blob: 27e9be37fbfff42dbbe8f59da230b7c7faee37b5 [file] [log] [blame]
//! Generalized type relating mechanism.
//!
//! A type relation `R` relates a pair of values `(A, B)`. `A and B` are usually
//! types or regions but can be other things. Examples of type relations are
//! subtyping, type equality, etc.
use crate::ty::error::{ExpectedFound, TypeError};
use crate::ty::{self, Expr, ImplSubject, Term, TermKind, Ty, TyCtxt, TypeFoldable};
use crate::ty::{GenericArg, GenericArgKind, GenericArgsRef};
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefId;
use rustc_target::spec::abi;
use std::iter;
pub type RelateResult<'tcx, T> = Result<T, TypeError<'tcx>>;
#[derive(Clone, Debug)]
pub enum Cause {
ExistentialRegionBound, // relating an existential region bound
}
pub trait TypeRelation<'tcx>: Sized {
fn tcx(&self) -> TyCtxt<'tcx>;
fn param_env(&self) -> ty::ParamEnv<'tcx>;
/// Returns a static string we can use for printouts.
fn tag(&self) -> &'static str;
/// Returns `true` if the value `a` is the "expected" type in the
/// relation. Just affects error messages.
fn a_is_expected(&self) -> bool;
fn with_cause<F, R>(&mut self, _cause: Cause, f: F) -> R
where
F: FnOnce(&mut Self) -> R,
{
f(self)
}
/// Generic relation routine suitable for most anything.
fn relate<T: Relate<'tcx>>(&mut self, a: T, b: T) -> RelateResult<'tcx, T> {
Relate::relate(self, a, b)
}
/// Relate the two args for the given item. The default
/// is to look up the variance for the item and proceed
/// accordingly.
fn relate_item_args(
&mut self,
item_def_id: DefId,
a_arg: GenericArgsRef<'tcx>,
b_arg: GenericArgsRef<'tcx>,
) -> RelateResult<'tcx, GenericArgsRef<'tcx>> {
debug!(
"relate_item_args(item_def_id={:?}, a_arg={:?}, b_arg={:?})",
item_def_id, a_arg, b_arg
);
let tcx = self.tcx();
let opt_variances = tcx.variances_of(item_def_id);
relate_args_with_variances(self, item_def_id, opt_variances, a_arg, b_arg, true)
}
/// Switch variance for the purpose of relating `a` and `b`.
fn relate_with_variance<T: Relate<'tcx>>(
&mut self,
variance: ty::Variance,
info: ty::VarianceDiagInfo<'tcx>,
a: T,
b: T,
) -> RelateResult<'tcx, T>;
// Overridable relations. You shouldn't typically call these
// directly, instead call `relate()`, which in turn calls
// these. This is both more uniform but also allows us to add
// additional hooks for other types in the future if needed
// without making older code, which called `relate`, obsolete.
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>>;
fn regions(
&mut self,
a: ty::Region<'tcx>,
b: ty::Region<'tcx>,
) -> RelateResult<'tcx, ty::Region<'tcx>>;
fn consts(
&mut self,
a: ty::Const<'tcx>,
b: ty::Const<'tcx>,
) -> RelateResult<'tcx, ty::Const<'tcx>>;
fn binders<T>(
&mut self,
a: ty::Binder<'tcx, T>,
b: ty::Binder<'tcx, T>,
) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
where
T: Relate<'tcx>;
}
pub trait Relate<'tcx>: TypeFoldable<TyCtxt<'tcx>> + PartialEq + Copy {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: Self,
b: Self,
) -> RelateResult<'tcx, Self>;
}
///////////////////////////////////////////////////////////////////////////
// Relate impls
pub fn relate_type_and_mut<'tcx, R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::TypeAndMut<'tcx>,
b: ty::TypeAndMut<'tcx>,
base_ty: Ty<'tcx>,
) -> RelateResult<'tcx, ty::TypeAndMut<'tcx>> {
debug!("{}.mts({:?}, {:?})", relation.tag(), a, b);
if a.mutbl != b.mutbl {
Err(TypeError::Mutability)
} else {
let mutbl = a.mutbl;
let (variance, info) = match mutbl {
hir::Mutability::Not => (ty::Covariant, ty::VarianceDiagInfo::None),
hir::Mutability::Mut => {
(ty::Invariant, ty::VarianceDiagInfo::Invariant { ty: base_ty, param_index: 0 })
}
};
let ty = relation.relate_with_variance(variance, info, a.ty, b.ty)?;
Ok(ty::TypeAndMut { ty, mutbl })
}
}
#[inline]
pub fn relate_args_invariantly<'tcx, R: TypeRelation<'tcx>>(
relation: &mut R,
a_arg: GenericArgsRef<'tcx>,
b_arg: GenericArgsRef<'tcx>,
) -> RelateResult<'tcx, GenericArgsRef<'tcx>> {
relation.tcx().mk_args_from_iter(iter::zip(a_arg, b_arg).map(|(a, b)| {
relation.relate_with_variance(ty::Invariant, ty::VarianceDiagInfo::default(), a, b)
}))
}
pub fn relate_args_with_variances<'tcx, R: TypeRelation<'tcx>>(
relation: &mut R,
ty_def_id: DefId,
variances: &[ty::Variance],
a_arg: GenericArgsRef<'tcx>,
b_arg: GenericArgsRef<'tcx>,
fetch_ty_for_diag: bool,
) -> RelateResult<'tcx, GenericArgsRef<'tcx>> {
let tcx = relation.tcx();
let mut cached_ty = None;
let params = iter::zip(a_arg, b_arg).enumerate().map(|(i, (a, b))| {
let variance = variances[i];
let variance_info = if variance == ty::Invariant && fetch_ty_for_diag {
let ty =
*cached_ty.get_or_insert_with(|| tcx.type_of(ty_def_id).instantiate(tcx, a_arg));
ty::VarianceDiagInfo::Invariant { ty, param_index: i.try_into().unwrap() }
} else {
ty::VarianceDiagInfo::default()
};
relation.relate_with_variance(variance, variance_info, a, b)
});
tcx.mk_args_from_iter(params)
}
impl<'tcx> Relate<'tcx> for ty::FnSig<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::FnSig<'tcx>,
b: ty::FnSig<'tcx>,
) -> RelateResult<'tcx, ty::FnSig<'tcx>> {
let tcx = relation.tcx();
if a.c_variadic != b.c_variadic {
return Err(TypeError::VariadicMismatch(expected_found(
relation,
a.c_variadic,
b.c_variadic,
)));
}
let unsafety = relation.relate(a.unsafety, b.unsafety)?;
let abi = relation.relate(a.abi, b.abi)?;
if a.inputs().len() != b.inputs().len() {
return Err(TypeError::ArgCount);
}
let inputs_and_output = iter::zip(a.inputs(), b.inputs())
.map(|(&a, &b)| ((a, b), false))
.chain(iter::once(((a.output(), b.output()), true)))
.map(|((a, b), is_output)| {
if is_output {
relation.relate(a, b)
} else {
relation.relate_with_variance(
ty::Contravariant,
ty::VarianceDiagInfo::default(),
a,
b,
)
}
})
.enumerate()
.map(|(i, r)| match r {
Err(TypeError::Sorts(exp_found) | TypeError::ArgumentSorts(exp_found, _)) => {
Err(TypeError::ArgumentSorts(exp_found, i))
}
Err(TypeError::Mutability | TypeError::ArgumentMutability(_)) => {
Err(TypeError::ArgumentMutability(i))
}
r => r,
});
Ok(ty::FnSig {
inputs_and_output: tcx.mk_type_list_from_iter(inputs_and_output)?,
c_variadic: a.c_variadic,
unsafety,
abi,
})
}
}
impl<'tcx> Relate<'tcx> for ty::BoundConstness {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::BoundConstness,
b: ty::BoundConstness,
) -> RelateResult<'tcx, ty::BoundConstness> {
if a != b {
Err(TypeError::ConstnessMismatch(expected_found(relation, a, b)))
} else {
Ok(a)
}
}
}
impl<'tcx> Relate<'tcx> for hir::Unsafety {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: hir::Unsafety,
b: hir::Unsafety,
) -> RelateResult<'tcx, hir::Unsafety> {
if a != b {
Err(TypeError::UnsafetyMismatch(expected_found(relation, a, b)))
} else {
Ok(a)
}
}
}
impl<'tcx> Relate<'tcx> for abi::Abi {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: abi::Abi,
b: abi::Abi,
) -> RelateResult<'tcx, abi::Abi> {
if a == b { Ok(a) } else { Err(TypeError::AbiMismatch(expected_found(relation, a, b))) }
}
}
impl<'tcx> Relate<'tcx> for ty::AliasTy<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::AliasTy<'tcx>,
b: ty::AliasTy<'tcx>,
) -> RelateResult<'tcx, ty::AliasTy<'tcx>> {
if a.def_id != b.def_id {
Err(TypeError::ProjectionMismatched(expected_found(relation, a.def_id, b.def_id)))
} else {
let args = match relation.tcx().def_kind(a.def_id) {
DefKind::OpaqueTy => relate_args_with_variances(
relation,
a.def_id,
relation.tcx().variances_of(a.def_id),
a.args,
b.args,
false, // do not fetch `type_of(a_def_id)`, as it will cause a cycle
)?,
DefKind::AssocTy | DefKind::AssocConst | DefKind::TyAlias => {
relate_args_invariantly(relation, a.args, b.args)?
}
def => bug!("unknown alias DefKind: {def:?}"),
};
Ok(ty::AliasTy::new(relation.tcx(), a.def_id, args))
}
}
}
impl<'tcx> Relate<'tcx> for ty::ExistentialProjection<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::ExistentialProjection<'tcx>,
b: ty::ExistentialProjection<'tcx>,
) -> RelateResult<'tcx, ty::ExistentialProjection<'tcx>> {
if a.def_id != b.def_id {
Err(TypeError::ProjectionMismatched(expected_found(relation, a.def_id, b.def_id)))
} else {
let term = relation.relate_with_variance(
ty::Invariant,
ty::VarianceDiagInfo::default(),
a.term,
b.term,
)?;
let args = relation.relate_with_variance(
ty::Invariant,
ty::VarianceDiagInfo::default(),
a.args,
b.args,
)?;
Ok(ty::ExistentialProjection { def_id: a.def_id, args, term })
}
}
}
impl<'tcx> Relate<'tcx> for ty::TraitRef<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::TraitRef<'tcx>,
b: ty::TraitRef<'tcx>,
) -> RelateResult<'tcx, ty::TraitRef<'tcx>> {
// Different traits cannot be related.
if a.def_id != b.def_id {
Err(TypeError::Traits(expected_found(relation, a.def_id, b.def_id)))
} else {
let args = relate_args_invariantly(relation, a.args, b.args)?;
Ok(ty::TraitRef::new(relation.tcx(), a.def_id, args))
}
}
}
impl<'tcx> Relate<'tcx> for ty::ExistentialTraitRef<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::ExistentialTraitRef<'tcx>,
b: ty::ExistentialTraitRef<'tcx>,
) -> RelateResult<'tcx, ty::ExistentialTraitRef<'tcx>> {
// Different traits cannot be related.
if a.def_id != b.def_id {
Err(TypeError::Traits(expected_found(relation, a.def_id, b.def_id)))
} else {
let args = relate_args_invariantly(relation, a.args, b.args)?;
Ok(ty::ExistentialTraitRef { def_id: a.def_id, args })
}
}
}
#[derive(PartialEq, Copy, Debug, Clone, TypeFoldable, TypeVisitable)]
struct CoroutineWitness<'tcx>(&'tcx ty::List<Ty<'tcx>>);
impl<'tcx> Relate<'tcx> for CoroutineWitness<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: CoroutineWitness<'tcx>,
b: CoroutineWitness<'tcx>,
) -> RelateResult<'tcx, CoroutineWitness<'tcx>> {
assert_eq!(a.0.len(), b.0.len());
let tcx = relation.tcx();
let types =
tcx.mk_type_list_from_iter(iter::zip(a.0, b.0).map(|(a, b)| relation.relate(a, b)))?;
Ok(CoroutineWitness(types))
}
}
impl<'tcx> Relate<'tcx> for ImplSubject<'tcx> {
#[inline]
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ImplSubject<'tcx>,
b: ImplSubject<'tcx>,
) -> RelateResult<'tcx, ImplSubject<'tcx>> {
match (a, b) {
(ImplSubject::Trait(trait_ref_a), ImplSubject::Trait(trait_ref_b)) => {
let trait_ref = ty::TraitRef::relate(relation, trait_ref_a, trait_ref_b)?;
Ok(ImplSubject::Trait(trait_ref))
}
(ImplSubject::Inherent(ty_a), ImplSubject::Inherent(ty_b)) => {
let ty = Ty::relate(relation, ty_a, ty_b)?;
Ok(ImplSubject::Inherent(ty))
}
(ImplSubject::Trait(_), ImplSubject::Inherent(_))
| (ImplSubject::Inherent(_), ImplSubject::Trait(_)) => {
bug!("can not relate TraitRef and Ty");
}
}
}
}
impl<'tcx> Relate<'tcx> for Ty<'tcx> {
#[inline]
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: Ty<'tcx>,
b: Ty<'tcx>,
) -> RelateResult<'tcx, Ty<'tcx>> {
relation.tys(a, b)
}
}
/// Relates `a` and `b` structurally, calling the relation for all nested values.
/// Any semantic equality, e.g. of projections, and inference variables have to be
/// handled by the caller.
#[instrument(level = "trace", skip(relation), ret)]
pub fn structurally_relate_tys<'tcx, R: TypeRelation<'tcx>>(
relation: &mut R,
a: Ty<'tcx>,
b: Ty<'tcx>,
) -> RelateResult<'tcx, Ty<'tcx>> {
let tcx = relation.tcx();
match (a.kind(), b.kind()) {
(&ty::Infer(_), _) | (_, &ty::Infer(_)) => {
// The caller should handle these cases!
bug!("var types encountered in structurally_relate_tys")
}
(ty::Bound(..), _) | (_, ty::Bound(..)) => {
bug!("bound types encountered in structurally_relate_tys")
}
(&ty::Error(guar), _) | (_, &ty::Error(guar)) => Ok(Ty::new_error(tcx, guar)),
(&ty::Never, _)
| (&ty::Char, _)
| (&ty::Bool, _)
| (&ty::Int(_), _)
| (&ty::Uint(_), _)
| (&ty::Float(_), _)
| (&ty::Str, _)
if a == b =>
{
Ok(a)
}
(ty::Param(a_p), ty::Param(b_p)) if a_p.index == b_p.index => Ok(a),
(ty::Placeholder(p1), ty::Placeholder(p2)) if p1 == p2 => Ok(a),
(&ty::Adt(a_def, a_args), &ty::Adt(b_def, b_args)) if a_def == b_def => {
let args = relation.relate_item_args(a_def.did(), a_args, b_args)?;
Ok(Ty::new_adt(tcx, a_def, args))
}
(&ty::Foreign(a_id), &ty::Foreign(b_id)) if a_id == b_id => Ok(Ty::new_foreign(tcx, a_id)),
(&ty::Dynamic(a_obj, a_region, a_repr), &ty::Dynamic(b_obj, b_region, b_repr))
if a_repr == b_repr =>
{
let region_bound = relation.with_cause(Cause::ExistentialRegionBound, |relation| {
relation.relate(a_region, b_region)
})?;
Ok(Ty::new_dynamic(tcx, relation.relate(a_obj, b_obj)?, region_bound, a_repr))
}
(&ty::Coroutine(a_id, a_args, movability), &ty::Coroutine(b_id, b_args, _))
if a_id == b_id =>
{
// All Coroutine types with the same id represent
// the (anonymous) type of the same coroutine expression. So
// all of their regions should be equated.
let args = relate_args_invariantly(relation, a_args, b_args)?;
Ok(Ty::new_coroutine(tcx, a_id, args, movability))
}
(&ty::CoroutineWitness(a_id, a_args), &ty::CoroutineWitness(b_id, b_args))
if a_id == b_id =>
{
// All CoroutineWitness types with the same id represent
// the (anonymous) type of the same coroutine expression. So
// all of their regions should be equated.
let args = relate_args_invariantly(relation, a_args, b_args)?;
Ok(Ty::new_coroutine_witness(tcx, a_id, args))
}
(&ty::Closure(a_id, a_args), &ty::Closure(b_id, b_args)) if a_id == b_id => {
// All Closure types with the same id represent
// the (anonymous) type of the same closure expression. So
// all of their regions should be equated.
let args = relate_args_invariantly(relation, a_args, b_args)?;
Ok(Ty::new_closure(tcx, a_id, &args))
}
(&ty::RawPtr(a_mt), &ty::RawPtr(b_mt)) => {
let mt = relate_type_and_mut(relation, a_mt, b_mt, a)?;
Ok(Ty::new_ptr(tcx, mt))
}
(&ty::Ref(a_r, a_ty, a_mutbl), &ty::Ref(b_r, b_ty, b_mutbl)) => {
let r = relation.relate(a_r, b_r)?;
let a_mt = ty::TypeAndMut { ty: a_ty, mutbl: a_mutbl };
let b_mt = ty::TypeAndMut { ty: b_ty, mutbl: b_mutbl };
let mt = relate_type_and_mut(relation, a_mt, b_mt, a)?;
Ok(Ty::new_ref(tcx, r, mt))
}
(&ty::Array(a_t, sz_a), &ty::Array(b_t, sz_b)) => {
let t = relation.relate(a_t, b_t)?;
match relation.relate(sz_a, sz_b) {
Ok(sz) => Ok(Ty::new_array_with_const_len(tcx, t, sz)),
Err(err) => {
// Check whether the lengths are both concrete/known values,
// but are unequal, for better diagnostics.
//
// It might seem dubious to eagerly evaluate these constants here,
// we however cannot end up with errors in `Relate` during both
// `type_of` and `predicates_of`. This means that evaluating the
// constants should not cause cycle errors here.
let sz_a = sz_a.try_eval_target_usize(tcx, relation.param_env());
let sz_b = sz_b.try_eval_target_usize(tcx, relation.param_env());
match (sz_a, sz_b) {
(Some(sz_a_val), Some(sz_b_val)) if sz_a_val != sz_b_val => Err(
TypeError::FixedArraySize(expected_found(relation, sz_a_val, sz_b_val)),
),
_ => Err(err),
}
}
}
}
(&ty::Slice(a_t), &ty::Slice(b_t)) => {
let t = relation.relate(a_t, b_t)?;
Ok(Ty::new_slice(tcx, t))
}
(&ty::Tuple(as_), &ty::Tuple(bs)) => {
if as_.len() == bs.len() {
Ok(Ty::new_tup_from_iter(
tcx,
iter::zip(as_, bs).map(|(a, b)| relation.relate(a, b)),
)?)
} else if !(as_.is_empty() || bs.is_empty()) {
Err(TypeError::TupleSize(expected_found(relation, as_.len(), bs.len())))
} else {
Err(TypeError::Sorts(expected_found(relation, a, b)))
}
}
(&ty::FnDef(a_def_id, a_args), &ty::FnDef(b_def_id, b_args)) if a_def_id == b_def_id => {
let args = relation.relate_item_args(a_def_id, a_args, b_args)?;
Ok(Ty::new_fn_def(tcx, a_def_id, args))
}
(&ty::FnPtr(a_fty), &ty::FnPtr(b_fty)) => {
let fty = relation.relate(a_fty, b_fty)?;
Ok(Ty::new_fn_ptr(tcx, fty))
}
// Alias tend to mostly already be handled downstream due to normalization.
(&ty::Alias(a_kind, a_data), &ty::Alias(b_kind, b_data)) => {
let alias_ty = relation.relate(a_data, b_data)?;
assert_eq!(a_kind, b_kind);
Ok(Ty::new_alias(tcx, a_kind, alias_ty))
}
_ => Err(TypeError::Sorts(expected_found(relation, a, b))),
}
}
/// Relates `a` and `b` structurally, calling the relation for all nested values.
/// Any semantic equality, e.g. of unevaluated consts, and inference variables have
/// to be handled by the caller.
///
/// FIXME: This is not totally structual, which probably should be fixed.
/// See the HACKs below.
pub fn structurally_relate_consts<'tcx, R: TypeRelation<'tcx>>(
relation: &mut R,
mut a: ty::Const<'tcx>,
mut b: ty::Const<'tcx>,
) -> RelateResult<'tcx, ty::Const<'tcx>> {
debug!("{}.structurally_relate_consts(a = {:?}, b = {:?})", relation.tag(), a, b);
let tcx = relation.tcx();
if tcx.features().generic_const_exprs {
a = tcx.expand_abstract_consts(a);
b = tcx.expand_abstract_consts(b);
}
debug!("{}.structurally_relate_consts(normed_a = {:?}, normed_b = {:?})", relation.tag(), a, b);
// Currently, the values that can be unified are primitive types,
// and those that derive both `PartialEq` and `Eq`, corresponding
// to structural-match types.
let is_match = match (a.kind(), b.kind()) {
(ty::ConstKind::Infer(_), _) | (_, ty::ConstKind::Infer(_)) => {
// The caller should handle these cases!
bug!("var types encountered in structurally_relate_consts: {:?} {:?}", a, b)
}
(ty::ConstKind::Error(_), _) => return Ok(a),
(_, ty::ConstKind::Error(_)) => return Ok(b),
(ty::ConstKind::Param(a_p), ty::ConstKind::Param(b_p)) => a_p.index == b_p.index,
(ty::ConstKind::Placeholder(p1), ty::ConstKind::Placeholder(p2)) => p1 == p2,
(ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val,
// While this is slightly incorrect, it shouldn't matter for `min_const_generics`
// and is the better alternative to waiting until `generic_const_exprs` can
// be stabilized.
(ty::ConstKind::Unevaluated(au), ty::ConstKind::Unevaluated(bu)) if au.def == bu.def => {
assert_eq!(a.ty(), b.ty());
let args = relation.relate_with_variance(
ty::Variance::Invariant,
ty::VarianceDiagInfo::default(),
au.args,
bu.args,
)?;
return Ok(ty::Const::new_unevaluated(
tcx,
ty::UnevaluatedConst { def: au.def, args },
a.ty(),
));
}
// Before calling relate on exprs, it is necessary to ensure that the nested consts
// have identical types.
(ty::ConstKind::Expr(ae), ty::ConstKind::Expr(be)) => {
let r = relation;
// FIXME(generic_const_exprs): is it possible to relate two consts which are not identical
// exprs? Should we care about that?
// FIXME(generic_const_exprs): relating the `ty()`s is a little weird since it is supposed to
// ICE If they mismatch. Unfortunately `ConstKind::Expr` is a little special and can be thought
// of as being generic over the argument types, however this is implicit so these types don't get
// related when we relate the args of the item this const arg is for.
let expr = match (ae, be) {
(Expr::Binop(a_op, al, ar), Expr::Binop(b_op, bl, br)) if a_op == b_op => {
r.relate(al.ty(), bl.ty())?;
r.relate(ar.ty(), br.ty())?;
Expr::Binop(a_op, r.consts(al, bl)?, r.consts(ar, br)?)
}
(Expr::UnOp(a_op, av), Expr::UnOp(b_op, bv)) if a_op == b_op => {
r.relate(av.ty(), bv.ty())?;
Expr::UnOp(a_op, r.consts(av, bv)?)
}
(Expr::Cast(ak, av, at), Expr::Cast(bk, bv, bt)) if ak == bk => {
r.relate(av.ty(), bv.ty())?;
Expr::Cast(ak, r.consts(av, bv)?, r.tys(at, bt)?)
}
(Expr::FunctionCall(af, aa), Expr::FunctionCall(bf, ba))
if aa.len() == ba.len() =>
{
r.relate(af.ty(), bf.ty())?;
let func = r.consts(af, bf)?;
let mut related_args = Vec::with_capacity(aa.len());
for (a_arg, b_arg) in aa.iter().zip(ba.iter()) {
related_args.push(r.consts(a_arg, b_arg)?);
}
let related_args = tcx.mk_const_list(&related_args);
Expr::FunctionCall(func, related_args)
}
_ => return Err(TypeError::ConstMismatch(expected_found(r, a, b))),
};
return Ok(ty::Const::new_expr(tcx, expr, a.ty()));
}
_ => false,
};
if is_match { Ok(a) } else { Err(TypeError::ConstMismatch(expected_found(relation, a, b))) }
}
impl<'tcx> Relate<'tcx> for &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: Self,
b: Self,
) -> RelateResult<'tcx, Self> {
let tcx = relation.tcx();
// FIXME: this is wasteful, but want to do a perf run to see how slow it is.
// We need to perform this deduplication as we sometimes generate duplicate projections
// in `a`.
let mut a_v: Vec<_> = a.into_iter().collect();
let mut b_v: Vec<_> = b.into_iter().collect();
// `skip_binder` here is okay because `stable_cmp` doesn't look at binders
a_v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
a_v.dedup();
b_v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
b_v.dedup();
if a_v.len() != b_v.len() {
return Err(TypeError::ExistentialMismatch(expected_found(relation, a, b)));
}
let v = iter::zip(a_v, b_v).map(|(ep_a, ep_b)| {
use crate::ty::ExistentialPredicate::*;
match (ep_a.skip_binder(), ep_b.skip_binder()) {
(Trait(a), Trait(b)) => Ok(ep_a
.rebind(Trait(relation.relate(ep_a.rebind(a), ep_b.rebind(b))?.skip_binder()))),
(Projection(a), Projection(b)) => Ok(ep_a.rebind(Projection(
relation.relate(ep_a.rebind(a), ep_b.rebind(b))?.skip_binder(),
))),
(AutoTrait(a), AutoTrait(b)) if a == b => Ok(ep_a.rebind(AutoTrait(a))),
_ => Err(TypeError::ExistentialMismatch(expected_found(relation, a, b))),
}
});
tcx.mk_poly_existential_predicates_from_iter(v)
}
}
impl<'tcx> Relate<'tcx> for ty::ClosureArgs<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::ClosureArgs<'tcx>,
b: ty::ClosureArgs<'tcx>,
) -> RelateResult<'tcx, ty::ClosureArgs<'tcx>> {
let args = relate_args_invariantly(relation, a.args, b.args)?;
Ok(ty::ClosureArgs { args })
}
}
impl<'tcx> Relate<'tcx> for ty::CoroutineArgs<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::CoroutineArgs<'tcx>,
b: ty::CoroutineArgs<'tcx>,
) -> RelateResult<'tcx, ty::CoroutineArgs<'tcx>> {
let args = relate_args_invariantly(relation, a.args, b.args)?;
Ok(ty::CoroutineArgs { args })
}
}
impl<'tcx> Relate<'tcx> for GenericArgsRef<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: GenericArgsRef<'tcx>,
b: GenericArgsRef<'tcx>,
) -> RelateResult<'tcx, GenericArgsRef<'tcx>> {
relate_args_invariantly(relation, a, b)
}
}
impl<'tcx> Relate<'tcx> for ty::Region<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::Region<'tcx>,
b: ty::Region<'tcx>,
) -> RelateResult<'tcx, ty::Region<'tcx>> {
relation.regions(a, b)
}
}
impl<'tcx> Relate<'tcx> for ty::Const<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::Const<'tcx>,
b: ty::Const<'tcx>,
) -> RelateResult<'tcx, ty::Const<'tcx>> {
relation.consts(a, b)
}
}
impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for ty::Binder<'tcx, T> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::Binder<'tcx, T>,
b: ty::Binder<'tcx, T>,
) -> RelateResult<'tcx, ty::Binder<'tcx, T>> {
relation.binders(a, b)
}
}
impl<'tcx> Relate<'tcx> for GenericArg<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: GenericArg<'tcx>,
b: GenericArg<'tcx>,
) -> RelateResult<'tcx, GenericArg<'tcx>> {
match (a.unpack(), b.unpack()) {
(GenericArgKind::Lifetime(a_lt), GenericArgKind::Lifetime(b_lt)) => {
Ok(relation.relate(a_lt, b_lt)?.into())
}
(GenericArgKind::Type(a_ty), GenericArgKind::Type(b_ty)) => {
Ok(relation.relate(a_ty, b_ty)?.into())
}
(GenericArgKind::Const(a_ct), GenericArgKind::Const(b_ct)) => {
Ok(relation.relate(a_ct, b_ct)?.into())
}
(GenericArgKind::Lifetime(unpacked), x) => {
bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
}
(GenericArgKind::Type(unpacked), x) => {
bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
}
(GenericArgKind::Const(unpacked), x) => {
bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
}
}
}
}
impl<'tcx> Relate<'tcx> for ty::ImplPolarity {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::ImplPolarity,
b: ty::ImplPolarity,
) -> RelateResult<'tcx, ty::ImplPolarity> {
if a != b {
Err(TypeError::PolarityMismatch(expected_found(relation, a, b)))
} else {
Ok(a)
}
}
}
impl<'tcx> Relate<'tcx> for ty::TraitPredicate<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::TraitPredicate<'tcx>,
b: ty::TraitPredicate<'tcx>,
) -> RelateResult<'tcx, ty::TraitPredicate<'tcx>> {
Ok(ty::TraitPredicate {
trait_ref: relation.relate(a.trait_ref, b.trait_ref)?,
polarity: relation.relate(a.polarity, b.polarity)?,
})
}
}
impl<'tcx> Relate<'tcx> for Term<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: Self,
b: Self,
) -> RelateResult<'tcx, Self> {
Ok(match (a.unpack(), b.unpack()) {
(TermKind::Ty(a), TermKind::Ty(b)) => relation.relate(a, b)?.into(),
(TermKind::Const(a), TermKind::Const(b)) => relation.relate(a, b)?.into(),
_ => return Err(TypeError::Mismatch),
})
}
}
///////////////////////////////////////////////////////////////////////////
// Error handling
pub fn expected_found<'tcx, R, T>(relation: &mut R, a: T, b: T) -> ExpectedFound<T>
where
R: TypeRelation<'tcx>,
{
ExpectedFound::new(relation.a_is_expected(), a, b)
}