blob: 58c0c6bab495122e45257c8a7953473f9cfa11d2 [file] [log] [blame]
use crate::hir::{ModuleItems, Owner};
use crate::middle::debugger_visualizer::DebuggerVisualizerFile;
use crate::query::LocalCrate;
use crate::ty::TyCtxt;
use rustc_ast as ast;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::svh::Svh;
use rustc_data_structures::sync::{par_for_each_in, try_par_for_each_in, DynSend, DynSync};
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId, LocalModDefId, LOCAL_CRATE};
use rustc_hir::definitions::{DefKey, DefPath, DefPathData, DefPathHash};
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::*;
use rustc_index::Idx;
use rustc_middle::hir::nested_filter;
use rustc_span::def_id::StableCrateId;
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{ErrorGuaranteed, Span};
use rustc_target::spec::abi::Abi;
#[inline]
pub fn associated_body(node: Node<'_>) -> Option<(LocalDefId, BodyId)> {
match node {
Node::Item(Item {
owner_id,
kind: ItemKind::Const(_, _, body) | ItemKind::Static(.., body) | ItemKind::Fn(.., body),
..
})
| Node::TraitItem(TraitItem {
owner_id,
kind:
TraitItemKind::Const(_, Some(body)) | TraitItemKind::Fn(_, TraitFn::Provided(body)),
..
})
| Node::ImplItem(ImplItem {
owner_id,
kind: ImplItemKind::Const(_, body) | ImplItemKind::Fn(_, body),
..
}) => Some((owner_id.def_id, *body)),
Node::Expr(Expr { kind: ExprKind::Closure(Closure { def_id, body, .. }), .. }) => {
Some((*def_id, *body))
}
Node::AnonConst(constant) => Some((constant.def_id, constant.body)),
Node::ConstBlock(constant) => Some((constant.def_id, constant.body)),
_ => None,
}
}
fn is_body_owner(node: Node<'_>, hir_id: HirId) -> bool {
match associated_body(node) {
Some((_, b)) => b.hir_id == hir_id,
None => false,
}
}
#[derive(Copy, Clone)]
pub struct Map<'hir> {
pub(super) tcx: TyCtxt<'hir>,
}
/// An iterator that walks up the ancestor tree of a given `HirId`.
/// Constructed using `tcx.hir().parent_iter(hir_id)`.
pub struct ParentHirIterator<'hir> {
current_id: HirId,
map: Map<'hir>,
}
impl<'hir> Iterator for ParentHirIterator<'hir> {
type Item = HirId;
fn next(&mut self) -> Option<Self::Item> {
if self.current_id == CRATE_HIR_ID {
return None;
}
// There are nodes that do not have entries, so we need to skip them.
let parent_id = self.map.parent_id(self.current_id);
if parent_id == self.current_id {
self.current_id = CRATE_HIR_ID;
return None;
}
self.current_id = parent_id;
return Some(parent_id);
}
}
/// An iterator that walks up the ancestor tree of a given `HirId`.
/// Constructed using `tcx.hir().parent_owner_iter(hir_id)`.
pub struct ParentOwnerIterator<'hir> {
current_id: HirId,
map: Map<'hir>,
}
impl<'hir> Iterator for ParentOwnerIterator<'hir> {
type Item = (OwnerId, OwnerNode<'hir>);
fn next(&mut self) -> Option<Self::Item> {
if self.current_id.local_id.index() != 0 {
self.current_id.local_id = ItemLocalId::new(0);
if let Some(node) = self.map.tcx.hir_owner(self.current_id.owner) {
return Some((self.current_id.owner, node.node));
}
}
if self.current_id == CRATE_HIR_ID {
return None;
}
loop {
// There are nodes that do not have entries, so we need to skip them.
let parent_id = self.map.def_key(self.current_id.owner.def_id).parent;
let parent_id = parent_id.map_or(CRATE_OWNER_ID, |local_def_index| {
let def_id = LocalDefId { local_def_index };
self.map.local_def_id_to_hir_id(def_id).owner
});
self.current_id = HirId::make_owner(parent_id.def_id);
// If this `HirId` doesn't have an entry, skip it and look for its `parent_id`.
if let Some(node) = self.map.tcx.hir_owner(self.current_id.owner) {
return Some((self.current_id.owner, node.node));
}
}
}
}
impl<'hir> Map<'hir> {
#[inline]
pub fn krate(self) -> &'hir Crate<'hir> {
self.tcx.hir_crate(())
}
#[inline]
pub fn root_module(self) -> &'hir Mod<'hir> {
match self.tcx.hir_owner(CRATE_OWNER_ID).map(|o| o.node) {
Some(OwnerNode::Crate(item)) => item,
_ => bug!(),
}
}
#[inline]
pub fn items(self) -> impl Iterator<Item = ItemId> + 'hir {
self.tcx.hir_crate_items(()).items.iter().copied()
}
#[inline]
pub fn module_items(self, module: LocalModDefId) -> impl Iterator<Item = ItemId> + 'hir {
self.tcx.hir_module_items(module).items()
}
pub fn def_key(self, def_id: LocalDefId) -> DefKey {
// Accessing the DefKey is ok, since it is part of DefPathHash.
self.tcx.definitions_untracked().def_key(def_id)
}
pub fn def_path(self, def_id: LocalDefId) -> DefPath {
// Accessing the DefPath is ok, since it is part of DefPathHash.
self.tcx.definitions_untracked().def_path(def_id)
}
#[inline]
pub fn def_path_hash(self, def_id: LocalDefId) -> DefPathHash {
// Accessing the DefPathHash is ok, it is incr. comp. stable.
self.tcx.definitions_untracked().def_path_hash(def_id)
}
#[inline]
pub fn local_def_id_to_hir_id(self, def_id: impl Into<LocalDefId>) -> HirId {
self.tcx.local_def_id_to_hir_id(def_id.into())
}
/// Do not call this function directly. The query should be called.
pub(super) fn opt_def_kind(self, local_def_id: LocalDefId) -> Option<DefKind> {
let hir_id = self.local_def_id_to_hir_id(local_def_id);
let node = match self.find(hir_id) {
Some(node) => node,
None => match self.def_key(local_def_id).disambiguated_data.data {
// FIXME: Some anonymous constants do not have corresponding HIR nodes,
// so many local queries will panic on their def ids. `None` is currently
// returned here instead of `DefKind::{Anon,Inline}Const` to avoid such panics.
// Ideally all def ids should have `DefKind`s, we need to create the missing
// HIR nodes or feed relevant query results to achieve that.
DefPathData::AnonConst => return None,
_ => bug!("no HIR node for def id {local_def_id:?}"),
},
};
let def_kind = match node {
Node::Item(item) => match item.kind {
ItemKind::Static(_, mt, _) => DefKind::Static(mt),
ItemKind::Const(..) => DefKind::Const,
ItemKind::Fn(..) => DefKind::Fn,
ItemKind::Macro(_, macro_kind) => DefKind::Macro(macro_kind),
ItemKind::Mod(..) => DefKind::Mod,
ItemKind::OpaqueTy(..) => DefKind::OpaqueTy,
ItemKind::TyAlias(..) => DefKind::TyAlias,
ItemKind::Enum(..) => DefKind::Enum,
ItemKind::Struct(..) => DefKind::Struct,
ItemKind::Union(..) => DefKind::Union,
ItemKind::Trait(..) => DefKind::Trait,
ItemKind::TraitAlias(..) => DefKind::TraitAlias,
ItemKind::ExternCrate(_) => DefKind::ExternCrate,
ItemKind::Use(..) => DefKind::Use,
ItemKind::ForeignMod { .. } => DefKind::ForeignMod,
ItemKind::GlobalAsm(..) => DefKind::GlobalAsm,
ItemKind::Impl(impl_) => DefKind::Impl { of_trait: impl_.of_trait.is_some() },
},
Node::ForeignItem(item) => match item.kind {
ForeignItemKind::Fn(..) => DefKind::Fn,
ForeignItemKind::Static(_, mt) => DefKind::Static(mt),
ForeignItemKind::Type => DefKind::ForeignTy,
},
Node::TraitItem(item) => match item.kind {
TraitItemKind::Const(..) => DefKind::AssocConst,
TraitItemKind::Fn(..) => DefKind::AssocFn,
TraitItemKind::Type(..) => DefKind::AssocTy,
},
Node::ImplItem(item) => match item.kind {
ImplItemKind::Const(..) => DefKind::AssocConst,
ImplItemKind::Fn(..) => DefKind::AssocFn,
ImplItemKind::Type(..) => DefKind::AssocTy,
},
Node::Variant(_) => DefKind::Variant,
Node::Ctor(variant_data) => {
let ctor_of = match self.find_parent(hir_id) {
Some(Node::Item(..)) => def::CtorOf::Struct,
Some(Node::Variant(..)) => def::CtorOf::Variant,
_ => unreachable!(),
};
match variant_data.ctor_kind() {
Some(kind) => DefKind::Ctor(ctor_of, kind),
None => bug!("constructor node without a constructor"),
}
}
Node::AnonConst(_) => DefKind::AnonConst,
Node::ConstBlock(_) => DefKind::InlineConst,
Node::Field(_) => DefKind::Field,
Node::Expr(expr) => match expr.kind {
ExprKind::Closure(Closure { movability: None, .. }) => DefKind::Closure,
ExprKind::Closure(Closure { movability: Some(_), .. }) => DefKind::Coroutine,
_ => bug!("def_kind: unsupported node: {}", self.node_to_string(hir_id)),
},
Node::GenericParam(param) => match param.kind {
GenericParamKind::Lifetime { .. } => DefKind::LifetimeParam,
GenericParamKind::Type { .. } => DefKind::TyParam,
GenericParamKind::Const { .. } => DefKind::ConstParam,
},
Node::Crate(_) => DefKind::Mod,
Node::Stmt(_)
| Node::PathSegment(_)
| Node::Ty(_)
| Node::TypeBinding(_)
| Node::Infer(_)
| Node::TraitRef(_)
| Node::Pat(_)
| Node::PatField(_)
| Node::ExprField(_)
| Node::Local(_)
| Node::Param(_)
| Node::Arm(_)
| Node::Lifetime(_)
| Node::Block(_) => span_bug!(
self.span(hir_id),
"unexpected node with def id {local_def_id:?}: {node:?}"
),
};
Some(def_kind)
}
/// Finds the id of the parent node to this one.
///
/// If calling repeatedly and iterating over parents, prefer [`Map::parent_iter`].
pub fn opt_parent_id(self, id: HirId) -> Option<HirId> {
if id.local_id == ItemLocalId::from_u32(0) {
Some(self.tcx.hir_owner_parent(id.owner))
} else {
let owner = self.tcx.hir_owner_nodes(id.owner).as_owner()?;
let node = owner.nodes[id.local_id].as_ref()?;
let hir_id = HirId { owner: id.owner, local_id: node.parent };
// HIR indexing should have checked that.
debug_assert_ne!(id.local_id, node.parent);
Some(hir_id)
}
}
#[track_caller]
pub fn parent_id(self, hir_id: HirId) -> HirId {
self.opt_parent_id(hir_id)
.unwrap_or_else(|| bug!("No parent for node {}", self.node_to_string(hir_id)))
}
pub fn get_parent(self, hir_id: HirId) -> Node<'hir> {
self.get(self.parent_id(hir_id))
}
pub fn find_parent(self, hir_id: HirId) -> Option<Node<'hir>> {
self.find(self.opt_parent_id(hir_id)?)
}
/// Retrieves the `Node` corresponding to `id`, returning `None` if cannot be found.
pub fn find(self, id: HirId) -> Option<Node<'hir>> {
if id.local_id == ItemLocalId::from_u32(0) {
let owner = self.tcx.hir_owner(id.owner)?;
Some(owner.node.into())
} else {
let owner = self.tcx.hir_owner_nodes(id.owner).as_owner()?;
let node = owner.nodes[id.local_id].as_ref()?;
Some(node.node)
}
}
/// Retrieves the `Node` corresponding to `id`, returning `None` if cannot be found.
#[inline]
pub fn find_by_def_id(self, id: LocalDefId) -> Option<Node<'hir>> {
self.find(self.tcx.opt_local_def_id_to_hir_id(id)?)
}
/// Retrieves the `Node` corresponding to `id`, panicking if it cannot be found.
#[track_caller]
pub fn get(self, id: HirId) -> Node<'hir> {
self.find(id).unwrap_or_else(|| bug!("couldn't find hir id {} in the HIR map", id))
}
/// Retrieves the `Node` corresponding to `id`, panicking if it cannot be found.
#[inline]
#[track_caller]
pub fn get_by_def_id(self, id: LocalDefId) -> Node<'hir> {
self.find_by_def_id(id).unwrap_or_else(|| bug!("couldn't find {:?} in the HIR map", id))
}
pub fn get_if_local(self, id: DefId) -> Option<Node<'hir>> {
id.as_local().and_then(|id| self.find(self.tcx.opt_local_def_id_to_hir_id(id)?))
}
pub fn get_generics(self, id: LocalDefId) -> Option<&'hir Generics<'hir>> {
let node = self.tcx.hir_owner(OwnerId { def_id: id })?;
node.node.generics()
}
pub fn owner(self, id: OwnerId) -> OwnerNode<'hir> {
self.tcx.hir_owner(id).unwrap_or_else(|| bug!("expected owner for {:?}", id)).node
}
pub fn item(self, id: ItemId) -> &'hir Item<'hir> {
self.tcx.hir_owner(id.owner_id).unwrap().node.expect_item()
}
pub fn trait_item(self, id: TraitItemId) -> &'hir TraitItem<'hir> {
self.tcx.hir_owner(id.owner_id).unwrap().node.expect_trait_item()
}
pub fn impl_item(self, id: ImplItemId) -> &'hir ImplItem<'hir> {
self.tcx.hir_owner(id.owner_id).unwrap().node.expect_impl_item()
}
pub fn foreign_item(self, id: ForeignItemId) -> &'hir ForeignItem<'hir> {
self.tcx.hir_owner(id.owner_id).unwrap().node.expect_foreign_item()
}
pub fn body(self, id: BodyId) -> &'hir Body<'hir> {
self.tcx.hir_owner_nodes(id.hir_id.owner).unwrap().bodies[&id.hir_id.local_id]
}
#[track_caller]
pub fn fn_decl_by_hir_id(self, hir_id: HirId) -> Option<&'hir FnDecl<'hir>> {
if let Some(node) = self.find(hir_id) {
node.fn_decl()
} else {
bug!("no node for hir_id `{}`", hir_id)
}
}
#[track_caller]
pub fn fn_sig_by_hir_id(self, hir_id: HirId) -> Option<&'hir FnSig<'hir>> {
if let Some(node) = self.find(hir_id) {
node.fn_sig()
} else {
bug!("no node for hir_id `{}`", hir_id)
}
}
#[track_caller]
pub fn enclosing_body_owner(self, hir_id: HirId) -> LocalDefId {
for (_, node) in self.parent_iter(hir_id) {
if let Some((def_id, _)) = associated_body(node) {
return def_id;
}
}
bug!("no `enclosing_body_owner` for hir_id `{}`", hir_id);
}
/// Returns the `HirId` that corresponds to the definition of
/// which this is the body of, i.e., a `fn`, `const` or `static`
/// item (possibly associated), a closure, or a `hir::AnonConst`.
pub fn body_owner(self, BodyId { hir_id }: BodyId) -> HirId {
let parent = self.parent_id(hir_id);
assert!(self.find(parent).is_some_and(|n| is_body_owner(n, hir_id)), "{hir_id:?}");
parent
}
pub fn body_owner_def_id(self, BodyId { hir_id }: BodyId) -> LocalDefId {
let parent = self.parent_id(hir_id);
associated_body(self.get(parent)).unwrap().0
}
/// Given a `LocalDefId`, returns the `BodyId` associated with it,
/// if the node is a body owner, otherwise returns `None`.
pub fn maybe_body_owned_by(self, id: LocalDefId) -> Option<BodyId> {
let node = self.find_by_def_id(id)?;
let (_, body_id) = associated_body(node)?;
Some(body_id)
}
/// Given a body owner's id, returns the `BodyId` associated with it.
#[track_caller]
pub fn body_owned_by(self, id: LocalDefId) -> BodyId {
self.maybe_body_owned_by(id).unwrap_or_else(|| {
let hir_id = self.local_def_id_to_hir_id(id);
span_bug!(
self.span(hir_id),
"body_owned_by: {} has no associated body",
self.node_to_string(hir_id)
);
})
}
pub fn body_param_names(self, id: BodyId) -> impl Iterator<Item = Ident> + 'hir {
self.body(id).params.iter().map(|arg| match arg.pat.kind {
PatKind::Binding(_, _, ident, _) => ident,
_ => Ident::empty(),
})
}
/// Returns the `BodyOwnerKind` of this `LocalDefId`.
///
/// Panics if `LocalDefId` does not have an associated body.
pub fn body_owner_kind(self, def_id: LocalDefId) -> BodyOwnerKind {
match self.tcx.def_kind(def_id) {
DefKind::Const | DefKind::AssocConst | DefKind::AnonConst => {
BodyOwnerKind::Const { inline: false }
}
DefKind::InlineConst => BodyOwnerKind::Const { inline: true },
DefKind::Ctor(..) | DefKind::Fn | DefKind::AssocFn => BodyOwnerKind::Fn,
DefKind::Closure | DefKind::Coroutine => BodyOwnerKind::Closure,
DefKind::Static(mt) => BodyOwnerKind::Static(mt),
dk => bug!("{:?} is not a body node: {:?}", def_id, dk),
}
}
/// Returns the `ConstContext` of the body associated with this `LocalDefId`.
///
/// Panics if `LocalDefId` does not have an associated body.
///
/// This should only be used for determining the context of a body, a return
/// value of `Some` does not always suggest that the owner of the body is `const`,
/// just that it has to be checked as if it were.
pub fn body_const_context(self, def_id: LocalDefId) -> Option<ConstContext> {
let ccx = match self.body_owner_kind(def_id) {
BodyOwnerKind::Const { inline } => ConstContext::Const { inline },
BodyOwnerKind::Static(mt) => ConstContext::Static(mt),
BodyOwnerKind::Fn if self.tcx.is_constructor(def_id.to_def_id()) => return None,
BodyOwnerKind::Fn | BodyOwnerKind::Closure
if self.tcx.is_const_fn_raw(def_id.to_def_id()) =>
{
ConstContext::ConstFn
}
BodyOwnerKind::Fn if self.tcx.is_const_default_method(def_id.to_def_id()) => {
ConstContext::ConstFn
}
BodyOwnerKind::Fn | BodyOwnerKind::Closure => return None,
};
Some(ccx)
}
/// Returns an iterator of the `DefId`s for all body-owners in this
/// crate. If you would prefer to iterate over the bodies
/// themselves, you can do `self.hir().krate().body_ids.iter()`.
#[inline]
pub fn body_owners(self) -> impl Iterator<Item = LocalDefId> + 'hir {
self.tcx.hir_crate_items(()).body_owners.iter().copied()
}
#[inline]
pub fn par_body_owners(self, f: impl Fn(LocalDefId) + DynSend + DynSync) {
par_for_each_in(&self.tcx.hir_crate_items(()).body_owners[..], |&def_id| f(def_id));
}
pub fn ty_param_owner(self, def_id: LocalDefId) -> LocalDefId {
let def_kind = self.tcx.def_kind(def_id);
match def_kind {
DefKind::Trait | DefKind::TraitAlias => def_id,
DefKind::LifetimeParam | DefKind::TyParam | DefKind::ConstParam => {
self.tcx.local_parent(def_id)
}
_ => bug!("ty_param_owner: {:?} is a {:?} not a type parameter", def_id, def_kind),
}
}
pub fn ty_param_name(self, def_id: LocalDefId) -> Symbol {
let def_kind = self.tcx.def_kind(def_id);
match def_kind {
DefKind::Trait | DefKind::TraitAlias => kw::SelfUpper,
DefKind::LifetimeParam | DefKind::TyParam | DefKind::ConstParam => {
self.tcx.item_name(def_id.to_def_id())
}
_ => bug!("ty_param_name: {:?} is a {:?} not a type parameter", def_id, def_kind),
}
}
pub fn trait_impls(self, trait_did: DefId) -> &'hir [LocalDefId] {
self.tcx.all_local_trait_impls(()).get(&trait_did).map_or(&[], |xs| &xs[..])
}
/// Gets the attributes on the crate. This is preferable to
/// invoking `krate.attrs` because it registers a tighter
/// dep-graph access.
pub fn krate_attrs(self) -> &'hir [ast::Attribute] {
self.attrs(CRATE_HIR_ID)
}
pub fn rustc_coherence_is_core(self) -> bool {
self.krate_attrs().iter().any(|attr| attr.has_name(sym::rustc_coherence_is_core))
}
pub fn get_module(self, module: LocalModDefId) -> (&'hir Mod<'hir>, Span, HirId) {
let hir_id = HirId::make_owner(module.to_local_def_id());
match self.tcx.hir_owner(hir_id.owner).map(|o| o.node) {
Some(OwnerNode::Item(&Item { span, kind: ItemKind::Mod(ref m), .. })) => {
(m, span, hir_id)
}
Some(OwnerNode::Crate(item)) => (item, item.spans.inner_span, hir_id),
node => panic!("not a module: {node:?}"),
}
}
/// Walks the contents of the local crate. See also `visit_all_item_likes_in_crate`.
pub fn walk_toplevel_module(self, visitor: &mut impl Visitor<'hir>) {
let (top_mod, span, hir_id) = self.get_module(LocalModDefId::CRATE_DEF_ID);
visitor.visit_mod(top_mod, span, hir_id);
}
/// Walks the attributes in a crate.
pub fn walk_attributes(self, visitor: &mut impl Visitor<'hir>) {
let krate = self.krate();
for info in krate.owners.iter() {
if let MaybeOwner::Owner(info) = info {
for attrs in info.attrs.map.values() {
for a in *attrs {
visitor.visit_attribute(a)
}
}
}
}
}
/// Visits all item-likes in the crate in some deterministic (but unspecified) order. If you
/// need to process every item-like, and don't care about visiting nested items in a particular
/// order then this method is the best choice. If you do care about this nesting, you should
/// use the `tcx.hir().walk_toplevel_module`.
///
/// Note that this function will access HIR for all the item-likes in the crate. If you only
/// need to access some of them, it is usually better to manually loop on the iterators
/// provided by `tcx.hir_crate_items(())`.
///
/// Please see the notes in `intravisit.rs` for more information.
pub fn visit_all_item_likes_in_crate<V>(self, visitor: &mut V)
where
V: Visitor<'hir>,
{
let krate = self.tcx.hir_crate_items(());
for id in krate.items() {
visitor.visit_item(self.item(id));
}
for id in krate.trait_items() {
visitor.visit_trait_item(self.trait_item(id));
}
for id in krate.impl_items() {
visitor.visit_impl_item(self.impl_item(id));
}
for id in krate.foreign_items() {
visitor.visit_foreign_item(self.foreign_item(id));
}
}
/// This method is the equivalent of `visit_all_item_likes_in_crate` but restricted to
/// item-likes in a single module.
pub fn visit_item_likes_in_module<V>(self, module: LocalModDefId, visitor: &mut V)
where
V: Visitor<'hir>,
{
let module = self.tcx.hir_module_items(module);
for id in module.items() {
visitor.visit_item(self.item(id));
}
for id in module.trait_items() {
visitor.visit_trait_item(self.trait_item(id));
}
for id in module.impl_items() {
visitor.visit_impl_item(self.impl_item(id));
}
for id in module.foreign_items() {
visitor.visit_foreign_item(self.foreign_item(id));
}
}
pub fn for_each_module(self, mut f: impl FnMut(LocalModDefId)) {
let crate_items = self.tcx.hir_crate_items(());
for module in crate_items.submodules.iter() {
f(LocalModDefId::new_unchecked(module.def_id))
}
}
#[inline]
pub fn par_for_each_module(self, f: impl Fn(LocalModDefId) + DynSend + DynSync) {
let crate_items = self.tcx.hir_crate_items(());
par_for_each_in(&crate_items.submodules[..], |module| {
f(LocalModDefId::new_unchecked(module.def_id))
})
}
#[inline]
pub fn try_par_for_each_module(
self,
f: impl Fn(LocalModDefId) -> Result<(), ErrorGuaranteed> + DynSend + DynSync,
) -> Result<(), ErrorGuaranteed> {
let crate_items = self.tcx.hir_crate_items(());
try_par_for_each_in(&crate_items.submodules[..], |module| {
f(LocalModDefId::new_unchecked(module.def_id))
})
}
/// Returns an iterator for the nodes in the ancestor tree of the `current_id`
/// until the crate root is reached. Prefer this over your own loop using `parent_id`.
#[inline]
pub fn parent_id_iter(self, current_id: HirId) -> impl Iterator<Item = HirId> + 'hir {
ParentHirIterator { current_id, map: self }
}
/// Returns an iterator for the nodes in the ancestor tree of the `current_id`
/// until the crate root is reached. Prefer this over your own loop using `parent_id`.
#[inline]
pub fn parent_iter(self, current_id: HirId) -> impl Iterator<Item = (HirId, Node<'hir>)> {
self.parent_id_iter(current_id).filter_map(move |id| Some((id, self.find(id)?)))
}
/// Returns an iterator for the nodes in the ancestor tree of the `current_id`
/// until the crate root is reached. Prefer this over your own loop using `parent_id`.
#[inline]
pub fn parent_owner_iter(self, current_id: HirId) -> ParentOwnerIterator<'hir> {
ParentOwnerIterator { current_id, map: self }
}
/// Checks if the node is left-hand side of an assignment.
pub fn is_lhs(self, id: HirId) -> bool {
match self.find_parent(id) {
Some(Node::Expr(expr)) => match expr.kind {
ExprKind::Assign(lhs, _rhs, _span) => lhs.hir_id == id,
_ => false,
},
_ => false,
}
}
/// Whether the expression pointed at by `hir_id` belongs to a `const` evaluation context.
/// Used exclusively for diagnostics, to avoid suggestion function calls.
pub fn is_inside_const_context(self, hir_id: HirId) -> bool {
self.body_const_context(self.enclosing_body_owner(hir_id)).is_some()
}
/// Retrieves the `HirId` for `id`'s enclosing method, unless there's a
/// `while` or `loop` before reaching it, as block tail returns are not
/// available in them.
///
/// ```
/// fn foo(x: usize) -> bool {
/// if x == 1 {
/// true // If `get_return_block` gets passed the `id` corresponding
/// } else { // to this, it will return `foo`'s `HirId`.
/// false
/// }
/// }
/// ```
///
/// ```compile_fail,E0308
/// fn foo(x: usize) -> bool {
/// loop {
/// true // If `get_return_block` gets passed the `id` corresponding
/// } // to this, it will return `None`.
/// false
/// }
/// ```
pub fn get_return_block(self, id: HirId) -> Option<HirId> {
let mut iter = self.parent_iter(id).peekable();
let mut ignore_tail = false;
if let Some(Node::Expr(Expr { kind: ExprKind::Ret(_), .. })) = self.find(id) {
// When dealing with `return` statements, we don't care about climbing only tail
// expressions.
ignore_tail = true;
}
let mut prev_hir_id = None;
while let Some((hir_id, node)) = iter.next() {
if let (Some((_, next_node)), false) = (iter.peek(), ignore_tail) {
match next_node {
Node::Block(Block { expr: None, .. }) => return None,
// The current node is not the tail expression of its parent.
Node::Block(Block { expr: Some(e), .. }) if hir_id != e.hir_id => return None,
_ => {}
}
}
match node {
Node::Item(_)
| Node::ForeignItem(_)
| Node::TraitItem(_)
| Node::Expr(Expr { kind: ExprKind::Closure { .. }, .. })
| Node::ImplItem(_)
// The input node `id` must be enclosed in the method's body as opposed
// to some other place such as its return type (fixes #114918).
// We verify that indirectly by checking that the previous node is the
// current node's body
if node.body_id().map(|b| b.hir_id) == prev_hir_id => {
return Some(hir_id)
}
// Ignore `return`s on the first iteration
Node::Expr(Expr { kind: ExprKind::Loop(..) | ExprKind::Ret(..), .. })
| Node::Local(_) => {
return None;
}
_ => {}
}
prev_hir_id = Some(hir_id);
}
None
}
/// Retrieves the `OwnerId` for `id`'s parent item, or `id` itself if no
/// parent item is in this map. The "parent item" is the closest parent node
/// in the HIR which is recorded by the map and is an item, either an item
/// in a module, trait, or impl.
pub fn get_parent_item(self, hir_id: HirId) -> OwnerId {
if let Some((def_id, _node)) = self.parent_owner_iter(hir_id).next() {
def_id
} else {
CRATE_OWNER_ID
}
}
/// When on an if expression, a match arm tail expression or a match arm, give back
/// the enclosing `if` or `match` expression.
///
/// Used by error reporting when there's a type error in an if or match arm caused by the
/// expression needing to be unit.
pub fn get_if_cause(self, hir_id: HirId) -> Option<&'hir Expr<'hir>> {
for (_, node) in self.parent_iter(hir_id) {
match node {
Node::Item(_)
| Node::ForeignItem(_)
| Node::TraitItem(_)
| Node::ImplItem(_)
| Node::Stmt(Stmt { kind: StmtKind::Local(_), .. }) => break,
Node::Expr(expr @ Expr { kind: ExprKind::If(..) | ExprKind::Match(..), .. }) => {
return Some(expr);
}
_ => {}
}
}
None
}
/// Returns the nearest enclosing scope. A scope is roughly an item or block.
pub fn get_enclosing_scope(self, hir_id: HirId) -> Option<HirId> {
for (hir_id, node) in self.parent_iter(hir_id) {
if let Node::Item(Item {
kind:
ItemKind::Fn(..)
| ItemKind::Const(..)
| ItemKind::Static(..)
| ItemKind::Mod(..)
| ItemKind::Enum(..)
| ItemKind::Struct(..)
| ItemKind::Union(..)
| ItemKind::Trait(..)
| ItemKind::Impl { .. },
..
})
| Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(..), .. })
| Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(..), .. })
| Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(..), .. })
| Node::Block(_) = node
{
return Some(hir_id);
}
}
None
}
/// Returns the defining scope for an opaque type definition.
pub fn get_defining_scope(self, id: HirId) -> HirId {
let mut scope = id;
loop {
scope = self.get_enclosing_scope(scope).unwrap_or(CRATE_HIR_ID);
if scope == CRATE_HIR_ID || !matches!(self.get(scope), Node::Block(_)) {
return scope;
}
}
}
pub fn get_foreign_abi(self, hir_id: HirId) -> Abi {
let parent = self.get_parent_item(hir_id);
if let Some(node) = self.tcx.hir_owner(parent) {
if let OwnerNode::Item(Item { kind: ItemKind::ForeignMod { abi, .. }, .. }) = node.node
{
return *abi;
}
}
bug!(
"expected foreign mod or inlined parent, found {}",
self.node_to_string(HirId::make_owner(parent.def_id))
)
}
pub fn expect_owner(self, def_id: LocalDefId) -> OwnerNode<'hir> {
self.tcx
.hir_owner(OwnerId { def_id })
.unwrap_or_else(|| bug!("expected owner for {:?}", def_id))
.node
}
pub fn expect_item(self, id: LocalDefId) -> &'hir Item<'hir> {
match self.tcx.hir_owner(OwnerId { def_id: id }) {
Some(Owner { node: OwnerNode::Item(item), .. }) => item,
_ => bug!("expected item, found {}", self.node_to_string(HirId::make_owner(id))),
}
}
pub fn expect_impl_item(self, id: LocalDefId) -> &'hir ImplItem<'hir> {
match self.tcx.hir_owner(OwnerId { def_id: id }) {
Some(Owner { node: OwnerNode::ImplItem(item), .. }) => item,
_ => bug!("expected impl item, found {}", self.node_to_string(HirId::make_owner(id))),
}
}
pub fn expect_trait_item(self, id: LocalDefId) -> &'hir TraitItem<'hir> {
match self.tcx.hir_owner(OwnerId { def_id: id }) {
Some(Owner { node: OwnerNode::TraitItem(item), .. }) => item,
_ => bug!("expected trait item, found {}", self.node_to_string(HirId::make_owner(id))),
}
}
pub fn get_fn_output(self, def_id: LocalDefId) -> Option<&'hir FnRetTy<'hir>> {
match self.tcx.hir_owner(OwnerId { def_id }) {
Some(Owner { node, .. }) => node.fn_decl().map(|fn_decl| &fn_decl.output),
_ => None,
}
}
pub fn expect_variant(self, id: HirId) -> &'hir Variant<'hir> {
match self.find(id) {
Some(Node::Variant(variant)) => variant,
_ => bug!("expected variant, found {}", self.node_to_string(id)),
}
}
pub fn expect_foreign_item(self, id: OwnerId) -> &'hir ForeignItem<'hir> {
match self.tcx.hir_owner(id) {
Some(Owner { node: OwnerNode::ForeignItem(item), .. }) => item,
_ => {
bug!(
"expected foreign item, found {}",
self.node_to_string(HirId::make_owner(id.def_id))
)
}
}
}
pub fn expect_expr(self, id: HirId) -> &'hir Expr<'hir> {
match self.find(id) {
Some(Node::Expr(expr)) => expr,
_ => bug!("expected expr, found {}", self.node_to_string(id)),
}
}
#[inline]
fn opt_ident(self, id: HirId) -> Option<Ident> {
match self.get(id) {
Node::Pat(&Pat { kind: PatKind::Binding(_, _, ident, _), .. }) => Some(ident),
// A `Ctor` doesn't have an identifier itself, but its parent
// struct/variant does. Compare with `hir::Map::opt_span`.
Node::Ctor(..) => match self.find_parent(id)? {
Node::Item(item) => Some(item.ident),
Node::Variant(variant) => Some(variant.ident),
_ => unreachable!(),
},
node => node.ident(),
}
}
#[inline]
pub(super) fn opt_ident_span(self, id: HirId) -> Option<Span> {
self.opt_ident(id).map(|ident| ident.span)
}
#[inline]
pub fn ident(self, id: HirId) -> Ident {
self.opt_ident(id).unwrap()
}
#[inline]
pub fn opt_name(self, id: HirId) -> Option<Symbol> {
self.opt_ident(id).map(|ident| ident.name)
}
pub fn name(self, id: HirId) -> Symbol {
self.opt_name(id).unwrap_or_else(|| bug!("no name for {}", self.node_to_string(id)))
}
/// Given a node ID, gets a list of attributes associated with the AST
/// corresponding to the node-ID.
pub fn attrs(self, id: HirId) -> &'hir [ast::Attribute] {
self.tcx.hir_attrs(id.owner).get(id.local_id)
}
/// Gets the span of the definition of the specified HIR node.
/// This is used by `tcx.def_span`.
pub fn span(self, hir_id: HirId) -> Span {
self.opt_span(hir_id)
.unwrap_or_else(|| bug!("hir::map::Map::span: id not in map: {:?}", hir_id))
}
pub fn opt_span(self, hir_id: HirId) -> Option<Span> {
fn until_within(outer: Span, end: Span) -> Span {
if let Some(end) = end.find_ancestor_inside(outer) {
outer.with_hi(end.hi())
} else {
outer
}
}
fn named_span(item_span: Span, ident: Ident, generics: Option<&Generics<'_>>) -> Span {
if ident.name != kw::Empty {
let mut span = until_within(item_span, ident.span);
if let Some(g) = generics
&& !g.span.is_dummy()
&& let Some(g_span) = g.span.find_ancestor_inside(item_span)
{
span = span.to(g_span);
}
span
} else {
item_span
}
}
let span = match self.find(hir_id)? {
// Function-like.
Node::Item(Item { kind: ItemKind::Fn(sig, ..), span: outer_span, .. })
| Node::TraitItem(TraitItem {
kind: TraitItemKind::Fn(sig, ..),
span: outer_span,
..
})
| Node::ImplItem(ImplItem {
kind: ImplItemKind::Fn(sig, ..), span: outer_span, ..
}) => {
// Ensure that the returned span has the item's SyntaxContext, and not the
// SyntaxContext of the visibility.
sig.span.find_ancestor_in_same_ctxt(*outer_span).unwrap_or(*outer_span)
}
// Impls, including their where clauses.
Node::Item(Item {
kind: ItemKind::Impl(Impl { generics, .. }),
span: outer_span,
..
}) => until_within(*outer_span, generics.where_clause_span),
// Constants and Statics.
Node::Item(Item {
kind: ItemKind::Const(ty, ..) | ItemKind::Static(ty, ..),
span: outer_span,
..
})
| Node::TraitItem(TraitItem {
kind: TraitItemKind::Const(ty, ..),
span: outer_span,
..
})
| Node::ImplItem(ImplItem {
kind: ImplItemKind::Const(ty, ..),
span: outer_span,
..
})
| Node::ForeignItem(ForeignItem {
kind: ForeignItemKind::Static(ty, ..),
span: outer_span,
..
}) => until_within(*outer_span, ty.span),
// With generics and bounds.
Node::Item(Item {
kind: ItemKind::Trait(_, _, generics, bounds, _),
span: outer_span,
..
})
| Node::TraitItem(TraitItem {
kind: TraitItemKind::Type(bounds, _),
generics,
span: outer_span,
..
}) => {
let end = if let Some(b) = bounds.last() { b.span() } else { generics.span };
until_within(*outer_span, end)
}
// Other cases.
Node::Item(item) => match &item.kind {
ItemKind::Use(path, _) => {
// Ensure that the returned span has the item's SyntaxContext, and not the
// SyntaxContext of the path.
path.span.find_ancestor_in_same_ctxt(item.span).unwrap_or(item.span)
}
_ => named_span(item.span, item.ident, item.kind.generics()),
},
Node::Variant(variant) => named_span(variant.span, variant.ident, None),
Node::ImplItem(item) => named_span(item.span, item.ident, Some(item.generics)),
Node::ForeignItem(item) => match item.kind {
ForeignItemKind::Fn(decl, _, _) => until_within(item.span, decl.output.span()),
_ => named_span(item.span, item.ident, None),
},
Node::Ctor(_) => return self.opt_span(self.parent_id(hir_id)),
Node::Expr(Expr {
kind: ExprKind::Closure(Closure { fn_decl_span, .. }),
span,
..
}) => {
// Ensure that the returned span has the item's SyntaxContext.
fn_decl_span.find_ancestor_inside(*span).unwrap_or(*span)
}
_ => self.span_with_body(hir_id),
};
debug_assert_eq!(span.ctxt(), self.span_with_body(hir_id).ctxt());
Some(span)
}
/// Like `hir.span()`, but includes the body of items
/// (instead of just the item header)
pub fn span_with_body(self, hir_id: HirId) -> Span {
match self.get(hir_id) {
Node::Param(param) => param.span,
Node::Item(item) => item.span,
Node::ForeignItem(foreign_item) => foreign_item.span,
Node::TraitItem(trait_item) => trait_item.span,
Node::ImplItem(impl_item) => impl_item.span,
Node::Variant(variant) => variant.span,
Node::Field(field) => field.span,
Node::AnonConst(constant) => self.body(constant.body).value.span,
Node::ConstBlock(constant) => self.body(constant.body).value.span,
Node::Expr(expr) => expr.span,
Node::ExprField(field) => field.span,
Node::Stmt(stmt) => stmt.span,
Node::PathSegment(seg) => {
let ident_span = seg.ident.span;
ident_span
.with_hi(seg.args.map_or_else(|| ident_span.hi(), |args| args.span_ext.hi()))
}
Node::Ty(ty) => ty.span,
Node::TypeBinding(tb) => tb.span,
Node::TraitRef(tr) => tr.path.span,
Node::Pat(pat) => pat.span,
Node::PatField(field) => field.span,
Node::Arm(arm) => arm.span,
Node::Block(block) => block.span,
Node::Ctor(..) => self.span_with_body(self.parent_id(hir_id)),
Node::Lifetime(lifetime) => lifetime.ident.span,
Node::GenericParam(param) => param.span,
Node::Infer(i) => i.span,
Node::Local(local) => local.span,
Node::Crate(item) => item.spans.inner_span,
}
}
pub fn span_if_local(self, id: DefId) -> Option<Span> {
id.is_local().then(|| self.tcx.def_span(id))
}
pub fn res_span(self, res: Res) -> Option<Span> {
match res {
Res::Err => None,
Res::Local(id) => Some(self.span(id)),
res => self.span_if_local(res.opt_def_id()?),
}
}
/// Get a representation of this `id` for debugging purposes.
/// NOTE: Do NOT use this in diagnostics!
pub fn node_to_string(self, id: HirId) -> String {
hir_id_to_string(self, id)
}
/// Returns the HirId of `N` in `struct Foo<const N: usize = { ... }>` when
/// called with the HirId for the `{ ... }` anon const
pub fn opt_const_param_default_param_def_id(self, anon_const: HirId) -> Option<LocalDefId> {
match self.get_parent(anon_const) {
Node::GenericParam(GenericParam {
def_id: param_id,
kind: GenericParamKind::Const { .. },
..
}) => Some(*param_id),
_ => None,
}
}
pub fn maybe_get_struct_pattern_shorthand_field(&self, expr: &Expr<'_>) -> Option<Symbol> {
let local = match expr {
Expr {
kind:
ExprKind::Path(QPath::Resolved(
None,
Path {
res: def::Res::Local(_), segments: [PathSegment { ident, .. }], ..
},
)),
..
} => Some(ident),
_ => None,
}?;
match self.find_parent(expr.hir_id)? {
Node::ExprField(field) => {
if field.ident.name == local.name && field.is_shorthand {
return Some(local.name);
}
}
_ => {}
}
None
}
}
impl<'hir> intravisit::Map<'hir> for Map<'hir> {
fn find(&self, hir_id: HirId) -> Option<Node<'hir>> {
(*self).find(hir_id)
}
fn body(&self, id: BodyId) -> &'hir Body<'hir> {
(*self).body(id)
}
fn item(&self, id: ItemId) -> &'hir Item<'hir> {
(*self).item(id)
}
fn trait_item(&self, id: TraitItemId) -> &'hir TraitItem<'hir> {
(*self).trait_item(id)
}
fn impl_item(&self, id: ImplItemId) -> &'hir ImplItem<'hir> {
(*self).impl_item(id)
}
fn foreign_item(&self, id: ForeignItemId) -> &'hir ForeignItem<'hir> {
(*self).foreign_item(id)
}
}
pub(super) fn crate_hash(tcx: TyCtxt<'_>, _: LocalCrate) -> Svh {
let krate = tcx.hir_crate(());
let hir_body_hash = krate.opt_hir_hash.expect("HIR hash missing while computing crate hash");
let upstream_crates = upstream_crates(tcx);
let resolutions = tcx.resolutions(());
// We hash the final, remapped names of all local source files so we
// don't have to include the path prefix remapping commandline args.
// If we included the full mapping in the SVH, we could only have
// reproducible builds by compiling from the same directory. So we just
// hash the result of the mapping instead of the mapping itself.
let mut source_file_names: Vec<_> = tcx
.sess
.source_map()
.files()
.iter()
.filter(|source_file| source_file.cnum == LOCAL_CRATE)
.map(|source_file| source_file.name_hash)
.collect();
source_file_names.sort_unstable();
// We have to take care of debugger visualizers explicitly. The HIR (and
// thus `hir_body_hash`) contains the #[debugger_visualizer] attributes but
// these attributes only store the file path to the visualizer file, not
// their content. Yet that content is exported into crate metadata, so any
// changes to it need to be reflected in the crate hash.
let debugger_visualizers: Vec<_> = tcx
.debugger_visualizers(LOCAL_CRATE)
.iter()
// We ignore the path to the visualizer file since it's not going to be
// encoded in crate metadata and we already hash the full contents of
// the file.
.map(DebuggerVisualizerFile::path_erased)
.collect();
let crate_hash: Fingerprint = tcx.with_stable_hashing_context(|mut hcx| {
let mut stable_hasher = StableHasher::new();
hir_body_hash.hash_stable(&mut hcx, &mut stable_hasher);
upstream_crates.hash_stable(&mut hcx, &mut stable_hasher);
source_file_names.hash_stable(&mut hcx, &mut stable_hasher);
debugger_visualizers.hash_stable(&mut hcx, &mut stable_hasher);
if tcx.sess.opts.incremental.is_some() {
let definitions = tcx.untracked().definitions.freeze();
let mut owner_spans: Vec<_> = krate
.owners
.iter_enumerated()
.filter_map(|(def_id, info)| {
let _ = info.as_owner()?;
let def_path_hash = definitions.def_path_hash(def_id);
let span = tcx.source_span(def_id);
debug_assert_eq!(span.parent(), None);
Some((def_path_hash, span))
})
.collect();
owner_spans.sort_unstable_by_key(|bn| bn.0);
owner_spans.hash_stable(&mut hcx, &mut stable_hasher);
}
tcx.sess.opts.dep_tracking_hash(true).hash_stable(&mut hcx, &mut stable_hasher);
tcx.stable_crate_id(LOCAL_CRATE).hash_stable(&mut hcx, &mut stable_hasher);
// Hash visibility information since it does not appear in HIR.
resolutions.visibilities.hash_stable(&mut hcx, &mut stable_hasher);
stable_hasher.finish()
});
Svh::new(crate_hash)
}
fn upstream_crates(tcx: TyCtxt<'_>) -> Vec<(StableCrateId, Svh)> {
let mut upstream_crates: Vec<_> = tcx
.crates(())
.iter()
.map(|&cnum| {
let stable_crate_id = tcx.stable_crate_id(cnum);
let hash = tcx.crate_hash(cnum);
(stable_crate_id, hash)
})
.collect();
upstream_crates.sort_unstable_by_key(|&(stable_crate_id, _)| stable_crate_id);
upstream_crates
}
fn hir_id_to_string(map: Map<'_>, id: HirId) -> String {
let path_str = |def_id: LocalDefId| map.tcx.def_path_str(def_id);
let span_str = || map.tcx.sess.source_map().span_to_snippet(map.span(id)).unwrap_or_default();
let node_str = |prefix| format!("{id} ({prefix} `{}`)", span_str());
match map.find(id) {
Some(Node::Item(item)) => {
let item_str = match item.kind {
ItemKind::ExternCrate(..) => "extern crate",
ItemKind::Use(..) => "use",
ItemKind::Static(..) => "static",
ItemKind::Const(..) => "const",
ItemKind::Fn(..) => "fn",
ItemKind::Macro(..) => "macro",
ItemKind::Mod(..) => "mod",
ItemKind::ForeignMod { .. } => "foreign mod",
ItemKind::GlobalAsm(..) => "global asm",
ItemKind::TyAlias(..) => "ty",
ItemKind::OpaqueTy(ref opaque) => {
if opaque.in_trait {
"opaque type in trait"
} else {
"opaque type"
}
}
ItemKind::Enum(..) => "enum",
ItemKind::Struct(..) => "struct",
ItemKind::Union(..) => "union",
ItemKind::Trait(..) => "trait",
ItemKind::TraitAlias(..) => "trait alias",
ItemKind::Impl { .. } => "impl",
};
format!("{id} ({item_str} {})", path_str(item.owner_id.def_id))
}
Some(Node::ForeignItem(item)) => {
format!("{id} (foreign item {})", path_str(item.owner_id.def_id))
}
Some(Node::ImplItem(ii)) => {
let kind = match ii.kind {
ImplItemKind::Const(..) => "assoc const",
ImplItemKind::Fn(..) => "method",
ImplItemKind::Type(_) => "assoc type",
};
format!("{id} ({kind} `{}` in {})", ii.ident, path_str(ii.owner_id.def_id))
}
Some(Node::TraitItem(ti)) => {
let kind = match ti.kind {
TraitItemKind::Const(..) => "assoc constant",
TraitItemKind::Fn(..) => "trait method",
TraitItemKind::Type(..) => "assoc type",
};
format!("{id} ({kind} `{}` in {})", ti.ident, path_str(ti.owner_id.def_id))
}
Some(Node::Variant(ref variant)) => {
format!("{id} (variant `{}` in {})", variant.ident, path_str(variant.def_id))
}
Some(Node::Field(ref field)) => {
format!("{id} (field `{}` in {})", field.ident, path_str(field.def_id))
}
Some(Node::AnonConst(_)) => node_str("const"),
Some(Node::ConstBlock(_)) => node_str("const"),
Some(Node::Expr(_)) => node_str("expr"),
Some(Node::ExprField(_)) => node_str("expr field"),
Some(Node::Stmt(_)) => node_str("stmt"),
Some(Node::PathSegment(_)) => node_str("path segment"),
Some(Node::Ty(_)) => node_str("type"),
Some(Node::TypeBinding(_)) => node_str("type binding"),
Some(Node::TraitRef(_)) => node_str("trait ref"),
Some(Node::Pat(_)) => node_str("pat"),
Some(Node::PatField(_)) => node_str("pattern field"),
Some(Node::Param(_)) => node_str("param"),
Some(Node::Arm(_)) => node_str("arm"),
Some(Node::Block(_)) => node_str("block"),
Some(Node::Infer(_)) => node_str("infer"),
Some(Node::Local(_)) => node_str("local"),
Some(Node::Ctor(ctor)) => format!(
"{id} (ctor {})",
ctor.ctor_def_id().map_or("<missing path>".into(), |def_id| path_str(def_id)),
),
Some(Node::Lifetime(_)) => node_str("lifetime"),
Some(Node::GenericParam(ref param)) => {
format!("{id} (generic_param {})", path_str(param.def_id))
}
Some(Node::Crate(..)) => String::from("(root_crate)"),
None => format!("{id} (unknown node)"),
}
}
pub(super) fn hir_module_items(tcx: TyCtxt<'_>, module_id: LocalModDefId) -> ModuleItems {
let mut collector = ItemCollector::new(tcx, false);
let (hir_mod, span, hir_id) = tcx.hir().get_module(module_id);
collector.visit_mod(hir_mod, span, hir_id);
let ItemCollector {
submodules,
items,
trait_items,
impl_items,
foreign_items,
body_owners,
..
} = collector;
return ModuleItems {
submodules: submodules.into_boxed_slice(),
items: items.into_boxed_slice(),
trait_items: trait_items.into_boxed_slice(),
impl_items: impl_items.into_boxed_slice(),
foreign_items: foreign_items.into_boxed_slice(),
body_owners: body_owners.into_boxed_slice(),
};
}
pub(crate) fn hir_crate_items(tcx: TyCtxt<'_>, _: ()) -> ModuleItems {
let mut collector = ItemCollector::new(tcx, true);
// A "crate collector" and "module collector" start at a
// module item (the former starts at the crate root) but only
// the former needs to collect it. ItemCollector does not do this for us.
collector.submodules.push(CRATE_OWNER_ID);
tcx.hir().walk_toplevel_module(&mut collector);
let ItemCollector {
submodules,
items,
trait_items,
impl_items,
foreign_items,
body_owners,
..
} = collector;
return ModuleItems {
submodules: submodules.into_boxed_slice(),
items: items.into_boxed_slice(),
trait_items: trait_items.into_boxed_slice(),
impl_items: impl_items.into_boxed_slice(),
foreign_items: foreign_items.into_boxed_slice(),
body_owners: body_owners.into_boxed_slice(),
};
}
struct ItemCollector<'tcx> {
// When true, it collects all items in the create,
// otherwise it collects items in some module.
crate_collector: bool,
tcx: TyCtxt<'tcx>,
submodules: Vec<OwnerId>,
items: Vec<ItemId>,
trait_items: Vec<TraitItemId>,
impl_items: Vec<ImplItemId>,
foreign_items: Vec<ForeignItemId>,
body_owners: Vec<LocalDefId>,
}
impl<'tcx> ItemCollector<'tcx> {
fn new(tcx: TyCtxt<'tcx>, crate_collector: bool) -> ItemCollector<'tcx> {
ItemCollector {
crate_collector,
tcx,
submodules: Vec::default(),
items: Vec::default(),
trait_items: Vec::default(),
impl_items: Vec::default(),
foreign_items: Vec::default(),
body_owners: Vec::default(),
}
}
}
impl<'hir> Visitor<'hir> for ItemCollector<'hir> {
type NestedFilter = nested_filter::All;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_item(&mut self, item: &'hir Item<'hir>) {
if associated_body(Node::Item(item)).is_some() {
self.body_owners.push(item.owner_id.def_id);
}
self.items.push(item.item_id());
// Items that are modules are handled here instead of in visit_mod.
if let ItemKind::Mod(module) = &item.kind {
self.submodules.push(item.owner_id);
// A module collector does not recurse inside nested modules.
if self.crate_collector {
intravisit::walk_mod(self, module, item.hir_id());
}
} else {
intravisit::walk_item(self, item)
}
}
fn visit_foreign_item(&mut self, item: &'hir ForeignItem<'hir>) {
self.foreign_items.push(item.foreign_item_id());
intravisit::walk_foreign_item(self, item)
}
fn visit_anon_const(&mut self, c: &'hir AnonConst) {
self.body_owners.push(c.def_id);
intravisit::walk_anon_const(self, c)
}
fn visit_inline_const(&mut self, c: &'hir ConstBlock) {
self.body_owners.push(c.def_id);
intravisit::walk_inline_const(self, c)
}
fn visit_expr(&mut self, ex: &'hir Expr<'hir>) {
if let ExprKind::Closure(closure) = ex.kind {
self.body_owners.push(closure.def_id);
}
intravisit::walk_expr(self, ex)
}
fn visit_trait_item(&mut self, item: &'hir TraitItem<'hir>) {
if associated_body(Node::TraitItem(item)).is_some() {
self.body_owners.push(item.owner_id.def_id);
}
self.trait_items.push(item.trait_item_id());
intravisit::walk_trait_item(self, item)
}
fn visit_impl_item(&mut self, item: &'hir ImplItem<'hir>) {
if associated_body(Node::ImplItem(item)).is_some() {
self.body_owners.push(item.owner_id.def_id);
}
self.impl_items.push(item.impl_item_id());
intravisit::walk_impl_item(self, item)
}
}