blob: 2285e7f4e01e93cc8c90e0a4199aeea391efbe45 [file] [log] [blame]
//! An analysis to determine which locals require allocas and
//! which do not.
use super::FunctionCx;
use crate::traits::*;
use rustc_data_structures::graph::dominators::Dominators;
use rustc_index::bit_set::BitSet;
use rustc_index::{IndexSlice, IndexVec};
use rustc_middle::mir::traversal;
use rustc_middle::mir::visit::{MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor};
use rustc_middle::mir::{self, DefLocation, Location, TerminatorKind};
use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf};
pub fn non_ssa_locals<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
fx: &FunctionCx<'a, 'tcx, Bx>,
) -> BitSet<mir::Local> {
let mir = fx.mir;
let dominators = mir.basic_blocks.dominators();
let locals = mir
.local_decls
.iter()
.map(|decl| {
let ty = fx.monomorphize(decl.ty);
let layout = fx.cx.spanned_layout_of(ty, decl.source_info.span);
if layout.is_zst() {
LocalKind::ZST
} else if fx.cx.is_backend_immediate(layout) || fx.cx.is_backend_scalar_pair(layout) {
LocalKind::Unused
} else {
LocalKind::Memory
}
})
.collect();
let mut analyzer = LocalAnalyzer { fx, dominators, locals };
// Arguments get assigned to by means of the function being called
for arg in mir.args_iter() {
analyzer.assign(arg, DefLocation::Argument);
}
// If there exists a local definition that dominates all uses of that local,
// the definition should be visited first. Traverse blocks in an order that
// is a topological sort of dominance partial order.
for (bb, data) in traversal::reverse_postorder(&mir) {
analyzer.visit_basic_block_data(bb, data);
}
let mut non_ssa_locals = BitSet::new_empty(analyzer.locals.len());
for (local, kind) in analyzer.locals.iter_enumerated() {
if matches!(kind, LocalKind::Memory) {
non_ssa_locals.insert(local);
}
}
non_ssa_locals
}
#[derive(Copy, Clone, PartialEq, Eq)]
enum LocalKind {
ZST,
/// A local that requires an alloca.
Memory,
/// A scalar or a scalar pair local that is neither defined nor used.
Unused,
/// A scalar or a scalar pair local with a single definition that dominates all uses.
SSA(DefLocation),
}
struct LocalAnalyzer<'mir, 'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> {
fx: &'mir FunctionCx<'a, 'tcx, Bx>,
dominators: &'mir Dominators<mir::BasicBlock>,
locals: IndexVec<mir::Local, LocalKind>,
}
impl<'mir, 'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> LocalAnalyzer<'mir, 'a, 'tcx, Bx> {
fn assign(&mut self, local: mir::Local, location: DefLocation) {
let kind = &mut self.locals[local];
match *kind {
LocalKind::ZST => {}
LocalKind::Memory => {}
LocalKind::Unused => *kind = LocalKind::SSA(location),
LocalKind::SSA(_) => *kind = LocalKind::Memory,
}
}
fn process_place(
&mut self,
place_ref: &mir::PlaceRef<'tcx>,
context: PlaceContext,
location: Location,
) {
let cx = self.fx.cx;
if let Some((place_base, elem)) = place_ref.last_projection() {
let mut base_context = if context.is_mutating_use() {
PlaceContext::MutatingUse(MutatingUseContext::Projection)
} else {
PlaceContext::NonMutatingUse(NonMutatingUseContext::Projection)
};
// Allow uses of projections that are ZSTs or from scalar fields.
let is_consume = matches!(
context,
PlaceContext::NonMutatingUse(
NonMutatingUseContext::Copy | NonMutatingUseContext::Move,
)
);
if is_consume {
let base_ty = place_base.ty(self.fx.mir, cx.tcx());
let base_ty = self.fx.monomorphize(base_ty);
// ZSTs don't require any actual memory access.
let elem_ty = base_ty.projection_ty(cx.tcx(), self.fx.monomorphize(elem)).ty;
let span = self.fx.mir.local_decls[place_ref.local].source_info.span;
if cx.spanned_layout_of(elem_ty, span).is_zst() {
return;
}
if let mir::ProjectionElem::Field(..) = elem {
let layout = cx.spanned_layout_of(base_ty.ty, span);
if cx.is_backend_immediate(layout) || cx.is_backend_scalar_pair(layout) {
// Recurse with the same context, instead of `Projection`,
// potentially stopping at non-operand projections,
// which would trigger `not_ssa` on locals.
base_context = context;
}
}
}
if let mir::ProjectionElem::Deref = elem {
// Deref projections typically only read the pointer.
base_context = PlaceContext::NonMutatingUse(NonMutatingUseContext::Copy);
}
self.process_place(&place_base, base_context, location);
// HACK(eddyb) this emulates the old `visit_projection_elem`, this
// entire `visit_place`-like `process_place` method should be rewritten,
// now that we have moved to the "slice of projections" representation.
if let mir::ProjectionElem::Index(local) = elem {
self.visit_local(
local,
PlaceContext::NonMutatingUse(NonMutatingUseContext::Copy),
location,
);
}
} else {
self.visit_local(place_ref.local, context, location);
}
}
}
impl<'mir, 'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> Visitor<'tcx>
for LocalAnalyzer<'mir, 'a, 'tcx, Bx>
{
fn visit_assign(
&mut self,
place: &mir::Place<'tcx>,
rvalue: &mir::Rvalue<'tcx>,
location: Location,
) {
debug!("visit_assign(place={:?}, rvalue={:?})", place, rvalue);
if let Some(local) = place.as_local() {
self.assign(local, DefLocation::Body(location));
if self.locals[local] != LocalKind::Memory {
let decl_span = self.fx.mir.local_decls[local].source_info.span;
if !self.fx.rvalue_creates_operand(rvalue, decl_span) {
self.locals[local] = LocalKind::Memory;
}
}
} else {
self.visit_place(place, PlaceContext::MutatingUse(MutatingUseContext::Store), location);
}
self.visit_rvalue(rvalue, location);
}
fn visit_place(&mut self, place: &mir::Place<'tcx>, context: PlaceContext, location: Location) {
debug!("visit_place(place={:?}, context={:?})", place, context);
self.process_place(&place.as_ref(), context, location);
}
fn visit_local(&mut self, local: mir::Local, context: PlaceContext, location: Location) {
match context {
PlaceContext::MutatingUse(MutatingUseContext::Call)
| PlaceContext::MutatingUse(MutatingUseContext::Yield) => {
self.assign(local, DefLocation::Body(location));
}
PlaceContext::NonUse(_)
| PlaceContext::NonMutatingUse(NonMutatingUseContext::PlaceMention)
| PlaceContext::MutatingUse(MutatingUseContext::Retag) => {}
PlaceContext::NonMutatingUse(
NonMutatingUseContext::Copy | NonMutatingUseContext::Move,
) => match &mut self.locals[local] {
LocalKind::ZST => {}
LocalKind::Memory => {}
LocalKind::SSA(def) if def.dominates(location, &self.dominators) => {}
// Reads from uninitialized variables (e.g., in dead code, after
// optimizations) require locals to be in (uninitialized) memory.
// N.B., there can be uninitialized reads of a local visited after
// an assignment to that local, if they happen on disjoint paths.
kind @ (LocalKind::Unused | LocalKind::SSA(_)) => {
*kind = LocalKind::Memory;
}
},
PlaceContext::MutatingUse(
MutatingUseContext::Store
| MutatingUseContext::Deinit
| MutatingUseContext::SetDiscriminant
| MutatingUseContext::AsmOutput
| MutatingUseContext::Borrow
| MutatingUseContext::AddressOf
| MutatingUseContext::Projection,
)
| PlaceContext::NonMutatingUse(
NonMutatingUseContext::Inspect
| NonMutatingUseContext::SharedBorrow
| NonMutatingUseContext::FakeBorrow
| NonMutatingUseContext::AddressOf
| NonMutatingUseContext::Projection,
) => {
self.locals[local] = LocalKind::Memory;
}
PlaceContext::MutatingUse(MutatingUseContext::Drop) => {
let kind = &mut self.locals[local];
if *kind != LocalKind::Memory {
let ty = self.fx.mir.local_decls[local].ty;
let ty = self.fx.monomorphize(ty);
if self.fx.cx.type_needs_drop(ty) {
// Only need the place if we're actually dropping it.
*kind = LocalKind::Memory;
}
}
}
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum CleanupKind {
NotCleanup,
Funclet,
Internal { funclet: mir::BasicBlock },
}
impl CleanupKind {
pub fn funclet_bb(self, for_bb: mir::BasicBlock) -> Option<mir::BasicBlock> {
match self {
CleanupKind::NotCleanup => None,
CleanupKind::Funclet => Some(for_bb),
CleanupKind::Internal { funclet } => Some(funclet),
}
}
}
/// MSVC requires unwinding code to be split to a tree of *funclets*, where each funclet can only
/// branch to itself or to its parent. Luckily, the code we generates matches this pattern.
/// Recover that structure in an analyze pass.
pub fn cleanup_kinds(mir: &mir::Body<'_>) -> IndexVec<mir::BasicBlock, CleanupKind> {
fn discover_masters<'tcx>(
result: &mut IndexSlice<mir::BasicBlock, CleanupKind>,
mir: &mir::Body<'tcx>,
) {
for (bb, data) in mir.basic_blocks.iter_enumerated() {
match data.terminator().kind {
TerminatorKind::Goto { .. }
| TerminatorKind::UnwindResume
| TerminatorKind::UnwindTerminate(_)
| TerminatorKind::Return
| TerminatorKind::CoroutineDrop
| TerminatorKind::Unreachable
| TerminatorKind::SwitchInt { .. }
| TerminatorKind::Yield { .. }
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. } => { /* nothing to do */ }
TerminatorKind::Call { unwind, .. }
| TerminatorKind::InlineAsm { unwind, .. }
| TerminatorKind::Assert { unwind, .. }
| TerminatorKind::Drop { unwind, .. } => {
if let mir::UnwindAction::Cleanup(unwind) = unwind {
debug!(
"cleanup_kinds: {:?}/{:?} registering {:?} as funclet",
bb, data, unwind
);
result[unwind] = CleanupKind::Funclet;
}
}
}
}
}
fn propagate<'tcx>(
result: &mut IndexSlice<mir::BasicBlock, CleanupKind>,
mir: &mir::Body<'tcx>,
) {
let mut funclet_succs = IndexVec::from_elem(None, &mir.basic_blocks);
let mut set_successor = |funclet: mir::BasicBlock, succ| match funclet_succs[funclet] {
ref mut s @ None => {
debug!("set_successor: updating successor of {:?} to {:?}", funclet, succ);
*s = Some(succ);
}
Some(s) => {
if s != succ {
span_bug!(
mir.span,
"funclet {:?} has 2 parents - {:?} and {:?}",
funclet,
s,
succ
);
}
}
};
for (bb, data) in traversal::reverse_postorder(mir) {
let funclet = match result[bb] {
CleanupKind::NotCleanup => continue,
CleanupKind::Funclet => bb,
CleanupKind::Internal { funclet } => funclet,
};
debug!(
"cleanup_kinds: {:?}/{:?}/{:?} propagating funclet {:?}",
bb, data, result[bb], funclet
);
for succ in data.terminator().successors() {
let kind = result[succ];
debug!("cleanup_kinds: propagating {:?} to {:?}/{:?}", funclet, succ, kind);
match kind {
CleanupKind::NotCleanup => {
result[succ] = CleanupKind::Internal { funclet };
}
CleanupKind::Funclet => {
if funclet != succ {
set_successor(funclet, succ);
}
}
CleanupKind::Internal { funclet: succ_funclet } => {
if funclet != succ_funclet {
// `succ` has 2 different funclet going into it, so it must
// be a funclet by itself.
debug!(
"promoting {:?} to a funclet and updating {:?}",
succ, succ_funclet
);
result[succ] = CleanupKind::Funclet;
set_successor(succ_funclet, succ);
set_successor(funclet, succ);
}
}
}
}
}
}
let mut result = IndexVec::from_elem(CleanupKind::NotCleanup, &mir.basic_blocks);
discover_masters(&mut result, mir);
propagate(&mut result, mir);
debug!("cleanup_kinds: result={:?}", result);
result
}