blob: 3d90e95c09c793d4bc370534367af97bd04a9af4 [file] [log] [blame]
//! This module specifies the type based interner for constants.
//!
//! After a const evaluation has computed a value, before we destroy the const evaluator's session
//! memory, we need to extract all memory allocations to the global memory pool so they stay around.
//!
//! In principle, this is not very complicated: we recursively walk the final value, follow all the
//! pointers, and move all reachable allocations to the global `tcx` memory. The only complication
//! is picking the right mutability for the allocations in a `static` initializer: we want to make
//! as many allocations as possible immutable so LLVM can put them into read-only memory. At the
//! same time, we need to make memory that could be mutated by the program mutable to avoid
//! incorrect compilations. To achieve this, we do a type-based traversal of the final value,
//! tracking mutable and shared references and `UnsafeCell` to determine the current mutability.
//! (In principle, we could skip this type-based part for `const` and promoteds, as they need to be
//! always immutable. At least for `const` however we use this opportunity to reject any `const`
//! that contains allocations whose mutability we cannot identify.)
use super::validity::RefTracking;
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_errors::ErrorGuaranteed;
use rustc_hir as hir;
use rustc_middle::mir::interpret::InterpResult;
use rustc_middle::ty::{self, layout::TyAndLayout, Ty};
use rustc_ast::Mutability;
use super::{
AllocId, Allocation, InterpCx, MPlaceTy, Machine, MemoryKind, PlaceTy, Projectable,
ValueVisitor,
};
use crate::const_eval;
use crate::errors::{DanglingPtrInFinal, UnsupportedUntypedPointer};
pub trait CompileTimeMachine<'mir, 'tcx: 'mir, T> = Machine<
'mir,
'tcx,
MemoryKind = T,
Provenance = AllocId,
ExtraFnVal = !,
FrameExtra = (),
AllocExtra = (),
MemoryMap = FxIndexMap<AllocId, (MemoryKind<T>, Allocation)>,
>;
struct InternVisitor<'rt, 'mir, 'tcx, M: CompileTimeMachine<'mir, 'tcx, const_eval::MemoryKind>> {
/// The ectx from which we intern.
ecx: &'rt mut InterpCx<'mir, 'tcx, M>,
/// Previously encountered safe references.
ref_tracking: &'rt mut RefTracking<(MPlaceTy<'tcx>, InternMode)>,
/// A list of all encountered allocations. After type-based interning, we traverse this list to
/// also intern allocations that are only referenced by a raw pointer or inside a union.
leftover_allocations: &'rt mut FxIndexSet<AllocId>,
/// The root kind of the value that we're looking at. This field is never mutated for a
/// particular allocation. It is primarily used to make as many allocations as possible
/// read-only so LLVM can place them in const memory.
mode: InternMode,
/// This field stores whether we are *currently* inside an `UnsafeCell`. This can affect
/// the intern mode of references we encounter.
inside_unsafe_cell: bool,
}
#[derive(Copy, Clone, Debug, PartialEq, Hash, Eq)]
enum InternMode {
/// A static and its current mutability. Below shared references inside a `static mut`,
/// this is *immutable*, and below mutable references inside an `UnsafeCell`, this
/// is *mutable*.
Static(hir::Mutability),
/// A `const`.
Const,
}
/// Signalling data structure to ensure we don't recurse
/// into the memory of other constants or statics
struct IsStaticOrFn;
/// Intern an allocation without looking at its children.
/// `mode` is the mode of the environment where we found this pointer.
/// `mutability` is the mutability of the place to be interned; even if that says
/// `immutable` things might become mutable if `ty` is not frozen.
/// `ty` can be `None` if there is no potential interior mutability
/// to account for (e.g. for vtables).
fn intern_shallow<'rt, 'mir, 'tcx, M: CompileTimeMachine<'mir, 'tcx, const_eval::MemoryKind>>(
ecx: &'rt mut InterpCx<'mir, 'tcx, M>,
leftover_allocations: &'rt mut FxIndexSet<AllocId>,
alloc_id: AllocId,
mode: InternMode,
ty: Option<Ty<'tcx>>,
) -> Option<IsStaticOrFn> {
trace!("intern_shallow {:?} with {:?}", alloc_id, mode);
// remove allocation
let tcx = ecx.tcx;
let Some((kind, mut alloc)) = ecx.memory.alloc_map.remove(&alloc_id) else {
// Pointer not found in local memory map. It is either a pointer to the global
// map, or dangling.
// If the pointer is dangling (neither in local nor global memory), we leave it
// to validation to error -- it has the much better error messages, pointing out where
// in the value the dangling reference lies.
// The `delay_span_bug` ensures that we don't forget such a check in validation.
if tcx.try_get_global_alloc(alloc_id).is_none() {
tcx.sess.delay_span_bug(ecx.tcx.span, "tried to intern dangling pointer");
}
// treat dangling pointers like other statics
// just to stop trying to recurse into them
return Some(IsStaticOrFn);
};
// This match is just a canary for future changes to `MemoryKind`, which most likely need
// changes in this function.
match kind {
MemoryKind::Stack
| MemoryKind::Machine(const_eval::MemoryKind::Heap)
| MemoryKind::CallerLocation => {}
}
// Set allocation mutability as appropriate. This is used by LLVM to put things into
// read-only memory, and also by Miri when evaluating other globals that
// access this one.
if let InternMode::Static(mutability) = mode {
// For this, we need to take into account `UnsafeCell`. When `ty` is `None`, we assume
// no interior mutability.
let frozen = ty.map_or(true, |ty| ty.is_freeze(*ecx.tcx, ecx.param_env));
// For statics, allocation mutability is the combination of place mutability and
// type mutability.
// The entire allocation needs to be mutable if it contains an `UnsafeCell` anywhere.
let immutable = mutability == Mutability::Not && frozen;
if immutable {
alloc.mutability = Mutability::Not;
} else {
// Just making sure we are not "upgrading" an immutable allocation to mutable.
assert_eq!(alloc.mutability, Mutability::Mut);
}
} else {
// No matter what, *constants are never mutable*. Mutating them is UB.
// See const_eval::machine::MemoryExtra::can_access_statics for why
// immutability is so important.
// Validation will ensure that there is no `UnsafeCell` on an immutable allocation.
alloc.mutability = Mutability::Not;
};
// link the alloc id to the actual allocation
leftover_allocations.extend(alloc.provenance().ptrs().iter().map(|&(_, alloc_id)| alloc_id));
let alloc = tcx.mk_const_alloc(alloc);
tcx.set_alloc_id_memory(alloc_id, alloc);
None
}
impl<'rt, 'mir, 'tcx, M: CompileTimeMachine<'mir, 'tcx, const_eval::MemoryKind>>
InternVisitor<'rt, 'mir, 'tcx, M>
{
fn intern_shallow(
&mut self,
alloc_id: AllocId,
mode: InternMode,
ty: Option<Ty<'tcx>>,
) -> Option<IsStaticOrFn> {
intern_shallow(self.ecx, self.leftover_allocations, alloc_id, mode, ty)
}
}
impl<'rt, 'mir, 'tcx: 'mir, M: CompileTimeMachine<'mir, 'tcx, const_eval::MemoryKind>>
ValueVisitor<'mir, 'tcx, M> for InternVisitor<'rt, 'mir, 'tcx, M>
{
type V = MPlaceTy<'tcx>;
#[inline(always)]
fn ecx(&self) -> &InterpCx<'mir, 'tcx, M> {
self.ecx
}
fn visit_value(&mut self, mplace: &MPlaceTy<'tcx>) -> InterpResult<'tcx> {
// Handle Reference types, as these are the only types with provenance supported by const eval.
// Raw pointers (and boxes) are handled by the `leftover_allocations` logic.
let tcx = self.ecx.tcx;
let ty = mplace.layout.ty;
if let ty::Ref(_, referenced_ty, ref_mutability) = *ty.kind() {
let value = self.ecx.read_immediate(mplace)?;
let mplace = self.ecx.ref_to_mplace(&value)?;
assert_eq!(mplace.layout.ty, referenced_ty);
// Handle trait object vtables.
if let ty::Dynamic(_, _, ty::Dyn) =
tcx.struct_tail_erasing_lifetimes(referenced_ty, self.ecx.param_env).kind()
{
let ptr = mplace.meta().unwrap_meta().to_pointer(&tcx)?;
if let Some(alloc_id) = ptr.provenance {
// Explicitly choose const mode here, since vtables are immutable, even
// if the reference of the fat pointer is mutable.
self.intern_shallow(alloc_id, InternMode::Const, None);
} else {
// Validation will error (with a better message) on an invalid vtable pointer.
// Let validation show the error message, but make sure it *does* error.
tcx.sess
.delay_span_bug(tcx.span, "vtables pointers cannot be integer pointers");
}
}
// Check if we have encountered this pointer+layout combination before.
// Only recurse for allocation-backed pointers.
if let Some(alloc_id) = mplace.ptr().provenance {
// Compute the mode with which we intern this. Our goal here is to make as many
// statics as we can immutable so they can be placed in read-only memory by LLVM.
let ref_mode = match self.mode {
InternMode::Static(mutbl) => {
// In statics, merge outer mutability with reference mutability and
// take into account whether we are in an `UnsafeCell`.
// The only way a mutable reference actually works as a mutable reference is
// by being in a `static mut` directly or behind another mutable reference.
// If there's an immutable reference or we are inside a `static`, then our
// mutable reference is equivalent to an immutable one. As an example:
// `&&mut Foo` is semantically equivalent to `&&Foo`
match ref_mutability {
_ if self.inside_unsafe_cell => {
// Inside an `UnsafeCell` is like inside a `static mut`, the "outer"
// mutability does not matter.
InternMode::Static(ref_mutability)
}
Mutability::Not => {
// A shared reference, things become immutable.
// We do *not* consider `freeze` here: `intern_shallow` considers
// `freeze` for the actual mutability of this allocation; the intern
// mode for references contained in this allocation is tracked more
// precisely when traversing the referenced data (by tracking
// `UnsafeCell`). This makes sure that `&(&i32, &Cell<i32>)` still
// has the left inner reference interned into a read-only
// allocation.
InternMode::Static(Mutability::Not)
}
Mutability::Mut => {
// Mutable reference.
InternMode::Static(mutbl)
}
}
}
InternMode::Const => {
// Ignore `UnsafeCell`, everything is immutable. Validity does some sanity
// checking for mutable references that we encounter -- they must all be
// ZST.
InternMode::Const
}
};
match self.intern_shallow(alloc_id, ref_mode, Some(referenced_ty)) {
// No need to recurse, these are interned already and statics may have
// cycles, so we don't want to recurse there
Some(IsStaticOrFn) => {}
// intern everything referenced by this value. The mutability is taken from the
// reference. It is checked above that mutable references only happen in
// `static mut`
None => self.ref_tracking.track((mplace, ref_mode), || ()),
}
}
Ok(())
} else {
// Not a reference. Check if we want to recurse.
let is_walk_needed = |mplace: &MPlaceTy<'tcx>| -> InterpResult<'tcx, bool> {
// ZSTs cannot contain pointers, we can avoid the interning walk.
if mplace.layout.is_zst() {
return Ok(false);
}
// Now, check whether this allocation could contain references.
//
// Note, this check may sometimes not be cheap, so we only do it when the walk we'd like
// to avoid could be expensive: on the potentially larger types, arrays and slices,
// rather than on all aggregates unconditionally.
if matches!(mplace.layout.ty.kind(), ty::Array(..) | ty::Slice(..)) {
let Some((size, _align)) = self.ecx.size_and_align_of_mplace(&mplace)? else {
// We do the walk if we can't determine the size of the mplace: we may be
// dealing with extern types here in the future.
return Ok(true);
};
// If there is no provenance in this allocation, it does not contain references
// that point to another allocation, and we can avoid the interning walk.
if let Some(alloc) = self.ecx.get_ptr_alloc(mplace.ptr(), size)? {
if !alloc.has_provenance() {
return Ok(false);
}
} else {
// We're encountering a ZST here, and can avoid the walk as well.
return Ok(false);
}
}
// In the general case, we do the walk.
Ok(true)
};
// If this allocation contains no references to intern, we avoid the potentially costly
// walk.
//
// We can do this before the checks for interior mutability below, because only references
// are relevant in that situation, and we're checking if there are any here.
if !is_walk_needed(mplace)? {
return Ok(());
}
if let Some(def) = mplace.layout.ty.ty_adt_def() {
if def.is_unsafe_cell() {
// We are crossing over an `UnsafeCell`, we can mutate again. This means that
// References we encounter inside here are interned as pointing to mutable
// allocations.
// Remember the `old` value to handle nested `UnsafeCell`.
let old = std::mem::replace(&mut self.inside_unsafe_cell, true);
let walked = self.walk_value(mplace);
self.inside_unsafe_cell = old;
return walked;
}
}
self.walk_value(mplace)
}
}
}
/// How a constant value should be interned.
#[derive(Copy, Clone, Debug, PartialEq, Hash, Eq)]
pub enum InternKind {
/// The `mutability` of the static, ignoring the type which may have interior mutability.
Static(hir::Mutability),
/// A `const` item
Constant,
Promoted,
}
/// Intern `ret` and everything it references.
///
/// This *cannot raise an interpreter error*. Doing so is left to validation, which
/// tracks where in the value we are and thus can show much better error messages.
#[instrument(level = "debug", skip(ecx))]
pub fn intern_const_alloc_recursive<
'mir,
'tcx: 'mir,
M: CompileTimeMachine<'mir, 'tcx, const_eval::MemoryKind>,
>(
ecx: &mut InterpCx<'mir, 'tcx, M>,
intern_kind: InternKind,
ret: &MPlaceTy<'tcx>,
) -> Result<(), ErrorGuaranteed> {
let tcx = ecx.tcx;
let base_intern_mode = match intern_kind {
InternKind::Static(mutbl) => InternMode::Static(mutbl),
// `Constant` includes array lengths.
InternKind::Constant | InternKind::Promoted => InternMode::Const,
};
// Type based interning.
// `ref_tracking` tracks typed references we have already interned and still need to crawl for
// more typed information inside them.
// `leftover_allocations` collects *all* allocations we see, because some might not
// be available in a typed way. They get interned at the end.
let mut ref_tracking = RefTracking::empty();
let leftover_allocations = &mut FxIndexSet::default();
// start with the outermost allocation
intern_shallow(
ecx,
leftover_allocations,
// The outermost allocation must exist, because we allocated it with
// `Memory::allocate`.
ret.ptr().provenance.unwrap(),
base_intern_mode,
Some(ret.layout.ty),
);
ref_tracking.track((ret.clone(), base_intern_mode), || ());
while let Some(((mplace, mode), _)) = ref_tracking.todo.pop() {
let res = InternVisitor {
ref_tracking: &mut ref_tracking,
ecx,
mode,
leftover_allocations,
inside_unsafe_cell: false,
}
.visit_value(&mplace);
// We deliberately *ignore* interpreter errors here. When there is a problem, the remaining
// references are "leftover"-interned, and later validation will show a proper error
// and point at the right part of the value causing the problem.
match res {
Ok(()) => {}
Err(error) => {
ecx.tcx.sess.delay_span_bug(
ecx.tcx.span,
format!(
"error during interning should later cause validation failure: {}",
ecx.format_error(error),
),
);
}
}
}
// Intern the rest of the allocations as mutable. These might be inside unions, padding, raw
// pointers, ... So we can't intern them according to their type rules
let mut todo: Vec<_> = leftover_allocations.iter().cloned().collect();
debug!(?todo);
debug!("dead_alloc_map: {:#?}", ecx.memory.dead_alloc_map);
while let Some(alloc_id) = todo.pop() {
if let Some((_, mut alloc)) = ecx.memory.alloc_map.remove(&alloc_id) {
// We can't call the `intern_shallow` method here, as its logic is tailored to safe
// references and a `leftover_allocations` set (where we only have a todo-list here).
// So we hand-roll the interning logic here again.
match intern_kind {
// Statics may point to mutable allocations.
// Even for immutable statics it would be ok to have mutable allocations behind
// raw pointers, e.g. for `static FOO: *const AtomicUsize = &AtomicUsize::new(42)`.
InternKind::Static(_) => {}
// Raw pointers in promoteds may only point to immutable things so we mark
// everything as immutable.
// It is UB to mutate through a raw pointer obtained via an immutable reference:
// Since all references and pointers inside a promoted must by their very definition
// be created from an immutable reference (and promotion also excludes interior
// mutability), mutating through them would be UB.
// There's no way we can check whether the user is using raw pointers correctly,
// so all we can do is mark this as immutable here.
InternKind::Promoted => {
// See const_eval::machine::MemoryExtra::can_access_statics for why
// immutability is so important.
alloc.mutability = Mutability::Not;
}
// If it's a constant, we should not have any "leftovers" as everything
// is tracked by const-checking.
// FIXME: downgrade this to a warning? It rejects some legitimate consts,
// such as `const CONST_RAW: *const Vec<i32> = &Vec::new() as *const _;`.
//
// NOTE: it looks likes this code path is only reachable when we try to intern
// something that cannot be promoted, which in constants means values that have
// drop glue, such as the example above.
InternKind::Constant => {
ecx.tcx.sess.emit_err(UnsupportedUntypedPointer { span: ecx.tcx.span });
// For better errors later, mark the allocation as immutable.
alloc.mutability = Mutability::Not;
}
}
let alloc = tcx.mk_const_alloc(alloc);
tcx.set_alloc_id_memory(alloc_id, alloc);
for &(_, alloc_id) in alloc.inner().provenance().ptrs().iter() {
if leftover_allocations.insert(alloc_id) {
todo.push(alloc_id);
}
}
} else if ecx.memory.dead_alloc_map.contains_key(&alloc_id) {
// Codegen does not like dangling pointers, and generally `tcx` assumes that
// all allocations referenced anywhere actually exist. So, make sure we error here.
let reported = ecx.tcx.sess.emit_err(DanglingPtrInFinal { span: ecx.tcx.span });
return Err(reported);
} else if ecx.tcx.try_get_global_alloc(alloc_id).is_none() {
// We have hit an `AllocId` that is neither in local or global memory and isn't
// marked as dangling by local memory. That should be impossible.
span_bug!(ecx.tcx.span, "encountered unknown alloc id {:?}", alloc_id);
}
}
Ok(())
}
/// Intern `ret`. This function assumes that `ret` references no other allocation.
#[instrument(level = "debug", skip(ecx))]
pub fn intern_const_alloc_for_constprop<
'mir,
'tcx: 'mir,
T,
M: CompileTimeMachine<'mir, 'tcx, T>,
>(
ecx: &mut InterpCx<'mir, 'tcx, M>,
alloc_id: AllocId,
) -> InterpResult<'tcx, ()> {
// Move allocation to `tcx`.
let Some((_, mut alloc)) = ecx.memory.alloc_map.remove(&alloc_id) else {
// Pointer not found in local memory map. It is either a pointer to the global
// map, or dangling.
if ecx.tcx.try_get_global_alloc(alloc_id).is_none() {
throw_ub!(DeadLocal)
}
// The constant is already in global memory. Do nothing.
return Ok(());
};
alloc.mutability = Mutability::Not;
// We are not doing recursive interning, so we don't currently support provenance.
// (If this assertion ever triggers, we should just implement a
// proper recursive interning loop.)
assert!(alloc.provenance().ptrs().is_empty());
// Link the alloc id to the actual allocation
let alloc = ecx.tcx.mk_const_alloc(alloc);
ecx.tcx.set_alloc_id_memory(alloc_id, alloc);
Ok(())
}
impl<'mir, 'tcx: 'mir, M: super::intern::CompileTimeMachine<'mir, 'tcx, !>>
InterpCx<'mir, 'tcx, M>
{
/// A helper function that allocates memory for the layout given and gives you access to mutate
/// it. Once your own mutation code is done, the backing `Allocation` is removed from the
/// current `Memory` and interned as read-only into the global memory.
pub fn intern_with_temp_alloc(
&mut self,
layout: TyAndLayout<'tcx>,
f: impl FnOnce(
&mut InterpCx<'mir, 'tcx, M>,
&PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, ()>,
) -> InterpResult<'tcx, AllocId> {
// `allocate` picks a fresh AllocId that we will associate with its data below.
let dest = self.allocate(layout, MemoryKind::Stack)?;
f(self, &dest.clone().into())?;
let mut alloc = self.memory.alloc_map.remove(&dest.ptr().provenance.unwrap()).unwrap().1;
alloc.mutability = Mutability::Not;
let alloc = self.tcx.mk_const_alloc(alloc);
let alloc_id = dest.ptr().provenance.unwrap(); // this was just allocated, it must have provenance
self.tcx.set_alloc_id_memory(alloc_id, alloc);
Ok(alloc_id)
}
}