx>>,
end: RangeEnd,
ty: Ty<'tcx>,
span: Span,
) -> Result<PatKind<'tcx>, ErrorGuaranteed> {
if lo_expr.is_none() && hi_expr.is_none() {
let msg = format!("found twice-open range pattern (`..`) outside of error recovery");
return Err(self.tcx.sess.delay_span_bug(span, msg));
}
let (lo, lo_ascr, lo_inline) = self.lower_pattern_range_endpoint(lo_expr)?;
let (hi, hi_ascr, hi_inline) = self.lower_pattern_range_endpoint(hi_expr)?;
let lo = lo.unwrap_or(PatRangeBoundary::NegInfinity);
let hi = hi.unwrap_or(PatRangeBoundary::PosInfinity);
let cmp = lo.compare_with(hi, ty, self.tcx, self.param_env);
let mut kind = PatKind::Range(Box::new(PatRange { lo, hi, end, ty }));
match (end, cmp) {
// `x..y` where `x < y`.
(RangeEnd::Excluded, Some(Ordering::Less)) => {}
// `x..=y` where `x < y`.
(RangeEnd::Included, Some(Ordering::Less)) => {}
// `x..=y` where `x == y` and `x` and `y` are finite.
(RangeEnd::Included, Some(Ordering::Equal)) if lo.is_finite() && hi.is_finite() => {
kind = PatKind::Constant { value: lo.as_finite().unwrap() };
}
// `..=x` where `x == ty::MIN`.
(RangeEnd::Included, Some(Ordering::Equal)) if !lo.is_finite() => {}
// `x..` where `x == ty::MAX` (yes, `x..` gives `RangeEnd::Included` since it is meant
// to include `ty::MAX`).
(RangeEnd::Included, Some(Ordering::Equal)) if !hi.is_finite() => {}
// `x..y` where `x >= y`, or `x..=y` where `x > y`. The range is empty => error.
_ => {
// Emit a more appropriate message if there was overflow.
self.error_on_literal_overflow(lo_expr, ty)?;
self.error_on_literal_overflow(hi_expr, ty)?;
let e = match end {
RangeEnd::Included => {
self.tcx.sess.emit_err(LowerRangeBoundMustBeLessThanOrEqualToUpper {
span,
teach: self.tcx.sess.teach(&error_code!(E0030)).then_some(()),
})
}
RangeEnd::Excluded => {
self.tcx.sess.emit_err(LowerRangeBoundMustBeLessThanUpper { span })
}
};
return Err(e);
}
}
// If we are handling a range with associated constants (e.g.
// `Foo::<'a>::A..=Foo::B`), we need to put the ascriptions for the associated
// constants somewhere. Have them on the range pattern.
for ascr in [lo_ascr, hi_ascr] {
if let Some(ascription) = ascr {
kind = PatKind::AscribeUserType {
ascription,
subpattern: Box::new(Pat { span, ty, kind }),
};
}
}
for inline_const in [lo_inline, hi_inline] {
if let Some(def) = inline_const {
kind =
PatKind::InlineConstant { def, subpattern: Box::new(Pat { span, ty, kind }) };
}
}
Ok(kind)
}
#[instrument(skip(self), level = "debug")]
fn lower_pattern_unadjusted(&mut self, pat: &'tcx hir::Pat<'tcx>) -> Box<Pat<'tcx>> {
let mut ty = self.typeck_results.node_type(pat.hir_id);
let mut span = pat.span;
let kind = match pat.kind {
hir::PatKind::Wild => PatKind::Wild,
hir::PatKind::Lit(value) => self.lower_lit(value),
hir::PatKind::Range(ref lo_expr, ref hi_expr, end) => {
let (lo_expr, hi_expr) = (lo_expr.as_deref(), hi_expr.as_deref());
self.lower_pattern_range(lo_expr, hi_expr, end, ty, span)
.unwrap_or_else(PatKind::Error)
}
hir::PatKind::Path(ref qpath) => {
return self.lower_path(qpath, pat.hir_id, pat.span);
}
hir::PatKind::Ref(ref subpattern, _) | hir::PatKind::Box(ref subpattern) => {
PatKind::Deref { subpattern: self.lower_pattern(subpattern) }
}
hir::PatKind::Slice(ref prefix, ref slice, ref suffix) => {
self.slice_or_array_pattern(pat.span, ty, prefix, slice, suffix)
}
hir::PatKind::Tuple(ref pats, ddpos) => {
let ty::Tuple(ref tys) = ty.kind() else {
span_bug!(pat.span, "unexpected type for tuple pattern: {:?}", ty);
};
let subpatterns = self.lower_tuple_subpats(pats, tys.len(), ddpos);
PatKind::Leaf { subpatterns }
}
hir::PatKind::Binding(_, id, ident, ref sub) => {
if let Some(ident_span) = ident.span.find_ancestor_inside(span) {
span = span.with_hi(ident_span.hi());
}
let bm = *self
.typeck_results
.pat_binding_modes()
.get(pat.hir_id)
.expect("missing binding mode");
let (mutability, mode) = match bm {
ty::BindByValue(mutbl) => (mutbl, BindingMode::ByValue),
ty::BindByReference(hir::Mutability::Mut) => (
Mutability::Not,
BindingMode::ByRef(BorrowKind::Mut { kind: mir::MutBorrowKind::Default }),
),
ty::BindByReference(hir::Mutability::Not) => {
(Mutability::Not, BindingMode::ByRef(BorrowKind::Shared))
}
};
// A ref x pattern is the same node used for x, and as such it has
// x's type, which is &T, where we want T (the type being matched).
let var_ty = ty;
if let ty::BindByReference(_) = bm {
if let ty::Ref(_, rty, _) = ty.kind() {
ty = *rty;
} else {
bug!("`ref {}` has wrong type {}", ident, ty);
}
};
PatKind::Binding {
mutability,
mode,
name: ident.name,
var: LocalVarId(id),
ty: var_ty,
subpattern: self.lower_opt_pattern(sub),
is_primary: id == pat.hir_id,
}
}
hir::PatKind::TupleStruct(ref qpath, ref pats, ddpos) => {
let res = self.typeck_results.qpath_res(qpath, pat.hir_id);
let ty::Adt(adt_def, _) = ty.kind() else {
span_bug!(pat.span, "tuple struct pattern not applied to an ADT {:?}", ty);
};
let variant_def = adt_def.variant_of_res(res);
let subpatterns = self.lower_tuple_subpats(pats, variant_def.fields.len(), ddpos);
self.lower_variant_or_leaf(res, pat.hir_id, pat.span, ty, subpatterns)
}
hir::PatKind::Struct(ref qpath, ref fields, _) => {
let res = self.typeck_results.qpath_res(qpath, pat.hir_id);
let subpatterns = fields
.iter()
.map(|field| FieldPat {
field: self.typeck_results.field_index(field.hir_id),
pattern: self.lower_pattern(&field.pat),
})
.collect();
self.lower_variant_or_leaf(res, pat.hir_id, pat.span, ty, subpatterns)
}
hir::PatKind::Or(ref pats) => PatKind::Or { pats: self.lower_patterns(pats) },
};
Box::new(Pat { span, ty, kind })
}
fn lower_tuple_subpats(
&mut self,
pats: &'tcx [hir::Pat<'tcx>],
expected_len: usize,
gap_pos: hir::DotDotPos,
) -> Vec<FieldPat<'tcx>> {
pats.iter()
.enumerate_and_adjust(expected_len, gap_pos)
.map(|(i, subpattern)| FieldPat {
field: FieldIdx::new(i),
pattern: self.lower_pattern(subpattern),
})
.collect()
}
fn lower_patterns(&mut self, pats: &'tcx [hir::Pat<'tcx>]) -> Box<[Box<Pat<'tcx>>]> {
pats.iter().map(|p| self.lower_pattern(p)).collect()
}
fn lower_opt_pattern(
&mut self,
pat: &'tcx Option<&'tcx hir::Pat<'tcx>>,
) -> Option<Box<Pat<'tcx>>> {
pat.map(|p| self.lower_pattern(p))
}
fn slice_or_array_pattern(
&mut self,
span: Span,
ty: Ty<'tcx>,
prefix: &'tcx [hir::Pat<'tcx>],
slice: &'tcx Option<&'tcx hir::Pat<'tcx>>,
suffix: &'tcx [hir::Pat<'tcx>],
) -> PatKind<'tcx> {
let prefix = self.lower_patterns(prefix);
let slice = self.lower_opt_pattern(slice);
let suffix = self.lower_patterns(suffix);
match ty.kind() {
// Matching a slice, `[T]`.
ty::Slice(..) => PatKind::Slice { prefix, slice, suffix },
// Fixed-length array, `[T; len]`.
ty::Array(_, len) => {
let len = len.eval_target_usize(self.tcx, self.param_env);
assert!(len >= prefix.len() as u64 + suffix.len() as u64);
PatKind::Array { prefix, slice, suffix }
}
_ => span_bug!(span, "bad slice pattern type {:?}", ty),
}
}
fn lower_variant_or_leaf(
&mut self,
res: Res,
hir_id: hir::HirId,
span: Span,
ty: Ty<'tcx>,
subpatterns: Vec<FieldPat<'tcx>>,
) -> PatKind<'tcx> {
let res = match res {
Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_id) => {
let variant_id = self.tcx.parent(variant_ctor_id);
Res::Def(DefKind::Variant, variant_id)
}
res => res,
};
let mut kind = match res {
Res::Def(DefKind::Variant, variant_id) => {
let enum_id = self.tcx.parent(variant_id);
let adt_def = self.tcx.adt_def(enum_id);
if adt_def.is_enum() {
let args = match ty.kind() {
ty::Adt(_, args) | ty::FnDef(_, args) => args,
ty::Error(e) => {
// Avoid ICE (#50585)
return PatKind::Error(*e);
}
_ => bug!("inappropriate type for def: {:?}", ty),
};
PatKind::Variant {
adt_def,
args,
variant_index: adt_def.variant_index_with_id(variant_id),
subpatterns,
}
} else {
PatKind::Leaf { subpatterns }
}
}
Res::Def(
DefKind::Struct
| DefKind::Ctor(CtorOf::Struct, ..)
| DefKind::Union
| DefKind::TyAlias
| DefKind::AssocTy,
_,
)
| Res::SelfTyParam { .. }
| Res::SelfTyAlias { .. }
| Res::SelfCtor(..) => PatKind::Leaf { subpatterns },
_ => {
let e = match res {
Res::Def(DefKind::ConstParam, _) => {
self.tcx.sess.emit_err(ConstParamInPattern { span })
}
Res::Def(DefKind::Static(_), _) => {
self.tcx.sess.emit_err(StaticInPattern { span })
}
_ => self.tcx.sess.emit_err(NonConstPath { span }),
};
PatKind::Error(e)
}
};
if let Some(user_ty) = self.user_args_applied_to_ty_of_hir_id(hir_id) {
debug!("lower_variant_or_leaf: kind={:?} user_ty={:?} span={:?}", kind, user_ty, span);
let annotation = CanonicalUserTypeAnnotation {
user_ty: Box::new(user_ty),
span,
inferred_ty: self.typeck_results.node_type(hir_id),
};
kind = PatKind::AscribeUserType {
subpattern: Box::new(Pat { span, ty, kind }),
ascription: Ascription { annotation, variance: ty::Variance::Covariant },
};
}
kind
}
/// Takes a HIR Path. If the path is a constant, evaluates it and feeds
/// it to `const_to_pat`. Any other path (like enum variants without fields)
/// is converted to the corresponding pattern via `lower_variant_or_leaf`.
#[instrument(skip(self), level = "debug")]
fn lower_path(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, span: Span) -> Box<Pat<'tcx>> {
let ty = self.typeck_results.node_type(id);
let res = self.typeck_results.qpath_res(qpath, id);
let pat_from_kind = |kind| Box::new(Pat { span, ty, kind });
let (def_id, is_associated_const) = match res {
Res::Def(DefKind::Const, def_id) => (def_id, false),
Res::Def(DefKind::AssocConst, def_id) => (def_id, true),
_ => return pat_from_kind(self.lower_variant_or_leaf(res, id, span, ty, vec![])),
};
// Use `Reveal::All` here because patterns are always monomorphic even if their function
// isn't.
let param_env_reveal_all = self.param_env.with_reveal_all_normalized(self.tcx);
// N.B. There is no guarantee that args collected in typeck results are fully normalized,
// so they need to be normalized in order to pass to `Instance::resolve`, which will ICE
// if given unnormalized types.
let args = self
.tcx
.normalize_erasing_regions(param_env_reveal_all, self.typeck_results.node_args(id));
let instance = match ty::Instance::resolve(self.tcx, param_env_reveal_all, def_id, args) {
Ok(Some(i)) => i,
Ok(None) => {
// It should be assoc consts if there's no error but we cannot resolve it.
debug_assert!(is_associated_const);
let e = self.tcx.sess.emit_err(AssocConstInPattern { span });
return pat_from_kind(PatKind::Error(e));
}
Err(_) => {
let e = self.tcx.sess.emit_err(CouldNotEvalConstPattern { span });
return pat_from_kind(PatKind::Error(e));
}
};
let cid = GlobalId { instance, promoted: None };
// Prefer valtrees over opaque constants.
let const_value = self
.tcx
.const_eval_global_id_for_typeck(param_env_reveal_all, cid, Some(span))
.map(|val| match val {
Some(valtree) => mir::Const::Ty(ty::Const::new_value(self.tcx, valtree, ty)),
None => mir::Const::Val(
self.tcx
.const_eval_global_id(param_env_reveal_all, cid, Some(span))
.expect("const_eval_global_id_for_typeck should have already failed"),
ty,
),
});
match const_value {
Ok(const_) => {
let pattern = self.const_to_pat(const_, id, span, Some(instance.def_id()));
if !is_associated_const {
return pattern;
}
let user_provided_types = self.typeck_results().user_provided_types();
if let Some(&user_ty) = user_provided_types.get(id) {
let annotation = CanonicalUserTypeAnnotation {
user_ty: Box::new(user_ty),
span,
inferred_ty: self.typeck_results().node_type(id),
};
Box::new(Pat {
span,
kind: PatKind::AscribeUserType {
subpattern: pattern,
ascription: Ascription {
annotation,
// Note that use `Contravariant` here. See the
// `variance` field documentation for details.
variance: ty::Variance::Contravariant,
},
},
ty: const_.ty(),
})
} else {
pattern
}
}
Err(ErrorHandled::TooGeneric(_)) => {
// While `Reported | Linted` cases will have diagnostics emitted already
// it is not true for TooGeneric case, so we need to give user more information.
let e = self.tcx.sess.emit_err(ConstPatternDependsOnGenericParameter { span });
pat_from_kind(PatKind::Error(e))
}
Err(_) => {
let e = self.tcx.sess.emit_err(CouldNotEvalConstPattern { span });
pat_from_kind(PatKind::Error(e))
}
}
}
/// Converts inline const patterns.
fn lower_inline_const(
&mut self,
block: &'tcx hir::ConstBlock,
id: hir::HirId,
span: Span,
) -> PatKind<'tcx> {
let tcx = self.tcx;
let def_id = block.def_id;
let body_id = block.body;
let expr = &tcx.hir().body(body_id).value;
let ty = tcx.typeck(def_id).node_type(block.hir_id);
// Special case inline consts that are just literals. This is solely
// a performance optimization, as we could also just go through the regular
// const eval path below.
// FIXME: investigate the performance impact of removing this.
let lit_input = match expr.kind {
hir::ExprKind::Lit(lit) => Some(LitToConstInput { lit: &lit.node, ty, neg: false }),
hir::ExprKind::Unary(hir::UnOp::Neg, expr) => match expr.kind {
hir::ExprKind::Lit(lit) => Some(LitToConstInput { lit: &lit.node, ty, neg: true }),
_ => None,
},
_ => None,
};
if let Some(lit_input) = lit_input {
match tcx.at(expr.span).lit_to_const(lit_input) {
Ok(c) => return self.const_to_pat(Const::Ty(c), id, span, None).kind,
// If an error occurred, ignore that it's a literal
// and leave reporting the error up to const eval of
// the unevaluated constant below.
Err(_) => {}
}
}
let typeck_root_def_id = tcx.typeck_root_def_id(def_id.to_def_id());
let parent_args =
tcx.erase_regions(ty::GenericArgs::identity_for_item(tcx, typeck_root_def_id));
let args = ty::InlineConstArgs::new(tcx, ty::InlineConstArgsParts { parent_args, ty }).args;
let uneval = mir::UnevaluatedConst { def: def_id.to_def_id(), args, promoted: None };
debug_assert!(!args.has_free_regions());
let ct = ty::UnevaluatedConst { def: def_id.to_def_id(), args };
// First try using a valtree in order to destructure the constant into a pattern.
// FIXME: replace "try to do a thing, then fall back to another thing"
// but something more principled, like a trait query checking whether this can be turned into a valtree.
if let Ok(Some(valtree)) =
self.tcx.const_eval_resolve_for_typeck(self.param_env, ct, Some(span))
{
let subpattern = self.const_to_pat(
Const::Ty(ty::Const::new_value(self.tcx, valtree, ty)),
id,
span,
None,
);
PatKind::InlineConstant { subpattern, def: def_id }
} else {
// If that fails, convert it to an opaque constant pattern.
match tcx.const_eval_resolve(self.param_env, uneval, Some(span)) {
Ok(val) => self.const_to_pat(mir::Const::Val(val, ty), id, span, None).kind,
Err(ErrorHandled::TooGeneric(_)) => {
// If we land here it means the const can't be evaluated because it's `TooGeneric`.
let e = self.tcx.sess.emit_err(ConstPatternDependsOnGenericParameter { span });
PatKind::Error(e)
}
Err(ErrorHandled::Reported(err, ..)) => PatKind::Error(err.into()),
}
}
}
/// Converts literals, paths and negation of literals to patterns.
/// The special case for negation exists to allow things like `-128_i8`
/// which would overflow if we tried to evaluate `128_i8` and then negate
/// afterwards.
fn lower_lit(&mut self, expr: &'tcx hir::Expr<'tcx>) -> PatKind<'tcx> {
let (lit, neg) = match expr.kind {
hir::ExprKind::Path(ref qpath) => {
return self.lower_path(qpath, expr.hir_id, expr.span).kind;
}
hir::ExprKind::ConstBlock(ref anon_const) => {
return self.lower_inline_const(anon_const, expr.hir_id, expr.span);
}
hir::ExprKind::Lit(ref lit) => (lit, false),
hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
let hir::ExprKind::Lit(ref lit) = expr.kind else {
span_bug!(expr.span, "not a literal: {:?}", expr);
};
(lit, true)
}
_ => span_bug!(expr.span, "not a literal: {:?}", expr),
};
let lit_input =
LitToConstInput { lit: &lit.node, ty: self.typeck_results.expr_ty(expr), neg };
match self.tcx.at(expr.span).lit_to_const(lit_input) {
Ok(constant) => {
self.const_to_pat(Const::Ty(constant), expr.hir_id, lit.span, None).kind
}
Err(LitToConstError::Reported(e)) => PatKind::Error(e),
Err(LitToConstError::TypeError) => bug!("lower_lit: had type error"),
}
}
}
impl<'tcx> UserAnnotatedTyHelpers<'tcx> for PatCtxt<'_, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn typeck_results(&self) -> &ty::TypeckResults<'tcx> {
self.typeck_results
}
}
trait PatternFoldable<'tcx>: Sized {
fn fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
self.super_fold_with(folder)
}
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self;
}
trait PatternFolder<'tcx>: Sized {
fn fold_pattern(&mut self, pattern: &Pat<'tcx>) -> Pat<'tcx> {
pattern.super_fold_with(self)
}
fn fold_pattern_kind(&mut self, kind: &PatKind<'tcx>) -> PatKind<'tcx> {
kind.super_fold_with(self)
}
}
impl<'tcx, T: PatternFoldable<'tcx>> PatternFoldable<'tcx> for Box<T> {
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
let content: T = (**self).fold_with(folder);
Box::new(content)
}
}
impl<'tcx, T: PatternFoldable<'tcx>> PatternFoldable<'tcx> for Vec<T> {
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
self.iter().map(|t| t.fold_with(folder)).collect()
}
}
impl<'tcx, T: PatternFoldable<'tcx>> PatternFoldable<'tcx> for Box<[T]> {
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
self.iter().map(|t| t.fold_with(folder)).collect()
}
}
impl<'tcx, T: PatternFoldable<'tcx>> PatternFoldable<'tcx> for Option<T> {
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
self.as_ref().map(|t| t.fold_with(folder))
}
}
macro_rules! ClonePatternFoldableImpls {
(<$lt_tcx:tt> $($ty:ty),+) => {
$(
impl<$lt_tcx> PatternFoldable<$lt_tcx> for $ty {
fn super_fold_with<F: PatternFolder<$lt_tcx>>(&self, _: &mut F) -> Self {
Clone::clone(self)
}
}
)+
}
}
ClonePatternFoldableImpls! { <'tcx>
Span, FieldIdx, Mutability, Symbol, LocalVarId, usize,
Region<'tcx>, Ty<'tcx>, BindingMode, AdtDef<'tcx>,
GenericArgsRef<'tcx>, &'tcx GenericArg<'tcx>, UserType<'tcx>,
UserTypeProjection, CanonicalUserTypeAnnotation<'tcx>
}
impl<'tcx> PatternFoldable<'tcx> for FieldPat<'tcx> {
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
FieldPat { field: self.field.fold_with(folder), pattern: self.pattern.fold_with(folder) }
}
}
impl<'tcx> PatternFoldable<'tcx> for Pat<'tcx> {
fn fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
folder.fold_pattern(self)
}
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
Pat {
ty: self.ty.fold_with(folder),
span: self.span.fold_with(folder),
kind: self.kind.fold_with(folder),
}
}
}
impl<'tcx> PatternFoldable<'tcx> for PatKind<'tcx> {
fn fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
folder.fold_pattern_kind(self)
}
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
match *self {
PatKind::Wild => PatKind::Wild,
PatKind::Error(e) => PatKind::Error(e),
PatKind::AscribeUserType {
ref subpattern,
ascription: Ascription { ref annotation, variance },
} => PatKind::AscribeUserType {
subpattern: subpattern.fold_with(folder),
ascription: Ascription { annotation: annotation.fold_with(folder), variance },
},
PatKind::Binding { mutability, name, mode, var, ty, ref subpattern, is_primary } => {
PatKind::Binding {
mutability: mutability.fold_with(folder),
name: name.fold_with(folder),
mode: mode.fold_with(folder),
var: var.fold_with(folder),
ty: ty.fold_with(folder),
subpattern: subpattern.fold_with(folder),
is_primary,
}
}
PatKind::Variant { adt_def, args, variant_index, ref subpatterns } => {
PatKind::Variant {
adt_def: adt_def.fold_with(folder),
args: args.fold_with(folder),
variant_index,
subpatterns: subpatterns.fold_with(folder),
}
}
PatKind::Leaf { ref subpatterns } => {
PatKind::Leaf { subpatterns: subpatterns.fold_with(folder) }
}
PatKind::Deref { ref subpattern } => {
PatKind::Deref { subpattern: subpattern.fold_with(folder) }
}
PatKind::Constant { value } => PatKind::Constant { value },
PatKind::InlineConstant { def, subpattern: ref pattern } => {
PatKind::InlineConstant { def, subpattern: pattern.fold_with(folder) }
}
PatKind::Range(ref range) => PatKind::Range(range.clone()),
PatKind::Slice { ref prefix, ref slice, ref suffix } => PatKind::Slice {
prefix: prefix.fold_with(folder),
slice: slice.fold_with(folder),
suffix: suffix.fold_with(folder),
},
PatKind::Array { ref prefix, ref slice, ref suffix } => PatKind::Array {
prefix: prefix.fold_with(folder),
slice: slice.fold_with(folder),
suffix: suffix.fold_with(folder),
},
PatKind::Or { ref pats } => PatKind::Or { pats: pats.fold_with(folder) },
}
}
}