blob: 6a40c8d840bd547dfabf901ed2f57095935aed88 [file] [log] [blame]
//! Simplifying Candidates
//!
//! *Simplifying* a match pair `place @ pattern` means breaking it down
//! into bindings or other, simpler match pairs. For example:
//!
//! - `place @ (P1, P2)` can be simplified to `[place.0 @ P1, place.1 @ P2]`
//! - `place @ x` can be simplified to `[]` by binding `x` to `place`
//!
//! The `simplify_candidate` routine just repeatedly applies these
//! sort of simplifications until there is nothing left to
//! simplify. Match pairs cannot be simplified if they require some
//! sort of test: for example, testing which variant an enum is, or
//! testing a value against a constant.
use crate::build::expr::as_place::PlaceBuilder;
use crate::build::matches::{Ascription, Binding, Candidate, MatchPair};
use crate::build::Builder;
use rustc_middle::thir::{self, *};
use std::mem;
impl<'a, 'tcx> Builder<'a, 'tcx> {
/// Simplify a candidate so that all match pairs require a test.
///
/// This method will also split a candidate, in which the only
/// match-pair is an or-pattern, into multiple candidates.
/// This is so that
///
/// match x {
/// 0 | 1 => { ... },
/// 2 | 3 => { ... },
/// }
///
/// only generates a single switch. If this happens this method returns
/// `true`.
#[instrument(skip(self, candidate), level = "debug")]
pub(super) fn simplify_candidate<'pat>(
&mut self,
candidate: &mut Candidate<'pat, 'tcx>,
) -> bool {
// repeatedly simplify match pairs until fixed point is reached
debug!("{candidate:#?}");
// existing_bindings and new_bindings exists to keep the semantics in order.
// Reversing the binding order for bindings after `@` changes the binding order in places
// it shouldn't be changed, for example `let (Some(a), Some(b)) = (x, y)`
//
// To avoid this, the binding occurs in the following manner:
// * the bindings for one iteration of the following loop occurs in order (i.e. left to
// right)
// * the bindings from the previous iteration of the loop is prepended to the bindings from
// the current iteration (in the implementation this is done by mem::swap and extend)
// * after all iterations, these new bindings are then appended to the bindings that were
// preexisting (i.e. `candidate.binding` when the function was called).
//
// example:
// candidate.bindings = [1, 2, 3]
// binding in iter 1: [4, 5]
// binding in iter 2: [6, 7]
//
// final binding: [1, 2, 3, 6, 7, 4, 5]
let mut existing_bindings = mem::take(&mut candidate.bindings);
let mut new_bindings = Vec::new();
loop {
let match_pairs = mem::take(&mut candidate.match_pairs);
if let [MatchPair { pattern: Pat { kind: PatKind::Or { pats }, .. }, place }] =
&*match_pairs
{
existing_bindings.extend_from_slice(&new_bindings);
mem::swap(&mut candidate.bindings, &mut existing_bindings);
candidate.subcandidates = self.create_or_subcandidates(candidate, &place, pats);
return true;
}
let mut changed = false;
for match_pair in match_pairs {
match self.simplify_match_pair(match_pair, candidate) {
Ok(()) => {
changed = true;
}
Err(match_pair) => {
candidate.match_pairs.push(match_pair);
}
}
}
// Avoid issue #69971: the binding order should be right to left if there are more
// bindings after `@` to please the borrow checker
// Ex
// struct NonCopyStruct {
// copy_field: u32,
// }
//
// fn foo1(x: NonCopyStruct) {
// let y @ NonCopyStruct { copy_field: z } = x;
// // the above should turn into
// let z = x.copy_field;
// let y = x;
// }
candidate.bindings.extend_from_slice(&new_bindings);
mem::swap(&mut candidate.bindings, &mut new_bindings);
candidate.bindings.clear();
if !changed {
existing_bindings.extend_from_slice(&new_bindings);
mem::swap(&mut candidate.bindings, &mut existing_bindings);
// Move or-patterns to the end, because they can result in us
// creating additional candidates, so we want to test them as
// late as possible.
candidate
.match_pairs
.sort_by_key(|pair| matches!(pair.pattern.kind, PatKind::Or { .. }));
debug!(simplified = ?candidate, "simplify_candidate");
return false; // if we were not able to simplify any, done.
}
}
}
/// Given `candidate` that has a single or-pattern for its match-pairs,
/// creates a fresh candidate for each of its input subpatterns passed via
/// `pats`.
fn create_or_subcandidates<'pat>(
&mut self,
candidate: &Candidate<'pat, 'tcx>,
place: &PlaceBuilder<'tcx>,
pats: &'pat [Box<Pat<'tcx>>],
) -> Vec<Candidate<'pat, 'tcx>> {
pats.iter()
.map(|box pat| {
let mut candidate = Candidate::new(place.clone(), pat, candidate.has_guard, self);
self.simplify_candidate(&mut candidate);
candidate
})
.collect()
}
/// Tries to simplify `match_pair`, returning `Ok(())` if
/// successful. If successful, new match pairs and bindings will
/// have been pushed into the candidate. If no simplification is
/// possible, `Err` is returned and no changes are made to
/// candidate.
fn simplify_match_pair<'pat>(
&mut self,
match_pair: MatchPair<'pat, 'tcx>,
candidate: &mut Candidate<'pat, 'tcx>,
) -> Result<(), MatchPair<'pat, 'tcx>> {
match match_pair.pattern.kind {
PatKind::AscribeUserType {
ref subpattern,
ascription: thir::Ascription { ref annotation, variance },
} => {
// Apply the type ascription to the value at `match_pair.place`, which is the
if let Some(source) = match_pair.place.try_to_place(self) {
candidate.ascriptions.push(Ascription {
annotation: annotation.clone(),
source,
variance,
});
}
candidate.match_pairs.push(MatchPair::new(match_pair.place, subpattern, self));
Ok(())
}
PatKind::Wild | PatKind::Error(_) => {
// nothing left to do
Ok(())
}
PatKind::Binding {
name: _,
mutability: _,
mode,
var,
ty: _,
ref subpattern,
is_primary: _,
} => {
if let Some(source) = match_pair.place.try_to_place(self) {
candidate.bindings.push(Binding {
span: match_pair.pattern.span,
source,
var_id: var,
binding_mode: mode,
});
}
if let Some(subpattern) = subpattern.as_ref() {
// this is the `x @ P` case; have to keep matching against `P` now
candidate.match_pairs.push(MatchPair::new(match_pair.place, subpattern, self));
}
Ok(())
}
PatKind::Constant { .. } => {
// FIXME normalize patterns when possible
Err(match_pair)
}
PatKind::InlineConstant { subpattern: ref pattern, def: _ } => {
candidate.match_pairs.push(MatchPair::new(match_pair.place, pattern, self));
Ok(())
}
PatKind::Range(ref range) => {
if let Some(true) = range.is_full_range(self.tcx) {
// Irrefutable pattern match.
return Ok(());
}
Err(match_pair)
}
PatKind::Slice { ref prefix, ref slice, ref suffix } => {
if prefix.is_empty() && slice.is_some() && suffix.is_empty() {
// irrefutable
self.prefix_slice_suffix(
&mut candidate.match_pairs,
&match_pair.place,
prefix,
slice,
suffix,
);
Ok(())
} else {
Err(match_pair)
}
}
PatKind::Variant { adt_def, args, variant_index, ref subpatterns } => {
let irrefutable = adt_def.variants().iter_enumerated().all(|(i, v)| {
i == variant_index || {
self.tcx.features().exhaustive_patterns
&& !v
.inhabited_predicate(self.tcx, adt_def)
.instantiate(self.tcx, args)
.apply_ignore_module(self.tcx, self.param_env)
}
}) && (adt_def.did().is_local()
|| !adt_def.is_variant_list_non_exhaustive());
if irrefutable {
let place_builder = match_pair.place.downcast(adt_def, variant_index);
candidate
.match_pairs
.extend(self.field_match_pairs(place_builder, subpatterns));
Ok(())
} else {
Err(match_pair)
}
}
PatKind::Array { ref prefix, ref slice, ref suffix } => {
self.prefix_slice_suffix(
&mut candidate.match_pairs,
&match_pair.place,
prefix,
slice,
suffix,
);
Ok(())
}
PatKind::Leaf { ref subpatterns } => {
// tuple struct, match subpats (if any)
candidate.match_pairs.extend(self.field_match_pairs(match_pair.place, subpatterns));
Ok(())
}
PatKind::Deref { ref subpattern } => {
let place_builder = match_pair.place.deref();
candidate.match_pairs.push(MatchPair::new(place_builder, subpattern, self));
Ok(())
}
PatKind::Or { .. } => Err(match_pair),
}
}
}